Title of Invention

REGENERATION OF IONIC LIQUID CATALYST USING A METAL IN THE ABSENCE OF ADDED HYDROGEN

Abstract A process for regenerating a used acidic ionic liquid catalyst comprising contacting the used ionic liquid catalyst with at teas! One metal in a regeneration zone in the absence of added hydrogen under regeneration conditions for a time sufficient to increase the activity of the ionic liquid catalyst is described. In one embodiment, regeneration is conducted in the presence of a hydrocarbon solvent.
Full Text REGENERATION OF SONIC LIQUID CATALYST USING A METAL IN THE

ABSENCE OF ADDED HYDROGEN

FiELD OF THE INVENTION

The present invention relates to methods for the regeneration of catalysts and more specifically to the regeneration of ionic liquid catalysts,

BACKGROUND OF THE INVENTION

ionic liquids are liquids that are composed entirely of ions. The so-called "low temperature" Ionic iiquids are generally organic salts with melting points under 100 degrees C, often even lower than room temperature, ionic liquids may be suitable for example for use as a catalyst and as a solvent in alKylation and polymerization reactions as well as in dtmerization, oiigomerization acetylation, metatheses, and copolymerization reactions.

One class of ionic liquids is fused salt compositions, which are molten at Sow temperature and are useful as catalysts, solvents and electrolytes, Such compositions are mixtures of components which are liquid at temperatures below the individual melting points of the components.

Ionic Iiquids can be defined as liquids whose make-up is entirely comprised of ions as a combination of cations and anions. The most common ionic liquids are those prepared from organic-based cations and inorganic or organic anions. The most common organic cations are ammonium cations, but phosphonium and sulphonium cations are also frequently used. Ionic liquids of pyridinium and imidazolium are perhaps the most commonly used cations, Anions include, but not limited to, BF4", PF6*, hatoaluminates such as Ai2Cl7" and AI2Br7", [(CF3SO2)SN)]*, alkyJ sulphates (RSO3'), carboxySates (RCO2") and many other. The most catalytically interesting ionic liquids are those derived from ammonium halides and Lewis acids (such as AICSs, TiCI4, SnGi4,

FeCI3... etc), Chloroaluminate ionic liquids are perhaps the most commonly used ionic iiquid catalyst systems.

Examples of such low temperature ionic liquids or molten fused salts are the chloroaSummafe salts. Alkyl imidazolium or pyridinium salts, for example, can be mixed with aluminum trichloride (AICI3) to form the fused chloroaluminate salts. The use of the fused salts of 1-alkySpyridinium chloride and aluminum trichloride as electrolytes is discussed in U.S. Patent Mo. 4,122,245. Other patents which discuss the use of fused safe from aluminum trichloride and aSky?midazolium ha?des as electrolytes are U.S. Patent Nos. 4,463,071 and 4,463,072.

U.S. Patent No. 5,104,840 to describes ionic liquids which comprise at least one alkylaluminum dihaSide and at least one quaternary ammonium halide and/or at least one quaternary ammonium phosphonium halide and their uses as solvents in catalytic reactions.

U.S. Patent No. 6,096,880 describes liquid clathrate compositions useful as reusable aluminum catalysts in Friedel-Crafts reactions. In one embodiment, the liquid clathrate composition is formed from constituents comprising (i) at least one aluminum trihalide, (ii) at least one salt selected from alkali metal haiide, alkaline earth metal halide, alkali metal pseudohalide, quaternary ammonium salt, quaternary phosphonium salt, or ternary sulfonium salt, or a mixture of any two or more of the foregoing, and (ill) at least one aromatic hydrocarbon compound,

Aluminum-containing catalysts are among the most common Lewis acid catalysts employed in Friedel-Craft reactions- FriedeS-Craft reactions are reactions which fall within the broader category of electrophySic substitution reactions including alkylations.

Other examples of ionic liquids and their methods of preparation may also be found in U.S. Patent Nos. 5,731 ,101 ; 6,797,853 and in U.S. Patent Application Publications 2004/0077914 and 2004/0133056.

