Title of Invention

A MICROWAVE ANTENNA FOR TRANSMITTING AND/OR RECEIVING ELECTRO-MAGNETIC WAVES AND METHOD OF PRODUCING ANTENNA

Abstract A microwave antenna for transmitting and/or receiving electromagnetic waves of at least one predefined frequency and a predefined polarization, the antenna comprises a support with upper and lower faces; at least one pair of substantially identical upper and lower radiating elements disposed on said upper and lower faces; in each pair of said radiating element in the upper face and the corresponding radiating element in the lower face, the phase center of the lower radiating element substantially coincides with the phase center of the upper radiating element.
Full Text F0RM 2
THE PATENTS ACT, 1970
(39 of 1970)
&
THE PATENTS RULES, 2003
COMPLETE SPECIFICATION
(See section 10, rule 13)
"HIGH GAIN ANTENNA FOR MICROWAVE FREQUENCIES"
ELTA SYSTEMS LTD.
a company of Israel of 100 Sderot Itzhak Hanasie, P.O.B. 330, 77102 Ashdod (IL).
The following specification particularly describes the invention and the manner in which it is to be performed.

WO 2005/088768 PCT/IL2005/000295
High Gain Antenna for Microwave Frequencies
FIELD OF THE INVENTION
This invention relates generally to the field of high-frequency antennas and particularly to the field of planar and conformal antennas for high frequency microwaves.
BACKGROUND OF THE INVENTION
Planar (or flat-plate) and conformal antennas for high frequency microwave transmission (e.g. in various parts of 0.1-40GHz range) are nowadays widely in use for example, in radio broadcasting, mobile communication, and satellite communication. Such antennas can provide circular polarization and linear polarization, based on their specific configuration.
Generally, printed conformal and planar antennas are built on a multilayered substrate structure (e.g. PCB, printed circuit board) and include, inter alia, a dielectric substrate and an array of radiating elements and their respective transmission lines, the number of elements depending on their gain as well as on the overall desired gain of the antenna. The radiating elements and the transmission lines are disposed on either one or both sides of the dielectric substrate. Planar antennas are produced, for example, by printing, in the so-called "microstrip" technology or photolithography.
US Patent No. 6,285,323 discloses a flat panel antenna for microwave transmission that comprises at least one PCB, and has radiating elements and transmission lines located on both the first and second sides of the PCB in a complementary manner, such that the transmission lines of the first and second sides overlay one another, and the radiating elements of the second side extend

WO 2005/088768 PCT/IL2005/000295
-3
outwards from the terminations of the transmission lines in the opposite directions, at an angle of 180 degrees from the radiating elements of the first side.
US Patent application No. 2003/0218571 discloses an antenna having linear and circular polarization, which uses dipoles as radiating elements, and has an orthogonal characteristic in both linear and circular polarization, the antenna being embodied in the use of two plates, including the front and rear sides of both plates.
US Patent Application No. 2003/0020665 discloses a planar antenna having a scalable multi-dipole structure for receiving and transmitting high-frequency signals, including a plurality of opposing layers of conducting strips disposed on either side of an insulating (dielectric) substrate.
US Patent No. 6,163,306 discloses a circularly polarized cross dipole antenna comprising a first L-shaped dipole antenna element including a first pair of strip conductors and a first bending portion and a second L-shaped dipole antenna element including a second pair of strip conductors and a second bending portion. The first L-shaped dipole antenna element is arranged in a first region of four regions delimited by crossing lines virtually set within a single plane and the second L-shaped dipole antenna element is arranged in a second region thereof, which is diagonally opposite to the first region. The first bending portion and the second bending portion are close and opposite to each other, such that the first and second L-shaped dipole antenna elements form a cross. The antenna also comprises a parallel-twin-line feeder extended from the first and second bending portions and provided so as to feed power within the single plane.
S. Dragas and M. Sabbadini, in "A Novel Type of Wide Band Circular Polarised Antenna", at the 27th ESA antenna workshop on innovative periodic antennas, present a quasi two-arm spiral radiating element.
US Patents Nos. 5,786,793 and 6,518,935 and US Patent Application No. 2003/0063031 also relate to planar antennas.
There is a need in the art for a new planar/confonnal antenna.

