Title of Invention | "A PHARMACEUTICAL COMPOSITION FOR TREATING HIV INFACTION" |
---|---|
Abstract | A pharmaceutical composition comprising of l-benzoyl-4-[2-[4-methoxy-7-(3-methyl-lH-l,2,4-triazol-l-yl)-lH-pyrrolo[2,3-c]pyridin-3-yl]-l,2-dioxoethyl]-piperazine, or a pharmaceutically acceptable salt thereof along with non-nucleoside HIV reverse transcriptase inhibitor delavirdine or efavirenz, including pharmaceutically acceptable salt thereof, used for treatment of AIDS or HIV infection and a pharmaceutically acceptable carrier, wherein the EC50 ratio of said piperazine compound to said other agent is 1:1, 1:2.5 or 2.5:1. |
Full Text | CROSS-REFERENCE TO RELATED APPLICATIONS This application claims the benefit of U.S. provisional application USSN 60/555,767, filed March 24, 2004. BACKGROUND OF THE INVENTION HIV-1 (human immunodeficiency virus -1) infection remains a major medical problem, with an estimated 42 million people infected worldwide at the end of 2002. The number of cases of HIV and AIDS (acquired immunodeficiency syndrome) has risen rapidly. In 2002, approximately 5 million new infections were reported and 3.1 million people died from AIDS. Currently available drugs for the treatment of HIV include ten nucleoside reverse transcriptase (RT) inhibitors or approved single pill combinations: zidovudine or AZT (or Retrovir®), didanosine or DDI (or Videx®), stavudine or D4T (or Zerit®), lamivudine or 3TC (or Epivir®), zalcitabine or DDC (or Hivid®), abacavir succinate (or Ziagen®), tenofovir disoproxil fumarate salt (or Viread®), emtricitabine (or Emtriva®), Combivir® (contains 3TC and AZT), Trizivir® (contains abacavir, 3TC and AZT); three non-nucleoside reverse transcriptase inhibitors: nevirapine (or Viramune®), delavirdine (or Rescriptor ) and efavirenz (or Sustiva®), eight peptidomimetic protease inhibitors or approved formulations: saquinavir (or Invirase® or Fortovase®), indinavir (or Crixivan®), ritonavir (or Norvir®), nelfinavir (or Viracept®), amprenavir (or Agenerase®), atazanavir (Reyataz ), fosamprenavir (or Lexiva), Kaletra®(contains lopinavir and ritonavir), and one fusion inhibitor enfuvirtide (or T-20 or Fuzeon®). Each of these drugs can only transiently restrain viral replication if used alone. However, when used in combination, these drugs have a profound effect on viremia and disease progression. In fact, significant reductions in death rates among AIDS patients have been recently documented as a consequence of the widespread application of combination therapy. Despite-these impressive results, 30 to 50% of patients ultimately fail combination drag therapies. Insufficient drag potency, non-compliance, restricted tissue penetration and drag-specific limitations within certain cell types (e.g. most nucleoside analogs cannot be phosphorylated in resting cells) may account for the incomplete suppression of sensitive viruses. Furthermore, the high replication rate and rapid turnover of HIV-1 combined with the frequent incorporation of mutations, leads to the appearance of drag-resistant variants and treatment failures when sub-optimal drag concentrations are present (Larder and Kemp; Gulick; Kuritzkes; Morris-Jones et al; Schinazi et al; Vacca and Condra; Flexner; Berkhout and Ren et al; (Ref. 6-14)). Thus, there is continuing need for new compounds and methods of treatment for HIV infection. 1 -Benzoyl-4-[2-[4-methoxy-7-(3-methyl- 1H-1,2,4-triazol-1 -yl)- IH-pyrrolo[2,3-c]pyridin-3-yl]-l,2-dioxoethyl]-piperazine (Compound 1) is an HIV-1 attachment inhibitor demonstrating potent antiviral activity against a variety of laboratory and clinical strains of HIV-1 (see U.S. patent application US 2003 0207910, published Nov. 6 2003). (FIGURE REMOVE) Compound 1 acts by selectively preventing attachment of the exterior viral envelope protein gp!20 to its cellular receptor CD4. Binding of gp!20 to CD4 is the first step in viral entry and is distinct from the subsequent interaction with a chemokine receptor (CCR5 or CXCR4) or virus-cell fusion event. By inhibiting this interaction, Compound 1 blocks viral entrance into cells. DESCRIPTION OF THE INVENTION The invention encompasses pharmaceutical compositions and methods for treating HIV infection and AIDS. One aspect of the invention is a method for treating HIV infection in a human patient comprising the administration of a therapeutically effective amount of 1- benzoyl-4-[2-[4-methoxy-7-(3-methyl-lH-l,2,4-triazol-l-yl)-lH-pyrrolo[2,3-c]pyridin-3-yl]-l,2-dioxoethyl]-piperazine (Compound 1), or a pharmaceutically acceptable salt or solvate thereof, with a therapeutically effective amount of at least one other agent used for treatment of AIDS or HIV infection selected from the group consisting of nucleoside HIV reverse transcriptase inhibitors, non-nucleoside HIV reverse transcriptase inhibitors, HIV protease inhibitors, HIV fusion inhibitors, HIV attachment inhibitors, CCR5 inhibitors, CXCR4 inhibitors, HIV budding or maturation inhibitors, and HIV integrase inhibitors. Another aspect of the invention is a method wherein the agent is a nucleoside HIV reverse transcriptase inhibitor. Another aspect of the invention is a method wherein the nucleoside HIV reverse transcriptase inhibitor is selected from the group consisting of abacavir, didanosine, emtricitabine, lamivudine, stavudine, tenofovir, zalcitabine, and zidovudine, or a pharmaceutically acceptable salt or