As a result of use, ionic liquid catalysts become deactivated, i.e. lose activity, and may eventually need to be replaced. However, ionic liquid catalysts are expensive and replacement adds significantly to operating expenses by in some cases requiring shut down of an industrial process. One of the heretofore unsolved problems impeding the commercial use of chioroaSuminate ionic liquid catalysis has been the inability to regenerate and recycle them. The present invention provides methods to regenerate acidic chioroaiumtnatß ionic liquid catalysts overcoming this obstacle and paving the way for the practical, cammerctai use of these environmentally friendly catalysts.

SUMMARY OF THE INVENTION

The present invention, among other things, provides a process for regenerating a used acidic ionic liquid catalyst comprising contacting the used ionic liquid catalyst with at least one metal in a regeneration zone in the absence of added hydrogen under regeneration conditions for a time sufficient to increase the activity of the ionic liquid catalyst, in one embodiment, regeneration is conducted tn the presence of a hydrocarbon solvent.

DETAILED DESCRIPTION

The present invention relates to a process for the regeneration of spent or deactivated acidic ionic liquid-based catalysts i.e. those catalysts which have lost all or some of their catalytic activity. The present process is being described and exemplified with reference certain specific ionic liquid catalysts and processes catalyzed thereby, but such description is not intended to limit the scope of the invention. The methods described may be applied to other

catalysts and processes by those persons having ordinary skill based on the teachings, descriptions and examples included herein.

The specific examples used herein refer to alkylation processes using ionic liquid systems, which are amine-based catioptc species mixed with aluminum chloride, in such systems, to obtain the appropriate acidity suitable for the alkylation chemistry, the ionic liquid catalyst is generally prepared to full acidity strength by mixing one molar part of the appropriate ammonium chloride with two molar parts of aluminum chloride. The catalyst exemplified for the alkyiation process is a1-alkyl-pyridinium chioroaluminate, such as 1- butyl-pyrid?nium heptaehloroaluminate.


1-Butyl-pyridinium heptachloroaluimnate

in general, a strongly acidic ionic liquid is necessary for isoparaffin alkylation, e.g. isoparaffin alkyiation, in that case, aluminum chloride, which is a strong Lewis acid in a combination with a small concentration of a Broensted acid, is a preferred catalyst component in the ionic liquid catalyst scheme.

While not being bound to this or any other theory of operation, the present invention is based in part on our discovery that one of the major catalyst deactivation mechanisms is the formation of by-products known as conjunct polymers. The term conjunct polymer was first used by Pines and lpatieff to distinguish these polymeric molecules from the usual polymers. Unlike typical polymers, conjunct polymers are polyunsaturated cyclic, polycyclic and acyciic molecules formed by concurrent acid-catalyzed reactions including, among others, polymerization, alkylation, cyclization, and hydride transfer reactions. Conjunct polymers consist of unsaturated intricate network of molecules that may include one or a combination of 4-, 5-, 6- and 7-membered rings in their skeletons. Some examples of the likely polymeric species were reported by

Miron et a!, (Journal of chemical and Engineering Data, 1963) and Pines {Chem, Tech, 1982),These molecules contain double and conjugated double bonds in intricate structures containing a combination of cyclic and acyclic skeletons,

The conjunct polymers deactivate the chloroalumtnate ionic liquid catalysts by weakening the acid strength of the catalyst through the formation of complexes of conjunct polymers and AiCI3 possibly by means of electron- donor/electron-acceptor interactions. The conjunct polymers with their double bonds are the donors and the Lewis acid (AlCIs) is the acceptor. Using their double bonds, the conjunct polymers coordinate to the Lewis acid (AICIs) in the ionic liquid and rendering the butyfpyridinium chloroaluminate catalyst less active. Conjunct polymers produced by the HCI-promoted chloroaluminate ionic liquid-catalyzed aSkylations are chlorinated molecules. Therefore, in addition to acid-base compfexation described earlier, aluminum chloride may react with the chlorinated molecules to make R+AiCI4' intermediates. These complexation pathways and perhaps other complexing mechanisms deplete the concentration of the Lewis acid in the ionic liquid and thus, the acidity of the catalyst becomes weaker and the overall catalytic activity becomes compromised and no longer effective for the intended purpose. Thus, the catalyst performance will become a function of the concentration of conjunct polymers in the ionic liquid phase. As more conjunct polymers accumulate in the ionic liquid phase the catalyst becomes less active. So, removal of all or a suitable portion of the conjunct polymers from the ionic liquid phase is a significant aspect of the present process for fon?c liquids catalyst regeneration.