WO 2005/088768 PCT/IL2005/000295
-4
SUMMARY OF THE INVENTION
The present invention provides for planar and conformal antennas for transmitting and/or receiving electromagnetic waves of at least one predefined frequency in the range of 0.1-40GHz, and a predefined polarization. The antenna according to the invention provides circular polarization, linear polarization, based on its specific predefined configuration.
According to an embodiment of the invention there is provided a planar or conformal antenna for transmitting and/or receiving electromagnetic waves of at least one predefined frequency and a predefined polarization, the antenna comprising a plane dielectric substrate (PCB) with upper and lower faces; at least one pair of substantially identical upper and lower radiating elements disposed on said upper and lower faces; in each pair of said radiating element in the upper face and the corresponding radiating element in the lower face, the phase center of the lower radiating element substantially coincides with the phase center of the upper radiating element. This allows for high level of antenna performance, e.g. gain of at least ldB, 1.5dB and more, up to 3dB, when compared to a prior art antenna with the same number of radiating elements, having substantially the same geometrical dimensions: and low axial ratio over large portion of the radiated beam.
According to an embodiment of the invention, the antenna is configured for providing circular polarization, and each of the radiating elements is capable of radiating electromagnetic waves of a circular polarization. According to another embodiment of the invention, the radiating elements comprise bend-shaped elements. According to yet another embodiment of the invention, the above-mentioned bend-shape is an L-shape.
According to an embodiment of the invention, the antenna is configured for providing linear polarization, and the radiating elements comprise radiating elements having first and second branches arranged in an acute angle with respect to each other..

WO 2005/088768 PCT/IL2005/000295
-5
According to an embodiment of the invention there is provided an antenna for transmitting and/or receiving electromagnetic waves of at least one predefined frequency and a predefined polarization, the antenna comprising a multi-layered substrate structure having a dielectric substrate with upper and lower faces; at least one pair of substantially identical upper and lower radiating elements disposed on said upper and lower faces of the dielectric substrate; each radiating element transmitting and/or receiving electromagnetic waves with a phase center located at a predefined position; each radiating element comprising a radiating element and a transmission line, the geometrical dimensions of which depend on said predefined frequency; in each pair of said radiating element in the upper face and the corresponding radiating element in the lower face:
- the transmission lines of the upper and lower elements overlay each other; and
- the radiating elements of the upper and lower elements are located oppositely to each other with respect to a plane perpendicular to the plane of the dielectric substrate, such that the phase center of the lower radiating element substantially coincides with the phase center of the upper radiating element.
According to yet another embodiment of the invention there is provided a method for providing a planar antenna for transmitting and/or receiving electromagnetic waves of at least one predefined frequency and a predefined polarization, the antenna having a dielectric substrate with upper and lower faces; at least one pair of substantially identical upper and lower radiating elements disposed on said upper and lower faces of the dielectric substrate; said radiating elements comprising radiating elements having first and second branches the method comprising:
- determining the planar arrangement and the geometrical
dimensions of said first and second branches in accordance with
said predefined polarization and said at least one predefined
frequency; and

WO 2005/088768 PCT/IL2005/000295
- associating each of the radiating elements in the upper face with a corresponding radiating element in the lower face, such that the phase center of the lower radiating element substantially coincides with the phase center of the upper radiating element.
BRIEF DESCRIPTION OF THE DRAWINGS
In order to understand the invention and to see how it may be carried out in practice, a preferred embodiment will now be described, by way of non-limiting example only, with reference to the accompanying drawings, in which:
Fig. 1 is a cross-sectional view of a flat microwave antenna;
Fig. 2 is a top view of an antenna according to an embodiment of the invention;
Figs. 3a-3b are schematic illustrations of the structure of an element of the antenna of Fig. 2, from respectively, top and side views;
Figs. 4a-4d are schematic illustrations of other structure of elements of the antenna of Fig. 2, in accordance with few other embodiments of the invention;
Figs. 5a-5e illustrate simulated characteristics of an antenna element according to an embodiment of the invention;
Fig. 6 is a schematic illustration of the structure of an element of an antenna according to another embodiment of the invention;
Figs. 7a-7c illustrate simulated characteristics of an antenna element according to another embodiment of the invention;
Fig. 8 is a cross-sectional view of a flat microwave antenna according to another embodiment of the invention; and
Figs. 9a-9b are schematic illustrations of the structure of elements of an antenna according to yet another embodiment of the invention.

