Title of Invention

COMPOSITIONS CONTAINING POLYSACCHARIDES

Abstract The present invention relates to compositions, preferably in the form of a powder and/or granules, which contain as principal components a first component selected from the group consisting of isoflavones, soy products containing at least one isoflavone, and mixtures thereof, together with a polysaccharide as second component. A preferred first component is genistein or a pharmaceutically acceptable salt or derivative thereof (e.g. genistin). A preferred second component is pectin. The present invention further relates to a process for the manufacture of such compositions, and their use in dietary supplements, pharmaceutical and personal care compositions. The present invention is also directed to the use of a polysaccharide for improving the flowability of a component selected from the group consisting of isoflavones, soy products, preferably those containing at least one isoflavone, and mixtures thereof.
Full Text Compositions containing polvsaccharides

The present invention relates to compositions comprising as principal components a first component selected from the group consisting of isoflavones, soy products containing at least one isoflavone, and mixtures thereof, and a polysaccharide as second component. A preferred first component is genistein, a preferred second component is pectin.
The present invention further relates to a process for the manufacture of such compositions, and their use in dietary supplements, pharmaceutical and personal care compositions.
The present invention is also directed to the use of a polysaccbaride for improving the flowability of a component selected from the group consisting of isoflavones, soy products, preferably those containing at least one isoflavone, and mixtures thereof.
Genistein is abioactive isoflavone naturally found e.g. in soy and commercially available. It has been claimed to be useful as an anti-inflammatory agent, for prevention and treatment of osteoporosis and heart disease, for prevention of photodamage and aging skin and wrinkles, for inhibition of Alzheimer's disease and for treatment of menopausal symptoms, estrogen disorders, cancer, cataracts, cystic fibrosis and migraine. Amongst the voluminous literature in this field, M. Messina, Chemistry & Industry 1995,413-415, and T. E. Wiese et al, ibid. 1997, 648-653, present interesting reviews on the biological effects and uses of isoflavones, including genistein.
CONFIRMATION COPY

Genistein is normally produced in crystalline powder form e.g. according to a process as disclosed in WO 2004/009576. Such a powder form has a very poor flowability. The poor powder flowability renders the crystalline powder difficult for use in making tablets and other application forms that require the powder to be free flowing. The same problem occurs if one tries to make tablets of other isoflavones or soy products, preferably of those containing at least one isoflavone, more preferably of those soy products containing at least one isoflavone and being essentially free of soy proteins and/or of phytosterols.
Compositions which have solved this problem known in the prior art are compositions of polysaccharides with compounds such as (-)-epigallocatechin gallate (WO 03/011339) and L-ascorbic acid (EP-A 1 110 550, WO 03/020265, US 2001/0005514), where the flowability of the compounds was improved by the addition of a polysaccharide. The compounds (-)-epigallocatechin gallate and L-ascorbic acid are, however, water-soluble, whereas the isoflavones such as genistein are generally hardly or essentially not water-soluble. Furthermore, (-)-epigallocatechin gallate and L-ascorbic acid are structurally different to the present compounds.
It was, thus, not to be expected to find out that a composition containing isoflavones and/or soy products containing at least oae isoflavone, most preferably a composition containing (a soy product containing at least the isoflavone) genistein and/or its glucoside genistm, and a polysaccharide, preferably in the form of a powder or of granules, has also improved flowability. That means that the polysaccharide acts here as granulating agent.
Thus, in one aspect, the present invention relates to a composition comprising:
(a) a first component selected from the group consisting of isoflavones, soy products
containing at least one isoflavone, and mixtures thereof, and
(b) a second component which is a polysaccharide.
Preferably the composition is in the form of a powder or granules. In each granule or powder particle, an individual isoflavone crystal (especially an individual genistein crystal) or several crystals is/are coated or partially coated with the polysaccharide. The coated or partially coated crystal or crystals are held (glued) together by the polysaccharide, which functions as a binder, to form a granule with appropriate size.