The term "conjunct polymer" as used herein also includes any other species which might complex to AICb by pi bonding or sigma bonding or other means, which results in those species binding to the ionic liquid, so they are not removable by simple hydrocarbon extraction.

It is believed that deactivation of the catalyst by the presence of conjunct polymers is, in part at least, caused by coordination and complex formation

between the Lewis acid AfCJs (electron pair acceptor) and the conjunct polymers (electron donors). In such complexes, the Aids is no longer available for catalysis since it is tied-up in the AlCb-conjunct polymers complexes, it also appears that the presence (or accumulation) of conjunct polymer molecules in the catalyst phase is not by virtue of being miscibie in the ionic iiquid phase. While conjunct polymers may be somewhat miscibie in the ionic liquids, their accumulation in the catalyst phase is more likely to being bound by strong acid-base interactions (compiexation) rather than being soluble in the ionic liquid phase.

Conjunct polymers isolated from the catalyst phase by means of hydrolysis are highly soluble in hydrocarbons. However, attempts to remove them from the catalyst phase prior to hydrolysis by simple extraction methods with hydrocarbon solvents such as hexane, decane and toluene were unsuccessful. Other more polar solvents such as CH2CI2 may dissolve a chSoroaluminate ionic liquid and therefore are not selective solvents for dissolving and removing conjunct polymers, Conjunct polymers may be isoiated by hydrolysis, However, these methods of isolating the conjunct polymers are destructive, and result in an actual loss of a catalytic component (AICIa). The hydrolysis methods hydroiyze the catalytic component (AICi3) and transform it into inactive aluminum hydroxide and aluminum oxide. This indicates that the conjunct polymers are tightly held in the ionic iiquid phase by fairly strong type of bonding system. Therefore, any successfui attempt to reactivate and regenerate the catalyst must involve the removal of conjunct polymers to release aluminum trichloride from the AICI3- conjunct polymer complexes without destroying, consuming, or irreversibly tying up the AiCI3. In other words, one objective is to free the catalyst by replacing the conjunct polymers with other basic species that simply displace the polymer without destroying the catalyst or by suppressing the ability of conjunct polymers to form complexes with Lewis acids (aluminum chloride). The deactivated catalyst can be revived in a nondestructive manner by freeing up the AlCI3 from conjunct polymer- AICb complex. AICI3 no longer bound by conjunct polymers is then released to take part in catalytic reactions.

Among other things, the present invention provides a process for the regeneration of used acidic ionic liquid catalysts in a nondestructive manner by contacting a used ionic liquid catalyst with at ieast one metal under regeneration conditions in the absence of added hydrogen so as to increase the activity of the used ionic liquid catalyst

The metal used in this invention may be any one or more of a broad range of metals. Such metals may be selected from Groups Vl-B, VHi, Hl-A and H-B, Specific examples of the metallic catalysts are Fe, Co, Ni, Ru1 Rh1 Pd, Sr1 Os, Pt, Cr, Mn, Ti, V, Zr1 Mo1 W, B. Al, Ga, In, Tl, Zn, Cd, Cu, Ag and Au. These metals may be used singly, in combination or as alloys. Metals such as Raney nickel and alloys such as Ni/Al alloy may aiso be suitably employed. The metal may also be used alone or with other substances such as an inorganic oxide catalyst supports.

The metals may be in the form of fine particles, granules, sponges, gauzes, etc. Each metal may be used in any number of forms: (1} macroscopic, which includes wires, foils, fine particles, sponges, gauzes, granules, etc.; and (2) microscopic, which includes powders, smokes, colloidal suspensions, and condensed metal films,

An effective amount of metal is employed in the practice of the present invention. The amount of metal, say aluminum, added in the regeneration scheme is determined by the amount (concentration) of the conjunct polymers in the spent ionic liquid catalyst. For example, the amount of the metal used for the regeneration of a given spent catalyst is usually added in excess to the concentration of conjunct polymers present in the spent catalyst.