WO 2005/088768 PCT/IL2005/000295
DETAILED DESCRIPTION OF SPECIFIC EMBODIMENTS OF THE
INVENTION
Fig. 1 is a general cross-sectional view of a flat microwave antenna 8 for high frequency microwave transmission (e.g. in various parts of 0.1-40GHz range). The antenna 8 has a multilayer structure and comprises, inter alia, at least one PCB (Printed Circuit Board) 10 made of a dielectric material, e.g. PTFE Glass fiber type RT/duroid™ 5880 commercially available from Rogers Corporation, Arizona, USA, having relative permittivity εr,- = 2.2. The PCB 10 has two faces, 10a (upper face) and 10b (lower face) on which radiating elements (not shown in Fig. 1), made of an electrically conductive material, are disposed. The antenna 8 further comprises spacer layer 12 made of a low relative permittivity (e.g. foam, typically having sr = 1.05, air, having er = 1.00) and a ground plate 14, typically made of a metallic material. Additional layers (not shown in Fig. 1) can also be used, as known in the field of antennas, such as a mounting plate, a polarizer layer, a box, etc. Discrete spacers can be used instead of spacer layer 12. Electrical coaxial connector 16 having pin 18 and sleeve 20 is used to feed the antenna. Note that the invention is not bound by the general structure of a planar antenna as exemplified in Fig. 1. For example, antenna 10 may be a conformal antenna, which conforms to a surface whose shape is determined by considerations other than electromagnetic, for example, aerodynamic or hydrodynamic.
Fig. 2 is a top view of the upper face 10a of the PCB 10 of the antenna 8 according to an embodiment of the invention, suitable for circular polarization. As shown in Fig. 2 in an exemplary manner, a plurality of radiating elements 21 is disposed in a specific configuration on face 10a. The radiating elements 21 are substantially identical and each comprises a bend-shaped element 22 and a co-planar transmission line 23 (both marked in Fig. 2 in full lines). A plurality of substantially identical radiating elements 21 is disposed on face 10b. Each of the radiating elements 21 disposed on face 10a is paired with a corresponding radiating element disposed on face 10b in a complementary manner that will be

WO 2005/088768 PCT/IL2005/000295
discussed in detail further below. The transmission lines of the paired radiating elements substantially overlay each other (the so-called "twin line" configuration) and thus the transmission lines 23 disposed on face 10b are not shown in Fig. 2. The bend-shaped elements 22 disposed on face 10b are marked in dashed line. The radiating elements on both faces are disposed in a substantially symmetrical manner around the feed structures 16, 18 and 20. The use of "twin line" configuration as well as the symmetrical positioning of the elements around the feed structures ensures the same input impedance of all radiating elements and balanced distribution of energy throughout the array.
In the non-limiting example of Fig. 2, the antenna comprises an array of 8x8 pairs of radiating elements. Note that the invention is not limited by this specific example and many other array configurations are possible, as the case may be and typically, the number of pairs of radiating elements is set to provide a certain desired gain. Note that the present invention can be embodied by utilizing only one pair of radiating elements. Also, note that the invention is not bound by the specific layout and configuration of the radiating elements as exemplified in Fig. 2.
Figs. 3a-3b illustrate schematically in greater detail the structure of paired radiating elements 21 of the antenna of Fig. 2, suitable for circular polarization in the frequency range of 8-9GHz, from top and side views, respectively. Same elements are given same reference numbers. As shown in Fig. 3a, each of the radiating elements 21 comprises a bend-shaped element 22 connected to a transmission line 23 via feed point 25. As will be explained in greater detail further below, each of the radiating elements 21 is designed to be capable of radiating electromagnetic waves of a circular polarization, and the paired elements 21 are aligned with respect to each other in a relatively compact spatial arrangement, in a predefined manner, such that high level of antenna performance, e.g. gain up to 3dB, is achieved, comparing to a prior art antenna with the same number of radiating elements having substantially the same geometrical dimensions. Thus, each pair of the substantially identical upper and

WO 2005/088768 PCT/IL2005/000295
lower radiating elements disposed on the upper and lower faces yields gain increase in the range of 1dB to 3dB and provides gain in the range of 6dB to 9dB and more (this is demonstrated e.g. in Fig. 5a).
The following is a description of the design of a single radiating element in the circular polarization configuration, in accordance with an embodiment of the invention. In the following example, the PCB material is having relative permittivity εr, = 2.2 and width w = 0.5mm. Note that the invention is not bound by the following example.
As demonstrated in the non-limiting example of Fig. 3a, the antenna operates in a frequency of 8GHz (this being the desired operating center frequency) and an L-shaped element 22 is used, having orthogonal branches X and Y disposed on the plane of the PCB 10. The geometrical dimensions of the L-shaped branches are as follows:
The lengths A and B of the X and Y branches are substantially identical and are defined by the following equation:
[1]A,B = K1λ0
Wherein K1 is in the range of 0.3 to 0.35, e.g. K1=0.33, and wherein A,0 is the wavelength of the operating frequency in air. Thus, in the above mentioned operating frequency (8GHz), A and B equal 12.5mm.
The width C of the X and Y branches is defined as follows:
[2] C = K2 λ0
Wherein K2 is in the range of 0.10 to 0.20, e.g. K2=0.106. In the example of Fig. 3a (operating frequency of 8 GHz), C equals 4mm.
The feed point 25 is connected to one of the branches, the Y branch in the example of Fig. 3a. The location of the connection determines the delay between the current components propagating along the X and Y branches and is set to generate a phase delay of 90° between the components in order to provide circular polarization.
It should be noted that the invention is not limited by the specific example of the radiating element 21 as shown in Fig. 3a, and many others are possible, for