The composition according to the present invention has preferably a water activity of from 0.05 to 0.7, preferably of from 0.1 to 0.5, more preferably of from 0.2 to 0,5. The water activity is measured using a Novasina Thermoconstanter TH200 (Novasina AG, Zurich, Switzerland).
First component a)
In a preferred embodiment of the present invention the isoflavone is of the general formula
I,(Formula Removed)
wherein R signifies hydrogen (phenols), d-is-alkyl (ether) or Ci-is-alkylcarbonyl (ester),
1 *J
R signifies hydrogen or hydroxyl or CMg-aBcyloxy or CMg-aTkylcarbonyloxy, and R signifies hydroxyl or Ci-ig-alkoxy or Ci-is-alkylcarbonyloxy. Preferred isoflavones of the general formula I are 7-hydroxy- or 5,7-dihydroxy-2H-isoflavones wherein R is hydrogen and
1 2
R signifies hydrogen or hydroxyl, and R signifies hydroxyl or C\_6-alkoxy such as methoxy and ethoxy, as well as derivatives and pharmaceutically acceptable salts thereof. A process for their manufacture is e.g. described in WO 2004/009576.
The term "alky!" encompasses straight-chain, as well as branched-chain alkcyl. The term "alkyloxy" encompasses straight-chain, as "well as branched-chain alkyloxy.
Most preferably the first component is selected from the group consisting of genistein (compound of the formula I with R being hydrogen and R1 and R2 both being hydroxyl), pharmaceutically acceptable salts and/or pharmaceutically acceptable derivatives thereof. Most preferably the first component is genistein. The isoflavones, e.g. genistein, can be isolated from natural sources and optionally highly purified or chemically synthesized. In a

most preferred embodiment the isoflavones of the present invention , e.g. genistein, to be compounded according to the present invention are in crystalline form.
Preferably the used genistein (or pharmaceutically acceptable salt or pharmaceutically acceptable derivative thereof) has a particle size in the range of from 10 µm to 1000 urn, more preferably m the range of from 30 µm to 500 µm, even more preferably in the range of from 30 µm to 200 pm, most preferably in the range of from 50 fim to 200
Examples of pharmaceutically acceptable derivatives are gtycosides, especially the [3-glucoside conjugates such as the glucosides (preferred example: genistin), the malonylglu-cosides and the acetylglucosides.
Examples of pharmaceutically acceptable salts are compounds of the formula I, wherein R is Na+, K+, Vi Ca2"1" or l/2 Mg2* and/or R1 and/or R2 are independently from each other ONa*, OK+, O(VZ Ca2"*) or O(J/2
la another embodiment of the present invention the first component a) is selected from the group consisting of isoflavones, soy products containing at least one isoflavone, and mixtures thereof, wherein at least one isoflavone has a solubility of below 5% in water at 30°C and/or wherein at least one isoflavone has a solubility of below 5% in methylene chloride at 30°C.
In a further embodiment of the present invention the first component a) is selected from the group consisting of isoflavones, soy products containing at least one isoflavone, and mixtures thereof, wherein at least one isoflavone has a solubility in the range of from 0.001 to 5% in water at 30°C and/or wherein at least one isoflavone has a solubility in the range of -from 0.001 to 5% in methylene chloride at 30°C.
"%" in the context of the present invention, especially in the context of the solubilities, means "weight-%" if not stated otherwise. The solubilities if not stated otherwise are determined at an absolute pressure of 1 bar.
Preferably all isoflavones present in a composition according to this embodiment of the present invention have a solubility of below 5% in water at 30°C and/or a solubility of be-

low 5% in methylene chloride at 30°C. In a further embodiment of the present invention all isoflavones present in a composition according to the present invention have a solubility in. the range of from 0.001 to 5% in water at 30°C and/or a solubility in the range of from 0.001 to 5% in methylene chloride at 30°C.
More preferably all isoflavones present in a composition according to this embodiment of the present invention have a solubility of below 5% in water at 30°C and a solubility of below 5% in methylene chloride at 30°C. In a further embodiment of the present invention all isoflavones present in a composition according to the present invention have a solubility in the range of from 0.001 to 5% in water at 30°C and a solubility in the range of from 0.001 to 5% in methylene chloride at 30°C.
The term "soy product" encompasses extracts as well as concentrates obtained from soy including any chemically (especially enzymatically), thermally, physically and/or by UV radiation treated material. Preferred is such soy product that contains at least one isofla-vone (especially of the formula I with the definitions and preferences as cited above, most preferred genistein (and its pharmaceuticaUy acceptable salts and derivatives)) in an amount of at least 50 weight-%, preferably in an amount of at least 70 weight-%, more preferably in an amount of at least 80 weight-%, most preferably in an amount of at least 90 weight-%, based on the total weight of the soy product
In another preferred embodiment of the composition of the present invention the soy product containing at least one isoflavone is essentially free of soy proteins or of phytosferols,
In a further preferred embodiment of the composition of the present invention the soy product containing at least one isoflavone is essentially free of soy proteins and of phyto-sterols.
The term "phytosterol" in the context of the present invention encompasses especially plant sterols selected from the group consisting of p-sitosterol, campesterol, stigmasterol, sitostanol and campestanol.
"Essentially free" in the context of the present invention means that the amount of soy protein and/or of phytosterols in the soy product (or in other forms, compositions and products