The metal selection for the regeneration is usually based on the composition of the ionic liquid catalyst. The metal should be selected carefully to prevent the contamination of the catalyst with unwanted metal complexes or intermediates that may form and remain in the catalyst phase. For example, aluminum metal will be the metal of choice for the regeneration when the

catalyst system is chloroaluminate ionic liquid-based catalyst. The use of any other metai may change the overall composition of the catalyst.

As noted previously, ionic liquid catalysts may become deactivated during use. For example, in an alkylate production unit, Sight (Cs-C5) olefins and isoparaffin feeds are contacted in the presence of a catalyst that promotes the alkylation reaction, in one embodiment of a process in accordance with the present invention, this catalyst is a chloroaluminate ionic liquid. The reactor, which may be a stirred tank or other type of contactor (e.g., riser reactor), produces a biphasic mixture of alkylate hydrocarbons, unreacted isoparaffins, and ionic liquid catalyst containing some conjunct polymers. The dense catalyst/ conjunct polymer phase may be separated from the hydrocarbons by gravity settling in a decanter. This catalyst will be partially deactivated by the conjunct polymers binding to AICI3. The recovered catalyst can be reactivated in a regeneration process according to the current invention. The products of this step will be reactivated catalyst and conjunct polymers among others as described herein. The reactivated catalyst and the conjunct polymers can be separated, for example, by solvent extraction, decantation, and filtration.

In one embodiment of the present invention, a used ionic liquid catalyst/ conjunct polymer mixture is introduced continuously into a regeneration reactor, which contains a metal. Inert hydrocarbons in which conjunct polymers are soluble are fed into the reactor at the desired rate. The inert hydrocarbons may be a normal hydrocarbons ranging from C6 - Ci5 and their mixtures, preferably C5-C8 although other hydrocarbons may be employed. The residence time, temperature and pressure of the reactor wiil be selected to allow the desired reactivation of the ionic liquid catalyst. The reaction product is withdrawn and sent to a separator. This mixture is then separated into three streams, one comprising light hydrocarbons, a second comprising inert hydrocarbons and conjunct polymers and a third comprising regenerated ionic liquid catalyst. A gravity decanter is used to separate the mixture, from which the ionic liquid phase, which is denser than other components, is withdrawn. The reactivated ionic liquid catalyst is returned to the alkylation

reactor. The solvent/ conjunct polymer mix is separated by distillation to recover the solvent.

it is not necessary to regenerate the entire charge of catalyst. In some instances only a portion or slipstream of the catalyst charge is regenerated, in those instances only as much ionic liquid catalyst is regenerated as is necessary to maintain a desired level of catalyst activity in the process in which the ionic liquid is used as the catalyst.

Regeneration conditions will generally include temperatures of -2O0C -2000C1 preferably 50°-1000C pressures of atmospheric-5000 psig, preferably atmospSi?ric-500 psig, and a contact time of 0,1 minute~24 hours, and preferably from 1/4-2 hours in a normal hydrocarbon as a solvent.

The following Examples are illustrative of the present invention, but are not intended to limit the invention in any way beyond what is contained in the claims which follow.

EXAMPLES

Example 1 Preparation of Fresh 1-Buty!pyridinium Chloroaluminate Ionic Liquid Catalyst A (Fresh ILA)

1-butyl-pyridinium chloroaluminate is a room temperature ionic liquid prepared by mixing neat 1-butyi-pyridinium chloride (a solid) with neat solid aluminum trichloride in an inert atmosphere. The syntheses of butylpyridinium chloride and the corresponding 1~butyl-pyridinium chloroaluminate are described below, in a 2~L Teflon-lined autoclave, 400 gm (5.05 mo!,) anhydrous pyridine (99.9% pure purchased from Aldrich) were mixed with 850 gm (7 mol.) 1- chlorobutane (99.5% pure purchased from Aldrich). The neat mixture was sealed and let to stir at 125°C under autogenic pressure over night. After cooling off the autoclave and venting it, the reaction mix was diluted and dissolved in chloroform and transferred to a three liter round bottom flask.