WO 2005/088768 PCT/IL2005/000295
example the elements illustrated in Figs. 4a-4b, each having a substantial bend-shape. Note that the shape of the bend-shaped elements need not have straight-line contour, and any version of bend-shape element can be used, including a smooth shape.
According to an embodiment of the present invention, the radiating element is configured for generating electromagnetic field with circular polarization and for that purpose it has a substantially L-shape with first and second branches and a feed point located on said second branch, such that the electric current generated in the second branch is phase delayed in 90° with respect to the electric current generated in the first branch.
Having describing the design of a single radiating element there follows a description of the design of a paired radiating element in the circular polarization configuration, according to an embodiment of the invention:
As mentioned before, the paired elements 21 disposed on both the upper and lower faces of the PCB 10 are oppositely aligned in a relatively compact space, in a complementary manner, such that the phase centers of the upper and lower elements substantially coincide, yielding high level of antenna performance. According to an embodiment of the invention, the upper and lower elements are oppositely and adjacently aligned in the following manner:
Length D between the X branch of said upper radiating element and the X branch of said lower radiating element, and the length E between the Y branch of said upper radiating element and the Y branch of said lower radiating element, are defined by the following equations:
[3] D = K3λ0
[4] E = K4λ0
wherein K3 and K4 are in the range of 0.3 to 0.6, e.g. K3 equals 0.57 λ0 and K4 equals 0.41 λ0. Note that D and E need not be identical. Also note that upper and lower radiating elements need not be in full symmetry with each other. Note that D and E values other than the above specified values can be used. For example, in the case D or E exceeds 0.6 λ0, the gain of the antenna may increase

WO 2005/088768 PCT/IL2005/000295
due to the increase in the equivalent surface of the antenna. However the axial ratio (the measure of the antenna circularity on its axis of symmetry) is increased.
According to the present invention and as illustrated in Figs. 2 and 3a, the phase centers of the upper and lower radiating elements substantially coincide with each other. In the case the paired elements are arranged in an array (as shown in Fig. 2), a length F between the phase centers of adjacent pairs must be kept at a certain range as follows:
[5] 0.5 λ0 In the above discussion with reference to Figs. 2 and 3a-3b. the relative alignment of the paired elements 21 is presented in two dimensions only, namely with respect to the X and Y axis that define the plane of the PCB 10. However, the relative alignment of the paired element 21 is actually defined in three-dimensions, i.e. onto the plane of the PCB 10 and also along the orthogonal Z axis. Due to the very small width w of the PCB 10 (as shown in Fig. 3b), typically about 0.1 -0.5mm, it is possible to disregard the relative alignment considerations along the Z axis and to define the relative alignment of the paired elements in two-dimensions only. The width w of the PCB 10 needs to be very small with respect to X, the wavelength corresponding to the operating frequency of the antenna, e.g. less than 0.05 λ or 0.1λ, or more, otherwise the relative alignment of the paired element should be defined in three dimensions.
The phase center of an antenna can be determined by measurements, computed simulations, and calculations. As discussed in "Antenna Handbook, Volume II Antenna Theory", ed.Y. T. Lo, Van Nostrand Reinhold, New York, in chapter 8, the analytical formulations for locating the phase center of an antenna typically exist for only a limited number of antenna configurations. Experimental techniques are known in the art for locating the phase center of an antenna, as well as simulation tools such as the CST Microwave Studio™ software commercially available from CST Computer Simulation Technology GmbH, Germany.

WO 2005/088768 PCT/IL2005/000295
Figs. 5a-5e illustrate simulated characteristics of a pair of radiating elements according to an embodiment of the invention, in the circular polarization configuration shown in Fig 3a, relating to operating frequencies in the range of 8-9GHz, as follows.
Fig. 5a shows the gain of a single pair of radiating elements. Note that typically the characterizing gain of a prior art radiating elements having substantially the same geometrical dimensions as described above with reference to Fig. 3a is substantially up to 6dB. Fig. 5b shows the simulated radiation pattern of the pair of radiating elements. Graph A represents the component Ephi for phi = 0° and graph B represents the component Etheta for phi = 0°. Fig. 5c shows the return loss in dB (the so-called Sn). Fig. 5d shows the axial ratio at (0,0)° (the so-called Broad side direction). Fig. 5e shows the so-called "Smith chart" of the input impedance.
According to yet another embodiment of the invention there is provided an antenna suitable for linear polarization. There follows a description of the design of a single radiating element as well as the paired radiating elements in the linear polarization configuration.
Reference is now made to Fig. 6, illustrating the structure of paired radiating elements 35 of an antenna according to an embodiment of the invention suited for linear polarization (horizontal or vertical, as the case may be) in operating frequency of 8GHz. In the case of linear polarization, each of the upper and lower radiating elements 36 has bend-shaped elements having the shape of two-branches creating an acute angle between the branches. According to an embodiment of the invention the upper and lower radiating elements are relatively aligned such that the shape "Z" or "S" (or substantially such shape) is created, as shown in Fig. 6.
According to an embodiment of the invention, the radiating elements of the linear polarization configuration comprises bend-shaped elements having first and second branches arranged in an acute angle with respect to each other. The upper and lower radiating elements are arranged in a substantially symmetrical