solvate thereof. Another aspect of the invention is a method wherein the agent is a non-nucleoside HIV reverse transcriptase inhibitor. Another aspect of the invention is a method wherein the non-nucleoside HIV reverse transcriptase inhibitor is selected from the group consisting of delavirdine, efavirenz, and nevirapine, or a pharmaceutically acceptable salt or solvate thereof. Another aspect of the invention is a method wherein the agent is an HIV protease inhibitor. Another aspect of the invention is a method wherein the HIV protease inhibitor is selected from the group consisting of amprenavir, atazanavir, indinavir, lopinavir, nelfinavir, ritonavir, saquinavir and fosamprenavir, or a pharmaceutically acceptable salt or solvate thereof. Another aspect of the invention is a method wherein the agent is an HIV fusion inhibitor. Another aspect of the invention is a method wherein the HIV fusion inhibitor is enfuvirtide or T-1249, or a pharmaceutically acceptable salt or solvate thereof. Another aspect of the invention is a method wherein the agent is an HIV attachment inhibitor. Another aspect of the invention is a method wherein the agent is a CCR5 inhibitor. Another aspect of the invention is a method wherein the CCR5 inhibitor is selected from the group consisting of Sch-C, Sch-D, TAK-220, PRO-140, and UK-427,857, or a pharmaceutically acceptable salt or solvate thereof. Another aspect of the invention is a method wherein the agent is a CXCR4 inhibitor. Another aspect of the invention is a method wherein the CXCR4 inhibitor is AMD-3100, or a pharmaceutically acceptable salt or solvate thereof. Another aspect of the invention is a method wherein the agent is an HIV budding or maturation inhibitor. Another aspect of the invention is a method wherein the budding or maturation inhibitor is PA-457, or a pharmaceutically acceptable salt or solvate thereof. Another aspect of the invention is a method wherein the agent is an HIV integrase inhibitor. Another aspect of the invention is a method wherein the HIV integrase inhibitor is 3-[(4-fluorobenzyl)methoxycarbamoyl]-2-hydroxyacrylic acid or 2-(2,2)-dimethyl-5-oxo-[l,3]-dioxolan-4-ylidene)-N-(4-fluorobenzyl)-N-methoxyacetamide, or a salt or solvate thereof. Another aspect of the invention is a pharmaceutical composition comprising a therapeutically effective amount of l-benzoyl-4-[2-[4-methoxy-7-(3-methyl-l//-l,2,4-triazol-l-yl)-l#-pyrrolo[2,3-c]pyridin-3-yl]-l,2-dioxoethyl]-piperazine, or a pharmaceutically acceptable salt or solvate thereof, with at least one other agent used for treatment of AIDS or HIV infection selected from the group consisting of nucleoside HIV reverse transcriptase inhibitors, non-nucleoside HIV reverse transcriptase inhibitors, HIV protease inhibitors, HIV fusion inhibitors, HIV attachment inhibitors, CCR5 inhibitors, CXCR4 inhibitors, HIV budding or maturation inhibitors, and HIV integrase inhibitors, and a pharmaceutically acceptable carrier. Another aspect of the invention is the composition wherein the agent is a nucleoside HIV reverse transcriptase inhibitor. Another aspect of the invention is the composition wherein the nucleoside HIV transcriptase inhibitor is selected from the group consisting of abacavir, didanosine, emtricitabine, lamivudine, stavudine, tenofovir, zalcitabine, and zidovudine, or a pharmaceutically acceptable salt or solvate thereof. Another aspect of the invention is the composition wherein the agent is a non-nucleoside HIV reverse transcriptase inhibitor. Another aspect of the invention is the composition wherein the non-nucleoside HIV reverse transcriptase inhibitor is selected from the group consisting of delavirdine, efavirenz, and nevirapine, or a pharmaceutically acceptable salt or solvate thereof. Another aspect of the invention is the composition wherein the agent is an HIV protease inhibitor. Another aspect of the invention is the composition wherein the HIV protease inhibitor is selected from the group consisting of amprenavir, atazanavir, indinavir, lopinavir, nelfinavir, ritonavir, saquinavir and fosamprenavir, or a pharmaceutically acceptable salt or solvate thereof. Another aspect of the invention is the composition wherein the agent is an HIV fusion inhibitor. Another aspect of the invention is the composition method wherein the HIV fusion inhibitor is enfuvirtide or T-1249, or a pharmaceutically acceptable salt or solvate thereof. Another aspect of the invention is the composition wherein the agent is an HIV attachment inhibitor. Another aspect of the invention is the composition wherein the agent is a CCR5 inhibitor. Another aspect of the invention is the composition wherein the CCR5 inhibitor is selected from the group consisting of Sch-C, Sch-D, TAK-220, PRO-140, and UK-427,857, or a pharmaceutically acceptable salt or solvate thereof. Another aspect of the invention is a method wherein the agent is a CXCR4 inhibitor. Another aspect of the invention is a method wherein the CXCR4 inhibitor is AMD-3100, or a pharmaceutically acceptable salt or solvate thereof. Another aspect of the invention is the composition wherein the agent is an HIV budding or maturation inhibitor. Another aspect of the invention is the composition wherein the budding or maturation inhibitor is PA-457, or a pharmaceutically acceptable salt or solvate thereof. Another aspect of the invention is the composition wherein the agent is an HIV integrase