Concentration of the reaction mixture at reduced pressure on a rotary evaporator {in a hot water bath) to remove excess chloride, ?n-rßacted pyridine and the chloroform solvent gave a tan solid product. Purification of the product was done by dissolving the obtained solids in hot acetone and precipitating the pure product through cooling and addition of diethyl ether. Filtering and drying under vacuum and heat on a rotary evaporator gave 750 gm (88% yields) of the desired product as an off-white shiny solid. 1H-NMR and 13C-NMR were consistent with the desired 1-butyl-pyridinium chloride and no impurities were observed,

1-butyi?yridinium chloroaluminate was prepared by siowly mixing dried

1-buiyipyridinium chioride and anhydrous aluminum chloride (AICI3) according to the foliowing procedure. The 1-butylpyridinium chioride (prepared as described above) was dried under vacuum at 800C for 48 hours to get rid of residual water (1-butylpyridinium chloride is hydroscopic and readily absorbs water from exposure to air). Five hundred grams (2.91 mol.) of the dried 1-butylpyridinium chloride were transferred to a 2-Liter beaker in a nitrogen atmosphere in a glove box. Then, 777,4 gm (5.83 mol.) of anhydrous powdered AICI3 (99.99% from AIdrich) were added in small portions (while stirring) to controi the temperature of the highly exothermic reaction. Once ail the AICi3 was added, the resulting amber-looking liquid was left to gently stir for an additional 1/2-1 hour. The liquid was then filtered to remove any un-dissolved AICI3. The resulting acidic 1-butyl-pyridinium chloroaluminate was used as the catalyst for the alkylation of isoparaffins with olefins .


Example 2 Preparation of "Deactivated" 1-Butyipyridipium Chloroaiuminate Ionic Liquid Catalyst {Deactivated Catalyst A).

"Deactivated" or "used" 1-butyfpyridinium chloroaiuminate ionic liquid catalyst was prepared from "fresh" 1-butylpyridinium chloroaiuminate ionic liquid catalyst by carrying out the isobutane aikySation reaction in a continuous flow microunit under catalyst recycle with accelerated fouling conditions.

The microunit consists of feed pumps for isobutane and butenes, a stirred autociave reactor, a back pressure regulator, a three phase separator, and a third pump to recycle the separated ionic liquid catalyst back to the reactor. The reactor was operated at 80 to 100 psig pressure and with cooling to maintain a reaction temperature of --100C. To start the reaction, isobutane, butenes, and HCI were pumped into the autoclave at the desired molar ratio (isobutane/butenes > 1 ,0), through the back pressure regulator, and into the three phase separator, At the same time, fresh chloroalumtnate ionic liquid catalyst was pumped into the reactor at a rate pre-caicuiated to give the desired catalyst/feed ratio on a volumetric basis, As the reaction proceeded, ionic liquid separated from the reactor effluent and collected in the bottom of the three phase separator. When a sufficient level of catalyst built up in the bottom of the separator, the flow of fresh ionic liquid was stopped and catalyst recycle from the bottom of the separator was started. In this way, the initial catalyst charge was continually used and recycled in the process.

The following process conditions were used to generate Deactivated Catalyst A { 1-butylpyridinium chloroaiuminate ionic liquid catalyst) from Fresh Catalyst A:

Process Variable lsobutane pump rate 4,6 g/rnin Butene pump rate 2.2 g/min IL Catalyst pump rate 1.6 g/min HCI flow rate 3.0 SCCM pressure 100 psig temperature 10

The reaction was continued for 72 hours when it was judged that the catalyst had become sufficiently deactivated.

Example 3 Determination of the Amounts of Conjunct Polymer and Olefin Oligomers in Deactivated IL A.

The wt% of conjunct polymers in the spent (deactivated) ionic liquid was determined by hydrolysis of known weights of the spent catalyst. The example below is a typical procedure for measuring conjunct polymers in a given spent catalyst. In a glove box, 15 gm of a spent ionic liquid catalyst in a flask were rinsed first with 30-50 ml of anhydrous hexane to remove (from the spent catalyst) any residual hydrocarbon or olefipic oligomers. The hexane rinse was concentrated under reduced pressure to give only 0.02 gm of yeliow oil (0.13%). Then, 50 ml of anhydrous hexane was added to the rinsed catalyst followed by slow addition of 15 ml of water, and the mixture was stirred at O0C for 15-20 minutes. The resulting mixture was diluted with additional 30 ml hexanes and stirred well for additional 5-10 minutes. The mixture was allowed to settle down to two layers solution and some solid residue. The organic layer was recovered by decanting. The aqueous layer was further washed with additional 50 ml hexanes. The hexanes layers were combined and dried over anhydrous MgSO4, filtered and concentrated to give 2.5 gm (16.7wt% of the spent catalyst) of viscous dark orange-reddish oil. It was determined therefore that this particular spent catalyst contains 0.13% oligomers and