WO 2005/088768 PCT/IL2005/000295
arrangement on both faces of the PCB, such that the first branches of the upper and lower elements are in parallel; and the electrical length of each of said first branches is about 0.5λ0, wherein λ0 is the wavelength of said predefined frequency in air. In other words, each of the first branches of the upper and lower radiating elements, by itself, operates as a radiating element in linear polarization.
In the following example, the PCB material is having relative permittivity εr = 2.2 and width w = 0.5mm. Note that the invention is not bound by the following example. The geometrical dimensions of the acute-angled branches according to the following example are as follows:
The length G of the first branch is defined by the following equation:
[7] G = K5λo
Wherein K5 is in the range of 0.3 to 0.4 , e.g. K5=0.36, and wherein X0 is the wavelength of the operating frequency in air. Thus, in the above-mentioned example (operating frequency of 8GHz), G equals 13.5mm.
The length H between the first branches of the upper and lower elements is defined by the following equation:
[8]H = K6λ0
Wherein K6 is in the range of 0.3 to 0.35, e.g. K6=0.32, and wherein λ0 is the wavelength of the operating frequency in air. Thus, in the above mentioned operating frequency (8GHz), H equals 12mm.
The width I of the radiating element is defined by the following equation:
[9] I = K7λ0
Wherein K7 is in the range of 0.015 to 0.025, e.g. K7=0.02, and wherein λ0 is the wavelength of the operating frequency in air. Thus, in the above-mentioned operating frequency (8GHz), I equals 1mm. note that the invention is not limited by the specific example of Fig. 6.
Figs. 7a-7c illustrate simulated characteristics of an antenna paired element according to the embodiment of the invention shown in Fig. 6, in the operating frequency range of 8-9GHz, as follows. Fig. 7a shows simulated input

WO 2005/088768 PCT/IL2005/000295
impedance of one paired element (the so called "Smith chart"). Fig. 7b shows the return loss in dB (the so-called Sn), of one paired element, in the frequency range of 8-9GHz, and Fig. 7c shows the polar elevation pattern of the paired element at the frequency of 8.2GHz. Graph A represents the component Etheta for phi = 90° and graph B represents the component Ephi for phi = 0°.
According to yet another embodiment of the invention, a polarizer is added to the antenna of the invention working in circular polarization (e.g. shown in Fig. 2), thereby transforming it to work in linear polarization (note that by adding a polarizer to an antenna working in linear polarization, a transformation to work in circular polarization is achieved). As shown in Fig. 8, a polarizing layer P (a polarizer) is added to one side (e.g. the upper side) of a planer antenna of the kind described above with reference to Figs. 3A and 3B (same numerals are used, referring to same elements). The polarizer is designed to cover substantially the entire upper surface of the antenna (in the xy plane shown in Figs. 3 A and 3B). The thickness of the polarizer has a typical value between 2cm and 3 cm.
Using the above detailed design, such that the antenna described above with reference to Figs. 3 A and 3B entirely covered on top with a polarizer P, has substantially no effect on the adaptation of the antenna. In the frequency range of 8 to 9 GHz, the return loss is substantially similar to the one shown in Fig. 5C. The measured pattern of the antenna exhibits a ratio of under -15dB between the main and the cross polarization, along the frequency band. This means that a substantially correct transformation of the circular polarization to linear polarization is obtained. The measured gain of a single element (radiating element 21 shown e.g. in Fig. 3A, or other element e.g. as shown in Figs. 4A-4D) present a gain of 8dBi and more.
Referring now to Figs. 9a-9b, there is presented, according to another embodiment of the invention, an antenna that combines right-hand and left-hand circular polarization over the same area. Antenna 900 comprises PCB 910, which is of the kind described hereinbefore (e.g. element 10 shown in Figs. 1, 2 and 3a).