of the present invention as mentioned below) is In another preferred embodiment of the present invention the composition itself is essentially free of soy protein and/or phytosterol, preferably it is essentially free of both of them,
The preferred particle size distribution of the composition of the present invention, preferably in form of a powder or of granules, is as follows:
at least 95% of the particles have a size of In another preferred embodiment of the present invention particle size distribution of the composition of the present invention, preferably in form of a powder or of granules, is as follows:
at least 95% of the particles have a size in the range of from 10 urn to 1500 \un (preferred: in the range of from 10 µm to 1000 urn, more preferred in the range of from 10 µm to 850 µm), whereby at most 35% of the particles have a size in the range of from 10 µm to 50 µm. (preferred: in the range of from 10 µm to 100 µm, more preferred in the range of from 10 urn to 150 µm).
Second component b): Polvsaccharides
The term "polysaccharides" is used in the conventional way as understood by the person
skilled in the art.
Examples of polysaccharides for use in the present invention (as granulating agent) are pectin, alginates, starch, cellulose derivatives such as hydroxypropyl methyl cellulose and carboxymethyl cellulose, carrageenan, agar, gum arable, guar gum, xanthan gum and mixtures thereof. Preferred examples of polysaccharides for use in the present invention are

pectin, alginates, starch, carrageenan, agar, gum arable, guar gum, xanthan gum and mixtures thereof. The even more preferred polysaccharide is pectin or alginate or a mixture thereof most preferred is pectin.
Pectin is a polysaccbaride and described for example in the book entitled Industrial Gums, third edition, Academic Press, Inc., 1993, pages 257ff. as well as in EP-A1110 550. Pectins used in the present invention are generally commercially available and e.g. produced from citrus peel or apple (pomace). Other possible sources are sugarbeet, sunflower and mango. Preferred pectins to be used within the scope of the present invention are citrus pectins, which generally have lighter colour than apple pectins and, thus, do not contribute significant colour to the final product.
In an embodiment of the invention high molecular weight pectin may be used. The term "high molecular weight pectin" as used herein denotes pectin having a molecular weight of more than about 300 kDalton. The preferred high molecular weight pectins are those having a molecular weight of from about 300 kDalton to about 400 kDalton, particularly 350 kDalton. Such pectins can be obtained as disclosed in US 6,143,337 the contents of which are incorporated herein by reference. The molecular weight is determined by size exclusion chromatography having a multi angle laser light scattering detector as described in US 6,143,337. However, pectins of higher molecular weight, e.g. up to 2.000 kDalton can be used also in the present invention. Pectins of such molecular weight can be obtained e.g. from Asteraceae plants, especially cichory and Jerusalem artichoke, see WO 99/03892. Fractions of the desired high molecular weight can be obtained from such pectins by membrane filtration, e.g. using polyethersulfone or composite regenerate cellulose membranes as supplied by Millipore Corporation, Bedford, MA 01730, USA, under the trade name Pellicon® Tangential Flow Filtration Cassettes,
The polysaccharide is preferably used in quantities > 0.1% by weight, more preferably in quantities > 0.5% by weight. Also preferred is the use of the polysaccharide in quantities
within the range of from 0.5% to 3% by weight, based on the total weight of the composition, especially based on the sum of the weight of the polysaccharide and the component a).
If pectin is used as the polysaccharide, it is preferably used in quantities > 0.1% by weight, more preferably in quantities > 0.5% by weight, most preferably in quantities > 1.5% by weight Also preferred is the use of pectin in quantities > 5% by weight, more preferably in quantities > 2.5% by weight, most preferably in quantities > 2% by weight, based on the sum of the weight of the pectin and the component a). In a further preferred embodiment of the composition of the present invention the pectin is used in quantities of from 0.1 % to 5% by weight, more preferably in quantities within the range of from 1.5% to 2.5% by weight, most preferably within, the range of from 0.5% to 2% by weight, based on the total weight of the composition, especially based on the sum of the weight of the pectin and the component a).
If alginate is used as the polysaccharid e, it is preferably used in quantities > 0.1 % by weight, more preferably in quantities > 0.5% by weight. Also preferred is the use of alginate in quantities 2% by weight, based on the sum of the weight of the alginate and the component.a). In a further preferred embodiment of the composition of the present invention the alginate is used in quantities of from 0.1% to 5% by weight, more preferably in quantities within the range of from 0.5% to 2% by weight, based on the total weight of Hie composition, especially based on the sum of the weight of the alginate and the component a).
If starch is used as the polysaccharide, it is preferably used in quantities > 0.1% by weight, more preferably in quantities > 0.5% by weight. Also preferred is the use of starch in quantities
In a further aspect, the present invention relates to a process for Hie manufacture of the composition of the present invention.
Manufacture of the composition
The composition of this invention may be produced by any method known per se for the production of powders or granules. Preferred are fluidized-bed granulation, high-shear ' granulation, extrusion, spray-drying and wet granulation. The present invention is also directed to the manufacture of the composition of the present invention by those processes.
For obtaining the composition of the present invention by spray-drying it is convenient to prepare an aqueous slurry of all the components or a slurry of all components in a solvent or solvent mixture which is able to dissolve the polysaccharide, preferably the pectin. A preferred example of such a solvent is water. The slurry has preferably a solid content of 10 to 70% by weight, and preferably of 25 to 50% by weight, based on the total weight of the slurry. The slurry is then spray-dried in a manner known per se.
Thus another aspect of the present invention is a process for the manufacture of a composition as mentioned above, which comprises preparing a slurry, preferably an aqueous slurry, of all the components, preferably having a solid content of 10 to 70% by weight, and preferably 25 to 50% by weight, based on the total weight of the slurry, and spray-drying the slurry in a manner known per se.
For obtaining the composition of the present invention, by fluidized-bed granulation it is convenient to use a known fluidized-bed granulating apparatus which comprises a fluidized-bed drying device fitted with spray means. Preferably the first component forms the fluidized bed, the fluidized bed being fluidized by air or an inert gas, e.g. nitrogen. The polysaccharide or polysaccharides are dissolved in an appropriate amount of water or solvent (mixture) capable of dissolving the polysaccharide(s), preferably in an appropriate amount of water, and sprayed in the form of an atomized mist onto the fluidized particles in such a manner that the granulating and drying operations is accomplished in a single step. This proceeding is the best mode of the invention.