16.7% conjunct polymers. The hydrolysis can also be accomplished using acidic (aqueous HC!) or basic (aqueous NaOH) solutions.

Example 4 Characterization of Recovered Conjunct Polymer from Deactivated IL A.

The recovered conjunct polymers according to the procedure described in Example 3 were characterized by elemental analysis and by infrared, NMR, GC-Mass and UV and spectroscopy methods. The recovered conjunct polymers have hydrogen/carbon ratio of 176 and chlorine content of 0.8%, 1H-NMR and 13C-NMR showed the presence of oleftnic protons and olefinic carbons. Infra Red indicated the presence of olefinic regions and the presence of cyclic systems and substituted double bonds. GCMS showed the conjunct polymers to have molecular weights ranging from 150-mid 800s, The recovered conjunct polymers have boiling ranges of 350-1100DF as indicated by high boiling simulated distifSation analysis, UV spectroscopy showed a UV ?mx at 250 nm pointing highly conjugated double bonds systems.

Example 5 Regeneration of chloroaiuminate ionic liquid catalysts by removal of conjunct polymers from the spent catalyst by using aluminum metal in the absence of added hydrogen

A 300 cc autoclave was charged with 51 gm of used (deactivated) butylpyridinium chioroaiuminate ionic liquid containing 15,5 wt% (7.90 gm) conjunct polymers, 65 ml hexane, and 8 gm aluminum powder. The autoclave was heated to 100 0C white stirring with an overhead stirrer at -1200 rpm. The starting autogenic pressure of the reaction was 11 psi and rose to 82 psi once heating reached 100 0C and remained there for the duration of the reaction. The reaction was allowed to run for 1.5 hrs. The reaction was cooled down, and the reaction mixture was separated in the glove box where the organic layer was removed by decantation. The Sonic liquid-aluminum residue was rinsed with 2x50 ml anhydrous hexane. The hexane layers were all combined and dried over MgSO4. Filtration and

concentration of the dried hexane rinses gave S.3 gm 99.7% of the expected conjunct polymers as pale yellow oils. The ionic liquid catalyst was separated from aluminum by filtration. Hydrolysis of 10 gm portion of the filtered ionic liquid catalyst followed by extraction with hexane showed no presence of conjunct polymers in the treated spent ionic liquid. The reaction described above was repeated once more on the same spent catalyst and led to the removal of >98% of the conjunct polymers. The reaction was repeated on 52 gm of spent butyi-pyridinium chloroaluminate catalysts containing 15.5 wt% (7.9 gm CPs) and led to removing 7.75 gm of the polymers (98.0%) from the spent catalyst. Hydrolysis of the regenerated ionic liquid catalyst indicated the presence of
Example 6 Regeneration of chioroal?minate tonic liquid catalysts by removal of conjunct polymers from the spent catalyst by using zinc metai in the absence of added hydrogen

The regeneration procedure of Example 5 above was repeated using excess zinc metal (8 grams zinc powder) instead of aluminum to regenerate 50.2 gm of spent ionic liquid containing 24.3 wt% conjunct polymers (12,2 gm). The reaction ran for 1.5 hours at 100 QC. The autogenic pressure was 13 psi at the start of reaction and 57 psi at the end. The use of zinc resulted in the removal of 7.6 gm (62.3%) of the conjunct polymers present in the spent catalyst. The hydrolysis of the residual ionic liquid catalyst showed 2.6 gm of conjunct polymers remained in the catalyst. The use of zinc led to a total removal of 10 gm (81%) of the conjunct polymers present in the spent catalyst.