WO 2005/088768 PCT/IL2005/000295
PCB 910 has two faces, 910a (upper face) and 910b (lower face), on which radiating elements of the present invention (e.g. elements 21 shown in Fig. 3a) are disposed, providing, as an example, right-hand circular polarization. PCB 920 which is identical to PCB 910 and is rotated by 180° to mirror PCB 910 (rotated with respect to axis Y shown in Figs. 3a and 3b) providing left-hand circular polarization. The resultant multi-layered structured is illustrated in Fig. 9b, in which each layer and each face are pointed by an arrow, in a self-explanatory manner.
The radiating elements are spaced apart onto PCBs 910 and 920 and PCB 920 is somewhat shifted with respect to PCB 910 (shift S shown in Fig. 9a, allowing radiating elements from one PCB to be located above non radiating portions of the other PCB), such that destructive influence between elements of different layers (PCB 910, PCB 920) is prevented. The arrangement of the elements is defined by the following equation:
[10]M = K8λ0
wherein K8 is in the range of 0.8 - 1.0. Note that M defines the distance between the phase centers of adjacent paired elements on top of the same PCB. PCB 910 and 920 are spaced apart from one another by a small distance, e.g. 0.1 Xo, providing a thin air layer for isolation therebetween. This embodiment of the invention allows using two identical printed antenna boards in combination, in an efficient manner, to provide over the same area right-hand or left-hand circular polarization, or both, as required. It should be noted that according to the present invention #s described above, the radiation pattern of each of the radiating elements (elements 21 as illustrated in Fig. 3a) is equilibrated, due to the phase centers of the upper and lower elements being superposing, thereby yielding high gain. If a different structure is used, in which the arms of the upper and lower elements do not overlap (i.e. the phase centers do not coincide), the resultant radiation pattern is dis-equilibrated, yielding relatively low gain. Therefore, in order to better the performance of such a structure, the elements

WO 2005/088768 PCT/IL2005/000295
need to be aligned such that mutual coupling between adjacent elements will not provide distractive influence.
The invention was described in details with reference to a planar configuration, in which the radiating elements are disposed onto both faces of a planar support. It should be noted that the invention is not limited by the above-described planar configuration and other arrangements are possible within the scope of the invention. For example, the invention can be implemented as a conformal antenna, which conforms to a surface whose shape is determined by considerations other than electromagnetic, for example, aerodynamic or hydrodynamic, or other non-planar configurations.
The invention was described in detail with reference to the operating frequencies falling within the range of 8-9GHz. It should be noted that the invention is not limited by this specific example, and is suitable to operate in a variety of frequencies, with the necessary modifications and alterations, e.g.. change of the operating frequency would result in change in the geometrical dimensions of the radiating elements and their respective planar layout and aitangement. The invention was described 'with reference to a printed configuration (utilizing,a PCB), however it should be noted that the invention is not limited by this configuration. It should also be noted that in the range of relatively lower frequencies (e.g. 1GHz and less), λ equals 30cm or more, thus allowing the use radiating elements made of metal, as well as the use of air spacers, foam layers, etc.
The invention was described with reference to a single PCB configuration, in which the PCB has the radiating elements disposed on both its faces. It should be noted that the invention can be implemented in another configuration, in which two PCBs and more are adjacently used, each having the radiating elements disposed on one or both its faces, such that the phase centers of adjacent radiating elements substantially coincide.
The present invention has been described with a certain degree of particularity, but those versed in the art will readily appreciate that various

WO 2005/088768 PCT/IL2005/000295
alterations and modifications may be carried out without departing from the scope of the following Claims:

- 18
CLAIMS:
1. A microwave antenna for transmitting and/or receiving electromagnetic
waves of at least one predefined frequency and a predefined polarization, the
antenna comprising a first support with upper and lower faces and at least one
5 pair of substantially identical upper and lower radiating elements disposed on said upper and lower faces, respectively: each radiating element has a bend shape defining first and second branches and is formed with a feed point at a location selected to cause a 90° phase delay between the electric current generated in the first and second branches, the radiating element thereby being configured for
10 generating electromagnetic field with circular polarization.
2. An antenna according to Claim 1 wherein said support is conformal or
substantially planar.
15 3. An antenna according to Claim 1 wherein, said bend-shape is an L-shape.
4. An antenna according to Claim 4 wherein said L-shape having an X
branch and an orthogonal Y branch, and wherein:
- the length A of the X branch and the length B of the Y branch are
20 substantially identical and depend on said predefined frequency
according to the relation: A. B = K1 λ0, K1 is in the range of 0.3 to 0.35;
- the widths C of the X and Y branches depend on said predefined
frequency according to the relation: C = K2 λ0, K2 is m the range of
25 0.10 to 0.20;
- the length D between the X branch of said upper radiating element
and the X branch of said lower radiating element depend on said
predefined frequency according to the relation: D = K3 λ0, K3 is in
the range of 0.3 to 0,6;
01587658/38-01