inhibitor. Another aspect of the invention is the composition wherein the HIV integrase inhibitor is 3-[(4-fluorobenzyl)methoxycarbamoyl]-2-hydroxyacrylic acid or 2-(2,2)-dimethyl-5-oxo-[l,3]-dioxolan-4-ylidene)-N-(4-fluorobenzyl)-N-methoxyacetamide, or a pharmaceutically acceptable salt or solvate thereof. "Combination," "coadministration," "concurrent," and similar terms referring to the administration of Compound 1 with at least one anti-HIV agent mean that the components are part of a combination antiretroviral therapy or highly active antiretroviral therapy (HAART) as understood by practitioners in the field of AIDS and HIV infection. "Therapeutically effective" means the amount of agent required to provide a meaningful patient benefit as understood by practitioners in the field of AIDS and HIV infection. In general, the goals of treatment are suppression of viral load, restoration and preservation of immunologic function, improved quality of life, and reduction of HIV-related morbidity and mortality. "Patient" means a person infected with the HIV virus and suitable for therapy as understood by practitioners in the field of AIDS and HIV infection. "Treatment," "therapy," "regimen," "HIV infection," "ARC," "AIDS" and related terms are used as understood by practitioners in the field of AIDS and HIV infection. The invention includes all pharmaceutically acceptable salt forms of Compound 1. Pharmaceutically acceptable salts are those in which the counter ions do not contribute significantly to the physiological activity or toxicity of the compounds and as such function as pharmacological equivalents. In many instances, salts have physical properties that make them desirable for formulation, such as solubility or crystallinity. The salts can be made according to common organic techniques employing commercially available reagents. Suitable anionic salt forms include acetate, acistrate, besylate, bromide, chloride, citrate, fumarate, glucouronate, hydrobromide, hydrochloride, hydroiodide, iodide, lactate, maleate, mesylate, nitrate, pamoate, phosphate, succinate, sulfate, tartrate, tosylate, and xinofoate. The invention also includes all solvated forms of Compound 1, particularly hydrates. Solvates do not contribute significantly to the physiological activity or toxicity of the compounds and as such function as pharmacological equivalents. Solvates may form in stoichiometric amounts or may form from adventitious solvent or a combination of both. One type of solvate is hydrate. Some hydrated forms include monohydrate, hemihydrate, and dihydrate. Biological Methods Compound 1 demonstrated synergistic or additive-synergistic HIV antiviral activity when used in conjunction with a variety of other antiviral agents, as described below. Virus and cell lines. The T-cell lines, MT-2 and PM-1 were obtained through the AIDS Research and Reference Reagent Program, NIAID, and were contributed by Dr. D. Richman and Dr. R. Gallo, respectively. Both cell lines were cultured in RPMI 1640 medium supplemented with 10 % fetal bovine serum, 2 mM L-glutamine and sub-cultured twice a week. The LAI strain of HIV-1 was obtained from the Fred Hutchinson Cancer Research Center, and the Bal strain was from NIH. Both virus stocks were amplified and titered in MT-2 cells (LAI) and PM-1 cells (Bal) using a virus infectivity assay. Chemicals. Compound 1, atazanavir, didanosine, stavudine, efavirenz, enfuvirtide (T-20), T-1249, AMD-3100, Sch-C, Sch-D and UK-427,857 were synthesized using published or known reactions. Amprenavir, indinavir, nelfinavir, nevirapine, lopinavir, lamivudine, ritonavir, tenofovir, saquinavir, delavirdine and abacavir were extracted from commercial formulations of the prescribed drugs and purified using published or common techniques. Tenofovir was tested as tenovir disopoxil fumerate. Zalcitabine was obtained from the National Institutes of Health. Zidovudine was purchased from Sigma and emtricitabine from Moravek Biochemicals. 3-[(4-Fluorobenzyl)methoxycarbamoyl]-2-hydroxyacrylic acid (Compound 2) and 2-(2,2)-dimethyl-5-oxo-[l,3]-dioxolan-4-ylidene)-N-(4-fluorobenzyl)-N-methoxyacetamide (Compound 3) are described in US patent 6,777,440. Purities of the anti-HIV agents were greater than 95% except for AMD-3100 (>90%), Sch-D (80%), and UK-427,857 (>90%). Drug Susceptibility and Cytotoxicity Assays. For drug susceptibility assays, MT-2 cells were infected with fflV-1 LAI (or PM-1 cells with fflV-1 Bal) at an MOI of 0.005, and seeded into 96-well microtiter plates (0.1 x 10 cells/ml) containing serial dilutions of test compounds. The drug combinations were set up using ratios of the two drugs of 1:1,1:2.5 and 2.5:1 times the ECso value determined for each drug in prior multiple experiments. Each drug ratio consisted of an array of 3-fold serial dilutions, and was performed in quadruplicate. The plates were incubated at 37°C/5% CO2. The MT-2 cells infected with HIV-1 LAI were incubated for 5 days. On day-five post-infection, 20 uJ from each well was harvested and quantitated by a reverse transcriptase (RT) assay, or in samples involving non-nucleoside RT inhibitors, an MTS assay. The PM-1 cells infected with HIV-1 Bal and used for studying the combinations with CCR5 inhibitors were incubated for six days. On day-six post-infection, 20 |ul from each well was harvested, 20- and 50-fold diluted and quantitated by p24 assay. Cytotoxicity