Example 7 Regeneration of chloroaluminate ionic liquid catalysts by removal of conjunct poiymers from the spent catalyst by using indium metal in the absence of added hydrogen

The regeneration procedure of Example 5 above was repeated but using indium metai (8 grams) in place of aluminum for the regeneration of 50 gm of

spent catalysts containing 24.3 wt% conjunct polymers (12.15 gm). The reaction conditions were 100°Cs 11/2 hours, and 13 psi (starting ?ressure)-57 psi (ending pressure). The use of indium resulted in the removal of 10.8 gm (89%) of the conjunct polymers present in the spent catalyst before regeneration.

Example 8 Regeneration of chloroaluminate ionic liquid catalysts by removal of conjunct polymers from the spent catalyst by using gaSiium metal in the absence of added hydrogen

The regeneration procedure of Example 5 was repeated using gallium metal (8 gm) in place of aluminum metal to remove 24,3 wt% (12,15 gm) conjunct polymers from 50 gm spent butyl pyridinium chloroafuminatß spent ionic liquid. The reaction stared at 14 psi pressure and ended at 68 psi. Again, it ran for 11/2 hours at 100 0C. The reaction resulted in the removal of 45% (5.5 gm) of the conjunct polymers present in the spent catalyst before regeneration.

Based on the results discussed in the examples above, aluminum and other metals appear to effectively remove conjunct polymers from the spent catalyst without the need for added hydrogen. Without being bound to any theory, it appears that the removal mechanism is probably driven by an sx?dative- reductive reaction where the metais are oxidized and the conjunct polymers and their chlorinated analogues are reduced.

There are numerous variations on the present invention which are possible in light of the teachings and supporting examples described herein. It is therefore understood that within the scope of the following claims, the invention may be practiced otherwise than as specifically described or exemplified herein.

WHAT IS CLAIMED IS:

1. A process for regenerating a used acidic ionic liquid catalyst comprising contacting the used ionic liquid catalyst with at feast one metal in a regeneration zone in the absence of added hydrogen under regeneration conditions for a time sufficient to increase the activity of the ionic liquid catalyst,

2. A process according to claim 1 , wherein the metal is selected from the group consisting of Groups Vl-B1 VIH, iil-A and H-B elements and their mixtures.

3. A process according to claim 1 , wherein the metal is selected from the group consisting of aluminum, indium, gallium and zinc.

4, A process according to claim 1 , wherein the metai is in a microscopic form.

5. A process according to claim 1 , wherein the metal is in a macroscopic form.

8. A process according to claim 1, wherein the reaction zone contains an inert hydrocarbon in which conjunct polymers are soluble.

7. A process according to claim 5, wherein the inert hydrocarbon is selected from the group consisting of normal hydrocarbons ranging from C5 -CjS and their mixtures.

8. A process according to claim 1 , wherein the ionic liquid catalyst has been used to catalyze a FrSedel-Craft reaction,

9. A process according to claim 8, wherein the Friedei-Craft reaction is alkylation,


10. A process according to ciaim 1 , wherein the ionic liquid catalyst comprises an imidazolium, pyridipium, phosphon?um or teiralkylammonium derivative or their mixtures.

11. A process according to ciaim 1, wherein the ionic liquid cataiyst is a chisroaiuminate sonic liquid.

12. A process according to claim 11 , wherein the metai is aluminum,

13. An ionic liquid catalyst, which has been regenerated in accordance with the process of claim 1.

14. A process for regenerating a used acidic ionic liquid catalyst which has been deactivated by conjunct polymers comprising the steps of contacting the used ionic liquid catalyst with at ieast one metai in a regeneration zone in the absence of added hydrogen under regeneration conditions in the presence of an inert hydrocarbon in which conjunct polymers are soluble for a time sufficient to increase the activity of the ionic liquid cataiyst.

15. A process according to claim 14, wherein the inert hydrocarbon is selected from the group consisting of normal hydrocarbons ranging from C5 -Ci5 and their mixtures,

16. A process according to claim 14, wherein the metal is selected from the group consisting of Groups Vi-B, VtH1 IH-A and N-B elements and their mixtures.

17. A process according to claim 14, wherein the metal is selected from the group consisting of aluminum, indium, galiiurn and zinc.