Alternatively, the polysaccharide or polysaccharides are mixed with the first component and the fluidized bed being fluidized by air or an inert gas, e.g. nitrogen. An appropriate amount of water or solvent (mixture) capable of dissolving the polysaccharide(s), preferably an appropriate amount of water, is sprayed in the form of an atomized mist onto the fluidized particles in such a manner that the granulating and drying operations is accomplished in a single step. The granulating process is continued until the desired granule or powder is obtained.
At the end of the granulation process, the granules maybe sieved to fractionate the granules as to size. While the particle size is not narrowly critical to the invention it is, for practical purposes, preferably within 50 and 1500 µm, more preferably between 100 and 1000 um, most preferably from 150 to 850 pm,
Therefore, a further aspect of the present invention is a process for the manufacture of a composition as mentioned above, which comprises forming a fluidized bed of the first component with or without polysaccharide within a fluidized-bed drying device fitted with spray means, said fluidized bed being fluidized by air or an inert gas, and spraying a solution, preferably an aqueous solution, of a polysaccharide or only water or the solvent (mixture) in the form of an atomized mist onto the fluidized particles until the desired granule or powder is obtained.
Preferably one of the components/the first component of the processes mentioned above is an isoflavone of the formula I with the definitions and preferences as disclosed above or a pharmaceutically acceptable salt or derivative thereof. A preferred polysaccharide used in the processes as mentioned above is pectin, alginate or a mixture thereof, more preferred is
pectin.
The composition thus obtained may be further processed depending on the intended use of the first component or desired applications. For instance, the composition may be compressed into tablets with conventional tabletting methods and machinery.
Optionally the compositions, preferably the powder or the granules, may further be mixed with a lubricant or a mixture of lubricants and then compressed into tablets. If additional lubricant is used it is preferably selected from the group of stearic acid or the magnesium