assays were performed using uninfected cells, exposed to the same drug combinations, and incubated for six days. Cell viability was determined by an MTS assay. The CCso values were calculated by using the exponential form of the median effect equation as mentioned below for calculation Analysis of Drug Combination Effects. For determination of CI values, drugs were diluted in a fixed ratio and multiple ratios were analyzed. The drug serial dilutions spanned a range of concentrations near the ECso value of each compound, so that equivalent antiviral activities could be compared. Concentration-response curves were estimated for each individual drug and every combination using the median-effect equation. The equation was fit using a nonlinear regression routine (Proc Nlin) in PC SAS version 8.01 (SAS Institute Inc., SAS Version 8.01, Gary, NC: SAS Institute Inc., 1990). values for each drug were determined from the single drug experiments, using the median effect equation, Fa = !/[!+ (ED50/drug concentration)111]. In this equation, Fa stands for "fraction affected," and represents the fraction of the viral load that has been inactivated. For example, Fa of 0.75 indicates that viral replication had been inhibited by 75%, relative to the no-drug controls. EDso is drug concentration that is expected to reduce the amount of virus by 50%, and m is a parameter that reflects the slope of the concentration-response curve. To assess antiviral effects of different drug combination treatments, combination indices (CIs) were calculated according to Chou and Rideout. The combination index was computed as CI = [D]i /[Dm]l + [Ph /[Dm]2 In this equation [Dm]l and [Dm]2 are the concentrations of drugs that would individually produce a specific level of effect, while [D]l and [D]2 are the concentrations of drugs in combination that would produce the same level of effect. Theoretically, additivity is implied if the CI is equal to one, synergy if the CI is less than one, and antagonism if the CI is greater than one. However, extensive experience with combination studies indicates that there are inherent laboratory variables that must be taken into account in interpreting the CIs. At best, we can construct a range that contains the likely values for the CI, given the noise in the data. In this report, these ranges are reported in parentheses next to each point estimate of the CI. For example, when we report a CI of "0.53 (0.46, 0.60)" this means that our best estimate of the CI is 0.53, but due to noise in the data, values from 0.46 to 0.60 are also reasonable values for the CI. This range, 0.46 to 0.60 falls entirely below the value of 1.0, and hence all likely values for the CI are less than 1.0. Therefore, we can infer synergistic behavior for this case. If the range fell entirely above 1.0, we would infer antagonistic behavior. If the range were to include 1.0, we would infer additivity. In carrying out the combination experiments below, the ECso for Compound 1 and each comparator compound was determined during the course of each study, and used in the subsequent data analysis. The determined values are consistent with our previously published data and are shown in Table 1. Table 1. Anti-HIV Activity of the Compounds Used in Two-Drug Combination Studies. Compound EC50 (|UM) Highest Concentration Used (MM) Compound 1 0.0001-0.0003 0.15 Abacavir 0.326 90 Tenofovir 0.008 6.0 Zalcitabine 0.034 15 Didanosine 0.652 300 Stavudine 0.072 90 Zidovudine 0.001 0.9 Lamivudine 0.030 12 Emtricitabine 0.025 30 Efavirenz 0.001 0.15 Nevirapine 0.107 9.0 Delavirdine 0.025 0.5 Indinavir 0.003 3.0 Table 1. Anti-HIV Activity of the Compounds Used in Two-Drug Combination Studies. Highest Compound EC50 0*M) Concentration Used Atazanavir 0.0007 0.15 Lopinavir 0.004 3.0 Nelfinavir 0.003 0.9 Amprenavir 0.011 3.0 Saquinavir 0.005 3.0 Ritonavir 0.007 3.0 Enfuvirtide 0.001 0.9 T-1249 AMD-3100 0.005 0.8 SchC 0.0009 0.9 SchD UK-427,857 Compound 2 0.079 4.0 Two-Drug Combinations of Compound 1 with Nudeoside Reverse Transcripta.se Inhibitors. Nucleoside RT inhibitors were combined with Compound 1 at a range of concentrations near the ECso value of each compound, so that equivalent antiviral activities could be compared. All estimates were computed using SAS Proc NLIN, and a two-parameter logistic. Data is presented in Table 2 as the combination indices and the asymptotic confidence intervals for RT inhibitors at different molar ratios (see Materials and Methods). Nucleoside RT inhibitors show synergistic to additive-synergistic antiviral effects in combination with Compound 1. No significant antagonism of anti-HIV activity is observed. No enhanced cytotoxicity was encountered at the highest concentrations tested with any of the drug combinations, as measured by MTS reduction assay. Table 2. Two-Drug Combinations using Compound 1 and Nucleoside Reverse Transcriptase Inhibitors. Molar Ratio (EC50 Ratio)" Combination Indices at % HIV Inhibition" (Confidence Interval) 50% 75% 90% Overall Result Zalcitabine 1:100(1:1) 1:250(1:2.5) 0.58 (0.46, 0.69) 0.55 (0.47, 0.63) 0.61 (0.43, 0.78) 0.56 (0.44, 0.68) 0.69(0.39, 1.00) 0.65 (0.43, 0.86) Synergistic 1:40(2.5:1) 0.24 (0.22, 0.26) 0.18(0.16,0.20) 0.14(0.12,0.17) Emtricitabine 1:200(1:1) 0.42 (0.35, 0.50) 0.49 (0.37, 0.61) 0.60 (0.38, 0.83) 1:500(1:2.5) 0.19(0.15,0.22) 0.35 (0.26, 0.44) 0.67 (0.36, 0.99) Synergistic 1:80(2.5:1) 0.11(0.09,0.12) 