- the length E between the Y branch of said upper radiating element
and the Y branch of said lower radiating element depend on said
predefined frequency according to the relation: E = K4 λ0, K4 is in
the range of 03 to 0.6;
5 wherein λ0 is the wavelength of said predefined frequency in air.
5. An antenna according to Claim 1 wherein said pair of substantially
identical upper and lower radiating elements disposed on said upper and lower
faces yields gain increase in the range of ldB~3dB.
10
6. An antenna according to Claim 1 wherein in each said pair of
substantially identical upper and lower radiating elements, the upper and lower
elements are located oppositely to each other with respect to a. plane
perpendicular to the plane of the support, such that the current generated in the
15 first or second branch of the upper element is aligned with the current generated in the first or second branch of the lower element, respectively.
7. An antenna according to Claim 6 wherein in each, pair,, the upper and
lower radiating elements are located with respect to each, other such that the
20 phase center of the lower radiating element substantially coincides with, the phase center of the upper radiating element.
8. An antenna according to Claim 1 wherein each radiating element is
associated with, a transmission line and wherein the transmission lines of the
25 upper and lower elements overlay each other.
9. A method for providing a planar antenna for transmitting and/or
receiving electromagnetic waves of at least one predefined frequency and a
predefined polarization, the antenna having a dielectric substrate with upper and
30 lower faces; at least one pair of substantially identical upper and lower radiating
01587658\38-OI

elements disposed on said upper and lower faces of the dielectric substrate, respectively; each radiating element has a bend shape defining first and second branches and is formed with a feed point, the method comprising:
- determining a planar arrangement and geometrical dimensions of
5 said first and second branches in accordance with said at least one
predefined frequency and selecting a location for said feed point to
cause a 90° phase delay between the electric current generated in
the first and second branched,
the radiating element thereby being configured for generating
10 electromagnetic field with circular polarization.
10. A method according to Claim. 9 wherein said bent shape in an L-shape having an X branch and an orthogonal Y branch, and wherein:
- the length A of the X branch and. the length B of the Y branch are
15 substantially identical and depend on said predefined frequency
according to the relation: A, B = K1 λ0, K1 is in the range of 0.3 to 0.35;
- the widths C of the X and Y branches depend on said predefined,
frequency according to the relation: C - K2 λ0, K2 is in the range of
20 0.10 to 0.20;
- the length D between the X branch of said upper radiating element
and the X branch of said lower radiating element depend on said
predefined frequency according to the relation: D = K3 λ0, K3 is in
the range of 0.3 to 0,6;
25 - the length E between, the Y branch of said upper radiating element
and the Y branch of said lower radiating element depend on said predefined frequency according to the relation: E = K4 λ0,K4 is in the range of 0.3 to 0.6;
wherein λ0 is the wavelength of said predefined frequency in air.
30
01587658/38-01

11. A method according to Claim 9 further comprising:
aligning said, upper and lower radiating elements by locating them
oppositely to each other with respect to a plane perpendicular to the
plane of the support, such that the current generated in the first or
5 second branch of the upper element is aligned with the current
generated in the first or second branch of the lower element, respectively.
12. A method according to Claim 11 wherein said aligning comprising
10 locating the elements with respect to each other such that the phase center of the
lower radiating element substantially coincides with the phase center of the upper radiating element.
13. An antenna according to any one of claims 1 to 8 further comprising a
15 polarizing layer covering substantially the entire upper surface occupied with
said at least one upper radiating element, thereby transforming the antenna to work in linear polarization.
14. A method according to any one of claims 9 to 1.2 further comprising:
20 - covering substantially the entire upper surface occupied with said at
least one upper radiating element with a polarizing layer, thereby transforming the antenna to work in linear polarization.
15. An antenna, according to Claim 1 further comprising a second support
25 substantially identical to the first support the second support is rotated by 180°
to mirror the first support, and is spaced apart from the first support by a small distance, such that radiating elements disposed onto the second support are aligned with radiating elements disposed onto the first support.
01587658\38-01
16. An. antenna according to Claim 15 wherein radiating elements disposed
onto the second support are aligned with radiating elements disposed onto the
first support such that mutual coupling between adjacent elements is reduced to
minimum.
5
17. An antenna according to Claim 15 wherein said small distance is about
0.1 λ0 wherein λ0 is the wavelength of said predefined frequency in. air.
18. A method according to any one of Claims 9 to 12 or 14 further
10 comprising:
- spacing apart from the first support by a small distance, a second
support substantially identical to the first support and rotated by
180° to mirror the first support, such that radiating elements
disposed onto the second support are aligned with, radiating
15 elements disposed onto the first support.
19. A microwave antenna and a method for providing a planar antenna for transmitting and/or receiving electromagnetic waves of at least one predefined frequency and a predefined polarization substantially as herein described with reference to the accompanying drawings.