18. A process according to claim 14, wherein the metal is in a microscopic form.


19. A process according to claim 14, wherein the meta! is in a macroscopic form,

20. A process according to claim 14, wherein the ionic liquid catalyst has been used to catalyze a Friedel-Craft reaction.

21. A process according to claim 14, wherein the Friedel-Craft reaction is alkySation.

22. A process according to claim 14, wherein the ionic liquid catalyst comprises an imidazolium, pyridin?um, phosphonium or tetralkylammonium derivative or their mixtures,

23. A process according to claim 14, wherein the ionic liquid catalyst is a chloroalum?nate ionic liquid,

24. A process according to claim 22, wherein the metal is aluminum.

25. An ionic liquid catalyst, which has been regenerated in accordance with the process of claim 14,

Documents:

2402-MUMNP-2008-CLAIMS(AMENDED)-(1-4-2013).pdf

2402-MUMNP-2008-CLAIMS(MARKED COPY)-(1-4-2013).pdf

2402-MUMNP-2008-CORRESPONDENCE(13-1-2009).pdf

2402-MUMNP-2008-CORRESPONDENCE(15-2-2012).pdf

2402-MUMNP-2008-CORRESPONDENCE(17-2-2014).pdf

2402-MUMNP-2008-CORRESPONDENCE(21-4-2010).pdf

2402-MUMNP-2008-CORRESPONDENCE(28-11-2008).pdf

2402-MUMNP-2008-CORRESPONDENCE(28-4-2009).pdf

2402-MUMNP-2008-CORRESPONDENCE(30-1-2014).pdf

2402-MUMNP-2008-FORM 1(15-2-2012).pdf

2402-MUMNP-2008-FORM 13(1-4-2013).pdf

2402-MUMNP-2008-FORM 13(15-2-2012).pdf

2402-MUMNP-2008-FORM 18(21-4-2010).pdf

2402-MUMNP-2008-FORM 26(28-11-2008).pdf

2402-MUMNP-2008-FORM 3(1-4-2013).pdf

2402-MUMNP-2008-FORM 3(28-4-2009).pdf

2402-MUMNP-2008-FORM 3(3-10-2012).pdf

2402-MUMNP-2008-FORM-PCT-IB-373(3-10-2012).pdf

2402-MUMNP-2008-FORM-PCT-ISA-210(3-10-2012).pdf

2402-MUMNP-2008-GENERAL POWER OF ATTORNEY(15-2-2012).pdf

2402-MUMNP-2008-INTERNATIONAL APPLICATION REPORT(3-10-2012).pdf

2402-MUMNP-2008-PCT-IB-373(13-1-2009).pdf

2402-MUMNP-2008-PCT-ISA-237(13-1-2009).pdf

2402-MUMNP-2008-PETITION UNDER RULE 137(17-2-2014).pdf

2402-MUMNP-2008-REPLY TO EXAMINATION REPORT(1-4-2013).pdf

2402-MUMNP-2008-REPLY TO EXAMINATION REPORT(3-10-2012).pdf

2402-MUMNP-2008-US DOCUMENT(3-10-2012).pdf

Form-1.pdf

Form-3.pdf

Form-5.pdf


Patent Number 260370
Indian Patent Application Number 2402/MUMNP/2008
PG Journal Number 18/2014
Publication Date 02-May-2014
Grant Date 28-Apr-2014
Date of Filing 11-Nov-2008
Name of Patentee CHEVRON U.S.A., INC.
Applicant Address 6001 BOLLINGER CANYON ROAD - 3RD FLOOR, SAN RAMON, CALIFORNIA 94583,
Inventors:
# Inventor's Name Inventor's Address
1 ELOMARI, Saleh 4460 Rolling Meadow Court, Fairfield, California 94534, United States of America
2 HARRIS, Thomas V. 183 W. Seaview Drive, Benicia, California 94510, United States of America
3 TIMKEN, Hye Kyung C. 710 Pomona Avenue, Albany, California 94706, United States of America
4 TRUMBULL, Steven E. 398 Breed Avenue, San Leandro, California 94577, United States of America
PCT International Classification Number B01J20/34
PCT International Application Number PCT/US2007/066934
PCT International Filing date 2007-04-19
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 11/408,336 2006-04-21 U.S.A.