0.26(0.21,0.31) 0.67 (0.44, 0.89) Didanosine 1:2000(1:1) 1:5000(1:2.5) 0.31(0.29,0.32) 0.27(0.23,0.31) 0.16(0.15,0.17) 0.31(0.24,0.38) 0.08 (0.08, 0.09) 0.35 (0.23, 0.48) Synergistic 1:800(2.5:1) 0.15(0.11,0.19) 0.31(0.22,0.40) 0.65(0.31,0.98) Tenofovir 1:40(1:1) 1:100(1:2.5) 1:16(2.5:1) 0.09(0.07,0.11) 0.18(0.13,0.22) 0.37(0.31,0.44) 0.17(0.12,0.22) 0.37 (0.23, 0.50) 0.60 (0.46, 0.73) 0.34(0.18,0.49) 0.79(0.30, 1.28) 0.97 (0.62, 1.33) Moderate-Synergistic Stavudine 1:600(1:1) 1:1500(1:2.5) 1:240(2.5:1) 0.52 (0.40, 0.64) 0.38(0.31,0.45) 0.69(0.51,0.88) 0.60(0.41,0.80) 0.37 (0.28, 0.46) 0.78 (0.49, 1.07) 0.75(0.36, 1.14) 0.40 (0.23, 0.56) 0.92(0.36,1.48) Moderate-Synergistic Zidovudine 1:6(1:1) 1:15(1:2.5) 1:2.4(2.5:1) 0.25(0.17,0.34) 0.46 (0.36, 0.56) 0.37 (0.28, 0.47) 0.53 (0.29, 0.78) 0.52 (0.36, 0.68) 0.49 (0.32, 0.67) 1.13(0.24,2.02) 0.59 (0.29, 0.89) 0.66(0.28,1.05) Additive-Synergistic Lamivudine 1:80(1:1) 1:200(1:2.5) 1:32(2.5:1) 0.75 (0.45, 1.05) 0.13(0.10,0.16) 0.14(0.10,0.17) 0.79 (0.35, 1.23) 0.21(0.16,0.27) 0.26(0.18,0.33) 0.90(0.11,1.69) 0.39(0.21,0.58) 0.49 (0.22, 0.75) Additive-Synergistic Abacavir 1:1000(1:1) 1:2500(1:2.5) 1:400(2.5:1) 0.69 (0.49, 0.89) 0.56 (0.45, 0.67) 0.10(0.05,0.14) 0.77 (0.46, 1.09) 0.51(0.37,0.65) 0.27(0.16,0.39) 0.87 (0.30, 1.44) 0.48 (0.27, 0.68) 0.76(0.14,1.37) Additive-Synergistic a Ratio of Compound 1 to comparator compound, b A lower bound of the asymptotic confidence interval greater than 1 indicates antagonisms, an upper bound of less than 1 indicates synergism, and a value of 1 being contained in the interval indicates additivity. The 95% confidence intervals are shown in parenthesis, and represent a measure of variability in the data. Two-Drug Combinations of Compound 1 with Non-Nucleoside Reverse Transcriptase Inhibitors. The results presented in Table 3 show that the combined effect of Compound 1 with efavirenz and delavirdine is Synergistic while the effect with nevapiradine is additive-synergystic. No enhanced cytotoxicity was observed at the highest concentrations tested with any of the drug combinations. Table 3. Two-Drug Combinations using Compound 1 and Non-Nucleoside Reverse Transcriptase Inhibitors. Molar Ratio (EC50 Ratio)" Combination Indices at % HIV Inhibition11 (Confidence Interval) 50% 75% 90% Overall Result Efavirenz 1:2.5(1:1) 0.70 (0.50, 0.89) 0.47 (0.30, 0.64) 0.32(0.13,0.50) 1:6.25(1:2.5) 0.47 (0.28, 0.65) 0.46(0.21,0.70) 0.45 (0.06, 0.83) Synergistic 1:1 (2.5:1) 0.52 (0.36, 0.69) 0.39(0.21,0.57) 0.30(0.08,0.51) Delavirdine 1:8.33(1:1) 0.90 (0.75, 1.06) 0.49 (0.38, 0.61) 0.28(0.18,0.39) 1:20.8(1:2.5) 0.57 (0.42, 0.71) 0.55 (0.36, 0.75) 0.57 (0.26, 0.89) Synergistic 1:3.33(2.5:1) 0.64 (0.49, 0.78) 0.46(0.31,0.60) 0.34(0.17,0.50) Nevirapine 1:150(1:1) 0.19(0.15,0.23) 0.22(0.16,0.28) 0.26(0.15,0.38) Additive- 1:375(1:2.5) 0.48 (0.35, 0.62) 0.66 (0.40, 0.92) 0.92(0.35,1.49) 1:60(2.5:1) 0.58 (0.48, 0.67) 0.99 (0.76, 1.22) 1.71(1.09,2.33) Synergistic a Ratio of Compound 1 to comparator compound, b A lower bound of the asymptotic confidence interval greater than 1 indicates antagonisms, an upper bound of less than 1 indicates synergism, and a value of 1 being contained in the interval indicates additivity. The 95% confidence intervals are shown in parenthesis, and represent a measure of variability in the data. Two-Drug Combinations Involving Compound 1 and HIV Protease Inhibitors. In general, protease combinations with Compound 1 are synergistic to additive-synergistic. No cytotoxicity was observed at the highest concentrations used in any of these combination antiviral assays. Results from this two-drug combination study are summarized in Table 4. Table 4. Two-Drug Combination using Compound 1 and Protease Inhibitors. Molar Ratio (EC50 Ratio)" Combination Indices at % HIV Inhibition" (Confidence Interval) 50% 75% 90% Overall Result Ritonavir 1:33.3(1:1) 0.60 (0.49, 0.72) 0.61 (0.45, 0.77) 0.70(0.41,0.99) 1:83.3(1:2.5) 0.54 (0.45, 0.63) 0.58 (0.44, 0.71) 0.73 (0.46, 1.00) Synergistic 1:13.3(2.5:1) 0.23 (0.20, 0.26) 0.20(0.17,0.24) 0.19(0.14,0.24) Saquinavir 1:33.3(1:1) 0.31(0.28,0.33) 0.31(0.28,0.35) 0.32 (0.26, 0.38) 1:83.3(1:2.5) 0.60 (0.52, 0.67) 0.67 (0.56, 0.79) 0.77 (0.56, 0.97) Synergistic 1:13.3(2.5:1) 0.39 (0.33, 0.45) 0.59 (0.46, 0.72) 0.90(0.58, 1.22) Atazanavir 1:1(1:1) 0.53 (0.46, 0.60) 0.67 (0.54, 0.79) 0.90(0.64,1.17) Additive- 1:2.5(1:2.5) 0.23(0.16.0.30) 0.49 (0.29, 0.69) 1.17(0.38,1.95) Synergistic 1:0.4(2.5:1) 0.34 (0.26, 0.42) 0.56 (0.38, 0.74) 0.97 (0.46. 1.48) Table 4. Two-Drug Combination using Compound 1 and Protease Inhibitors. a Ratio of Compound 1 to comparator compound, b A lower bound of the asymptotic confidence interval greater than 1 indicates antagonisms, an upper bound of less than 1 indicates synergism, and a value of 1 being contained in the interval indicates additivity. The 95% confidence intervals are shown in parenthesis, and represent a measure of variability in the data. Molar Ratio (EC50 Ratio)" Combination Indices at % HIV Inhibition11 (Confidence Interval) 50% 75% 90% Overall Result Lopinavir 1:20(1:1) 0.47 (0.38, 0.56) 0.66 (0.48, 0.84) 1.02(0.58, 1.46) Additive- 1:50(1:2.5) 0.89(0.73,1.05) 0.90(0.67, 1.13) 1.00(0.60,1.40) Synergistic 1:8(2.5:1) 0.29 (0.25, 0.33) 0.37 (0.30, 0.44) 0.51 (0.37,0.65) Nelfinavir 1:6(1:1) 0.39 (0.34, 0.44) 0.47 (0.39, 0.56) 0.58(0.41,0.74) 1:15(1:2.5) 0.41 (0.32, 0.50) 0.81 (0.57, 