Dated this 16th day of September, 2006.
01587658\38-01
ABSTRACT
"HIGH GAIN ANTENNA FOR MICROWAVE FREQUENCIES"
A microwave antenna for transmitting and/or receiving electromagnetic waves of at least one predefined frequency and a predefined polarization ,the antenna comprises a support with upper and lower faces; at least one pair of substantially identical upper and lower radiating elements disposed on said upper and lower faces; in each pair of said radiating element in the upper face and the corresponding radiating element in the lower face, the phase center of the lower radiating element substantially coincides with the phase center of the upper radiating element.

Documents:

1108-mumnp-2006-abstract.doc

1108-mumnp-2006-abstract.pdf

1108-MUMNP-2006-CLAIMS(AMENDED)-(10-10-2012).pdf

1108-MUMNP-2006-CLAIMS(AMENDED)-(23-4-2012).pdf

1108-MUMNP-2006-CLAIMS(MARKED COPY)-(10-10-2012).pdf

1108-MUMNP-2006-CLAIMS(MARKED COPY)-(23-4-2012).pdf

1108-mumnp-2006-claims.doc

1108-mumnp-2006-claims.pdf

1108-MUMNP-2006-CORRESONDENCE(10-7-2012).pdf

1108-MUMNP-2006-CORRESPONDENCE(11-6-2012).pdf

1108-mumnp-2006-correspondence(13-2-2008).pdf

1108-MUMNP-2006-CORRESPONDENCE(30-5-2012).pdf

1108-MUMNP-2006-CORRESPONDENCE(5-10-2012).pdf

1108-mumnp-2006-correspondence-others.pdf

1108-mumnp-2006-correspondence-received.pdf

1108-mumnp-2006-description (complete).pdf

1108-MUMNP-2006-DRAWING(23-4-2012).pdf

1108-mumnp-2006-drawings.pdf

1108-mumnp-2006-form 1(16-11-2006).pdf

1108-MUMNP-2006-FORM 1(23-4-2012).pdf

1108-MUMNP-2006-FORM 1(5-10-2012).pdf

1108-MUMNP-2006-FORM 13(5-10-2012).pdf

1108-mumnp-2006-form 18(13-2-2008).pdf

1108-mumnp-2006-form 2(title page)-(18-9-2006).pdf

1108-MUMNP-2006-FORM 2(TITLE PAGE)-(23-4-2012).pdf

1108-MUMNP-2006-FORM 26(10-10-2012).pdf

1108-mumnp-2006-form 26(16-11-2006).pdf

1108-mumnp-2006-form 3(16-11-2006).pdf

1108-MUMNP-2006-FORM 3(23-4-2012).pdf

1108-mumnp-2006-form-1.pdf

1108-mumnp-2006-form-2.doc

1108-mumnp-2006-form-2.pdf

1108-mumnp-2006-form-26.pdf

1108-mumnp-2006-form-3.pdf

1108-mumnp-2006-form-5.pdf

1108-mumnp-2006-form-pct-isa-210.pdf

1108-mumnp-2006-form-pct-isa-220.pdf

1108-mumnp-2006-form-pct-isa-237.pdf

1108-mumnp-2006-pct-search report.pdf

1108-MUMNP-2006-REPLY TO EXAMINATION REPORT(23-4-2012).pdf

1108-MUMNP-2006-REPLY TO HEARING(10-10-2012).pdf

1108-mumnp-2006-wo international publication report(18-9-2006).pdf

abstract1.jpg


Patent Number 254371
Indian Patent Application Number 1108/MUMNP/2006
PG Journal Number 44/2012
Publication Date 02-Nov-2012
Grant Date 29-Oct-2012
Date of Filing 18-Sep-2006
Name of Patentee ELTA SYSTEMS LTD.
Applicant Address 100 SDEROT ITZHAK HANASIE, P.O.B.330, 77102 ASHDOD.
Inventors:
# Inventor's Name Inventor's Address
1 HABIB,LAURENT 27 AGUEFEN STREET, 79411 MOSHAV SHAPIRA.
2 SAMSON,CLAUDE 3 ASAVION STREET, 76568 REHOVOT.
PCT International Classification Number H01Q9/04
PCT International Application Number PCT/IL2005/000295
PCT International Filing date 2005-03-15
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 10/800,019 2004-03-15 U.S.A.