1.05) 1.61(0.84,2.37) Additive- 1:2.4(2.5:1) 0.12(0.09,0.15) 0.32 (0.22, 0.42) 0.87 (0.38, 1.35) Synergistic Amprenavir 1:33.3(1:1) 0.14(0.11,0.17) 0.35 (0.26, 0.45) 0.87 (0.46, 1.28) 1:83.3(1:2.5) 0.13(0.09,0.17) 0.27 (0.17, 0.38) 0.58(0.19,0.97) Additive- 1:13.3(2.5:1) 0.46 (0.32, 0.60) 0.79(0.46, 1.11) 1.33(0.42,2.25) Synergistic Indinavir 1:20(1:1) 0.41 (0.26, 0.56) 0.69(0.34,1.04) 1.59(0.29,2.90) 1:50(1:2.5) 1:8(2.5:1) 0.30(0.18,0.41) 0.05 (0.03, 0.06) 0.62 (0.32, 0.92) 0.16(0.13,0.20) 1.96(0.29,3.64) 0.68 (0.39, 0.98) /\UQ1U VC~ Synergistic Two-Drug Combination of Compound 1 with Entry Inhibitors. The results presented in Table 5 indicate that the combination of Compound 1 with AMD-3100 is strongly synergistic at the 50 and 75% inhibition levels, with tendency to additivity at 90%. Therefore, it is classified as moderate synergistic. No significant cytotoxicity was observed at the highest concentration of the combined drugs. Table 5. Anti-HIV Activity from a Two-Drug Combination using Compound 1 and Entry Inhibitors Molar Ratio (EC50 Ratio)" Combination Indices at % HIV Inhibition (Confidence Interval) 50% 75% 90% Overall Result Enfuvirtide 1:10(1:1) 1:25(1:2.5) 1:4(2.5:1) T-1249 0.47 (0.40,0.54) 0.48 (0.37, 0.60) 0.35 (0.29, 0.40) 0.53 (0.42, 0.65) 0.60 (0.40, 0.80) 0.47 (0.37, 0.57) 0.60(0.39,0.81) 0.75(0.35,1.15) 0.63 (0.40, 0.86) Synergistic AMD-3100 1:16(1:1) 1:40(1:2.5) 1:6.4(2.5:1) SchC 1:10(1:1) 1:25(1:2.5) 1:4(2.5:1) SchD 0.44 (0.29, 0.60) 0.56 (0.42,0.70) 0.52 (0.36, 0.68) 0.19(0.14,0.25) 0.50 (0.38, 0.61) 0.08(0.05,0.11) 0.62(0.31,0.92) 0.54 (0.35, 0.73) 0.61 (0.35, 0.88) 0.46 (0.29, 0.63) 0.92(0.64, 1.21) 0.21(0.14,0.28) 0.98 (0.21, 1.76) 0.66(0.29,1.02) 0.77(0.24,1.31) 1.12(0.4,1.83) 1.74(0.83,2.65) 0.54(0.21,0.88) Moderate-Synergistic Additive-Synergistic UK-427,857 a Ratio of Compound 1 to comparator compound. b A lower bound of the asymptotic confidence interval greater than 1 indicates antagonisms, an upper bound of less than 1 indicates synergism, and a value of 1 being contained in the interval indicates additivity. The 95% confidence intervals are shown in parenthesis, and represent a measure of variability in the data. Two-Drug Combination of Compound 1 with an HIV integrase inhibitor. The results presented in Table 6 indicate that the combination of Compound 1 with Compound 2 is moderate synergistic. No significant cytotoxicity was observed at the highest concentration of the combined drugs. Table 6. Anti-HIV Activity from a Two-Drug Combination using Compound 1 and Compound 2 Molar Ratio (EC50 Ratio)3 Combination Indices at % HIV Inhibition (Confidence Interval) 50% 75% 90% Overall Result BMS-538203 1:80(1:1) 1:200(1:2.5) 1:32(2.5:11 0.48 0.44 0.50 (0.39, (0.36, (0.36, 0.58) 0.53) 0.63) 0.51 0.51 0.70 (0.37, (0.37, (0.44, 0.65) 0.65) 0.97) 0.54 0.59 1.00 (0.31, (0.34, (0.41, 0.76) 0 85) Moderate-; Synergistic 1.59) b A lower bound of the asymptotic confidence interval greater than 1 indicates antagonisms, an upper bound of less than 1 indicates synergism, and a value of 1 being contained in the interval indicates additivity. The 95% confidence intervals are shown in parenthesis, and represent a measure of variability in the data. Pharmaceutical Composition and Methods of Use Compound 1 inhibits HIV attachment, an essential step in HTV replication, and can be useful for the treatment of HIV infection and the consequent pathological conditions such as AIDS or ARC. As shown above, Compound 1 is active in conjunction with a wide variety of other agents and may be particularly beneficial in HAART and other new combination compositions and therapies. Compound 1 will generally be given as a pharmaceutical composition, and the active ingredient of the composition may be comprised of Compound 1 alone or Compound 1 and at least one other agent used for treating AIDS or HIV infection. The compositions will generally be made with a pharmaceutically accepted carrier or vehicle, and may contain conventional exipients. The compositions are made using common formulation techniques. The invention encompasses all conventional forms. Solid and liquid compositions are preferred. Some solid forms include powders, tablets, capsules, and lozenges. Tablets include chewable, buffered, and extended release. Capsules include enteric coated and extended release capsules. Powders are for both oral use and reconstitution into solution. Powders include lyophilized and flash-melt powders. In a solid composition, Compound 1 and any antiretroviral agent are present in dosage unit ranges. Generally, Compound 1 will be in a unit dosage range of 1-1000 mg/unit. Some examples of dosages are 1 mg, 10 mg, 100 mg, 250 mg, 500 mg, and 1000 mg. Generally, other antiretroviral agents will be present in a unit range similar to agents of that class used clinically. Typically, this is 0.25-1000 mg/unit. Liquids include aqueous solutions, syrups, elixers, emusions, and suspensions. In a liquid composition, Compound 1 and any antiretroviral agent are present in dosage unit ranges. Generally, Compound 1 will be in a unit dosage range of 1-100 mg/mL. Some examples of dosages are 1 mg/mL, 10 mg/mL, 25 mg/mL, 50 mg/mL, and 100 mg/mL. Generally, other antiretroviral agents will be present in a unit range similar to agents of that class used clinically. Typically, this is 1-100 mg/mL. The invention encompasses all conventional modes of administration; oral and parenteral (injected intramuscular, intravenous, subcutanaeous) methods are preferred. Generally, the dosing regimen will be similar to other antiretroviral agents used clinically. Typically, the daily dose will be 1-100 mg/kg body weight daily for Compound 1. Generally, more compound is required orally and less parenterally. The specific dosing regime, however, will be determined by a physician using sound medical judgement. The invention also encompasses methods where Compound 1 is given in combination therapy. That is, Compound 1 can be used in conjunction with, but separately from, other agents useful in treating ADDS and HIV infection. Some of these agents include HIV attachment inhibitors, CCR5 inhibitors, CXCR4 inhibitors, HIV cell fusion inhibitors, HIV integrase inhibitors, HIV nucleoside reverse transcriptase inhibitors, HIV non-nucleoside reverse transcriptase inhibitors, HIV protease inhibitors, budding and maturation inhibitors, immunomodulators, and anti-infectives. In these combination methods, Compound 1 will generally be given in a daily dose of 1-100 mg/kg body weight daily in conjunction with other agents. The other agents generally will be given in the amounts used therapeutically. The specific dosing regime, however, will be determined by a physician using sound medical judgement. Table 7 lists some agents useful in treating AIDS and HIV infection, which are suitable for this invention. The invention, however, is not limited to these agents. Table 7. ANTIVIRALS DRUG NAME MANUFACTURER INDICATION 097 (non-nucleoside reverse transcriptase inhibitor) Hoechst/Bayer fflV infection, AIDS, ARC Amprenavir 141 W94 GW141 (protease inhibitor) Glaxo Wellcome fflV infection, AIDS, ARC Abacavir (1592U89) GW 1592 (RT inhibitor) Glaxo Wellcome fflV infection, AIDS, ARC Acemannan Carrington Labs (Irving, TX) ARC Acyclovir Burroughs Wellcome fflV infection, AIDS, ARC, in combination with AZT AD-439 Tanox Biosystems HIV infection, AIDS, ARC AD-519 Tanox Biosystems fflV infection, AIDS, ARC Adefovir dipivoxil AL-721 Gilead Sciences Ethigen (Los Angeles, CA) fflV infection, ARC, PGL HIV positive, AIDS Alpha Interferon HIV in combination w/Retrovir Glaxo Wellcome Kaposi's sarcoma Ansamycin LM427 Adria Laboratories (Dublin, OH) Erbamont (Stamford, CT) ARC Antibody which Neutralizes pH Labile alpha aberrant Interferon Advanced Biotherapy Concepts (Rockville, MD) AIDS, ARC AR177 Aronex Pharm fflV infection, AIDS, ARC Beta-fluoro-ddA Nat'l Cancer Institute AIDS -associ ated diseases BMS-232623 (CGP-73547) (protease inhibitor) Bristol-Myers Squibb/ Novartis fflV infection, AIDS, ARC DRUG NAME MANUFACTURER INDICATION BMS-234475 (CGP-61755) (protease inhibitor) Bristol-Myers Squibb/ Novartis fflV infection, AIDS, ARC CI-1012 Warner-Lambert fflV-1 infection Cidofovir Gilead Science CMV retinitis, herpes, papillomavirus Curdlan sulfate AJI Pharma USA HIV infection Cytomegalovirus Immune globin Medlmmune CMV retinitis Cytovene Syntex Sight threatening Ganciclovir CMV peripheral, CMV retinitis Delaviridine (RT inhibitor) Pharmacia-Upjohn fflV infection, AIDS, ARC Dextran Sulfate Ueno Fine Chem. Ind. Ltd. (Osaka, Japan) AIDS, ARC, fflV positive asymptomatic ddC Dideoxycytidine Hoffman-La Roche HIV infection, AIDS, ARC ddl Dideoxyinosine Bristol-Myers Squibb fflV infection, AIDS, ARC; combinationwith AZT/d4T DMP-450 (protease inhibitor) AVID (Camden, NJ) HIV infection, AIDS, ARC Efavirenz (DMP 266) (-)6-Chloro-4-(S> cyclopropylethynyl-4(S)-trifluoro-methyl- 1 ,4-dihydro-2H-3 , 1 -benzoxazin-2-one, STOCRINE (non-nucleoside RT inhibitor) DuPont Merck fflV infection, AIDS, ARC EL10 Elan Corp, PLC (Gainesville, GA) HIV infection Famciclovir Smith Kline herpes zoster, herpes simplex FTC (reverse transcriptase inhibitor) Emory University fflV infection, AIDS, ARC GS840 (reverse transcriptase inhibitor) Gilead fflV infection, AIDS, ARC DRUG NAME MANUFACTURER INDICATION HBY097 (non-nucleoside reverse transcriptaseinhibitor) Hoechst Marion Roussel fflV infection, AIDS, ARC Hypericin VIMRx Pharm. fflV infection, AIDS, ARC Recombinant Human Interferon Beta Triton Biosciences (Almeda, CA) AIDS, Kaposi's sarcoma, ARC Interferon alfa-n3 Interferon Sciences ARC, ADDS Indinavir Merck fflV infection, AIDS, ARC, asymptomatic HIV positive, also in combination with AZT/ddl/ddC ISIS 2922 ISIS Pharmaceuticals CMV retinitis KNI-272 Nat'l Cancer Institute HIV-associated diseases Lamivudine, 3TC (reverse transcriptase inhibitor) Glaxo Wellcome fflV infection, AIDS, ARC, also with AZT Lobucavir Bristol-Myers Squibb CMV infection Nelfinavir (protease inhibitor) Agouron Pharmaceuticals fflV infection, AIDS, ARC Nevirapine (RT inhibitor) Boeheringer Ingleheim fflV infection, AIDS, ARC Novapren Novaferon Labs, Inc. (Akron, OH) HIV inhibitor Peptide T Octapeptide Sequence Peninsula Labs (Belmont, CA) AIDS Trisodium Phosphonoformate Astra Pharm. Products, Inc. CMV retinitis, fflV infection, other CMV infections PNU- 140690 (protease inhibitor) Pharmacia Upjohn fflV infection, AIDS, ARC Probucol Vyrex fflV infection, AIDS RBC-CD4 Sheffield Med. Tech (Houston, TX) fflV infection, AIDS, ARC Ritonavir (protease inhibitor) Abbott fflV infection, AIDS, ARC Saquinavir (protease inhibitor) Hoffmann-LaRoche fflV infection, AIDS, ARC Stavudine; d4T Didehydrodeoxy-thymidine Bristol-Myers Squibb fflV infection, AIDS, ARC Valaciclovir Glaxo Wellcome Genital HSV & CMVinfections DRUG NAME MANUFACTURER INDICATION Virazole Ribavirin Viratek/ICN (Costa Mesa, CA) asymptomatic HIV-positive, LAS, ARC VX-478 Vertex fflV infection, AIDS, ARC Zalcitabine Hoffmann-LaRoche fflV infection, AIDS, ARC, with AZT Zidovudine; AZT Glaxo Wellcome fflV infection, AIDS, ARC, Kaposi's sarcoma, in combination with other therapies Tenofovir disoproxil, fumarate salt (Viread®) (reverse transcriptase inhibitor) Gilead fflV infection, AIDS Combivir® (reverse transcriptase inhibitor) GSK fflV infection, AIDS abacavir succinate (or Ziagen®) (reverse transcriptase inhibitor) GSK fflV infection, AIDS Reyataz® (atazanavir) Bristol-Myers Squibb fflV infection, AIDS Fuzeon (Enfuvirtide, T-20) Roche/Trimeri s fflV infection, AIDS, viral fusion inhibitor Trizivir® fflV infection, AIDS Kaletra® Abbott fflV infection, AIDS, ARC IMMUNOMODULATORS DRUG NAME MANUFACTURER INDICATION AS-101 Wyeth-Ayerst AIDS Bropirimine Pharmacia Upjohn Advanced AIDS Acemannan Carrington Labs, Inc. (Irving, TX) AIDS, ARC CL246,738 American Cyanamid Lederle Labs AIDS, Kaposi's sarcoma EL10 Elan Corp, PLC (Gainesville, GA) HIV infection FP-21399 Fuki ImmunoPharm Blocks HIV fusion with CD4+ cells DRUG NAME MANUFACTURER INDICATION Gamma Interferon Genentech ARC, in combination w/TNF (tumor necrosis factor) Granulocyte Macrophage Colony Stimulating Factor Genetics Institute Sandoz AIDS Granulocyte Macrophage Colony Stimulating Factor Hoechst-Roussel Immunex AIDS Granulocyte Macrophage Colony Stimulating Factor Schering-Plough AIDS, combination w/AZT HIV Core Particle Immunostimulant Rorer Seropositive HIV IL-2 Interleukin-2 Cetus AIDS, in combination w/AZT IL-2 Interleukin-2 Hoffman-LaRoche Immunex AIDS, ARC, HIV, in combination w/AZT IL-2 Interleukin-2 (aldeslukin) Chiron AIDS, increase in CD4 cell counts Immune Globulin Intravenous (human) Cutter Biological (Berkeley, CA) Pediatric AIDS, in combination w/AZT IMREG-1 Imreg (New Orleans, LA) AIDS, Kaposi's sarcoma, ARC, PGL IMREG-2 Imreg (New Orleans, LA) AIDS, Kaposi's sarcoma, ARC, PGL Imuthiol Diethyl Dithio Carbamate Merieux Institute AIDS, ARC Alpha-2 Interferon Schering Plough Kaposi's sarcoma w/AZT, AIDS Methionine-Enkephalin TNI Pharmaceutical (Chicago, IL) AIDS, ARC MTP-PE Muramyl-Tripeptide Granulocyte Colony Stimulating Factor Ciba-Geigy Corp. Amgen Kaposi's sarcoma AIDS, in combination w/AZT Remune Immune Response Corp. Immunotherapeutic rCD4 Recombinant Soluble Human CD4 Genentech AIDS, ARC rCD4-IgG hybrids AIDS, ARC DRUG NAME MANUFACTURER INDICATION Recombinant Soluble Human CD4 Biogen AIDS, ARC Interferon Alfa 2a Hoffman-La Roche in combination w/AZT Kaposi's sarcoma, AIDS, ARC SK&F106528 Soluble T4 Smith Kline HIV infection Thymopentin Immunobiology Research Institute (Annandale, NJ) HIV infection Tumor Necrosis Factor; TNF Genentech ARC, in combination w/gamma Interferon ANTI-INFECTIVES DRUG NAME MANUFACTURER INDICATION Clindamycin with Primaquine Pharmacia Upjohn PCP Fluconazole Pfizer Cryptococcal meningitis, candidiasis Pastille Nystatin Pastille Squibb Corp. Prevention of oral candidiasis Ornidyl Eflornithine Merrell Dow PCP Pentamidine Isethionate (IM & IV) LyphoMed (Rosemont, IL) PCP treatment Trimethoprim Antibacterial Trimethoprim/sulfa Antibacterial Piritrexim Burroughs Wellcome PCP treatment Pentamidine Isethionate for Inhalation Fisons Corporation PCP prophylaxis Spiramycin Rhone-Poulenc diarrhea Cryptosporidial Intraconazole-R51211 Janssen-Pharm. Histoplasmosis; cryptococcal meningitis Trimetrexate Warner-Lambert PCP Daunorubicin NeXstar, Sequus Kaposi's sarcoma Recombinant Human Erythropoietin Ortho Pharm. Corp. Severe anemia assoc. with AZT therapy Recombinant Human Growth Hormone Serono AEDS-related wasting, cachexia Megestrol Acetate Bristol-Myers Squibb Treatment of anorexia assoc. W/AIDS Testosterone Alza, Smith Kline AIDS-related wasting DRUG NAME MANUFACTURER INDICATION Total Enteral Nutrition Norwich Eaton Pharmaceuticals Diarrhea and malabsorption related to AIDS We Claim: 1. A pharmaceutical composition comprising of l-benzoyl-4-[2-[4-methoxy-7-(3-methyl- 1H-1,2,4-triazol-1 -yl)-1 H-pyrrolo [2,3 -c]pyridin-3 -yl] -1,2-dioxoethyl] -piperazine, or a pharmaceutically acceptable salt thereof along with non-nucleoside HIV reverse transcriptase inhibitor delavirdine or efavirenz, including pharmaceutically acceptable salt thereof, used for treatment of AIDS or HIV infection and a pharmaceutically acceptable carrier, wherein the EC50 ratio of said piperazine compound to said other agent is 1:1, 1:2.5 or 2.5:1. 2. The pharmaceutical composition as claimed in claim 1 for use in the treatment of AIDS or HIV infection in Humans. |
---|
Patent Number | 254165 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Indian Patent Application Number | 5560/DELNP/2006 | ||||||||||||
PG Journal Number | 39/2012 | ||||||||||||
Publication Date | 28-Sep-2012 | ||||||||||||
Grant Date | 25-Sep-2012 | ||||||||||||
Date of Filing | 25-Sep-2006 | ||||||||||||
Name of Patentee | BRISTOL-MYERS SQUIBB COMPANY | ||||||||||||
Applicant Address | P.O. Box 4000, Route 206 and Province Line Road, Princeton, New Jersey 08543-4000, United States of America, | ||||||||||||
Inventors:
|
|||||||||||||
PCT International Classification Number | A61K 31/496 | ||||||||||||
PCT International Application Number | PCT/US2005/006277 | ||||||||||||
PCT International Filing date | 2005-03-01 | ||||||||||||
PCT Conventions:
|