or calcium salt thereof, or glyceryl behenate 45 (Compritol 888 ATO), preferably in an amount of 0,5 to 4% by weight, based on the total weight of the composition.
Alternatively or additionally the composition may be mixed with excipients. Examples of excipients are (macrocrystalline or powdered) cellulose, (pregelatinized) starch, lactose (anhydrous or monohydrate), sorbitol, mannitol, calcium carbonate, dibasic calcium phosphate (dehydrate), tribasic calcium phosphate, calcium sulphate, dextrates, dextrin, dextrose, fructose, kaolin, lactitol and (dextrinized) sucrose. Dextrinized sucrose is e.g. commercially available under the trade name Di Pac® sugar from Tate and Lyle North American Sugars, Inc., Canada, or from Domino Specialty Ingredients, Baltimore, MD, USA.
The composition of the present invention may also be mixed with adjuvants.
Furthermore the present invention is directed to dosage forms based on a composition of the present invention comprising the first and second component as defined above, most preferably comprising a) genistein (or pharmaceutically acceptable salts or derivatives thereof) and b) pectin, such as tablets, pills, granules, dragees, capsules, and effervescent formulations such as powders and tablets. Preferably the dosage form is a tablet.
In a preferred embodiment of dosage forms of the present invention these dosage forms themselves are essentially free of soy protein and/or of phytosterols, preferably they are essentially free of both of them.
A further object of the present invention are dietary as well as pharmaceutical and personal care compositions comprising
a) a first component selected from the group consisting of isoflavones, soy products
containing at least one isoflavone, and mixtures thereof, and
b) a second component which is a polysaccharide.
For the dietary, pharmaceutical and personal care compositions the same preferences for the first and second component as mentioned above apply.
Furthermore, in a preferred embodiment of the dietary, pharmaceutical and personal care compositions of the present invention these dietary, pharmaceutical and personal care

compositions themselves are essentially free of soy protein and/or of phytosterols, preferably they are essentially free of both of them.
The term "dietary compositions" comprises any type of (fortified) food/feed and beverages including also clinical nutrition, and also dietary supplements.
Beverages wherein the composition of the present invention can be used as an ingredient can be carbonated beverages e.g., flavoured seltzer waters, soft drinks or mineral drinks, as well as non-carbonated beverages e.g. flavoured waters, fruit juices, fruit punches and concentrated forms of these beverages. They may be based on natural fruit or vegetable juices or on artificial flavours. Also included are alcoholic beverages and instant beverage powders. Besides, sugar containing beverages diet beverages with non-caloric and artificial sweeteners are also included.
Further, dairy products, obtained from natural sources or synthetic, are within the scope of the food products wherein the composition of the present invention can be used as an ingredient. Typical examples of such products are milk drinks, ice cream, cheese, yoghurt and the like. Milk replacing products such as soymilk drinks and tofii products are also comprised within this range of application.
Also included are sweets which contain the composition of the present invention as an ingredient, such as confectionery products, candies, gums, desserts, e.g. ice cream, jellies, puddings, instant pudding powders and the like.
Also included are cereals, snacks, cookies, pasta, soups and sauces, mayonnaise, salad dressings and the like which contain the composition of the present invention as an ingredient. Furthermore, fruit preparations used for dairy and cereals are also included.
Pharmaceutical compositions such as tablets such as chewable tablets, effervescent tablets or film-coated tablets or capsules such as hard shell capsules wherein the compositions are used as an ingredient are also within the scope of the present invention. The product forms are typically added as powders to the tableting mixture or filled into the capsules in a mariner per se known for the production of capsules.

Animal feed products such as premixes of nutritional ingredients, compound feeds, milk substitutes, liquid diets or feed preparations wherein the compositions are used as an ingredient are also within the scope of the present invention.
Examples of personal care compositions are cosmetics, toiletries and derma products. Therefore, skin and hair care products such as creams, lotions, baths, lipsticks, shampoos, conditioners, sprays or gels •wherehi the compositions are used as an ingredient are also within the scope of the present invention.
In still another aspect, the invention is concerned with the use of polysaccharides (with the definitions and preferences as disclosed above), particularly with the use of pectin, as mentioned above for improving the flowability of a powder of a component selected from the group consisting of isoflavones, soy products, preferably those containing at least one isoflavone, and mixtures thereof. Or in other words the present invention is also directed to the use of polysaccharideSj especially of pectin, as granulating agent for compositions containing a component selected from the group consisting of isoflavones, soy products, preferably those containing at least one isoflavone, and mixtures thereof. For the solubility of the isoflavone(s) the same preferences apply as mentioned above.
Preferably the soy products are essentially free of soy protein and/or of phytosterols (as defined above), preferably they are essentially free of both of them. In another preferred embodiment of the present invention the powder itself is essentially free of soy protein and/or of phytosterols, preferably it is essentially free of both of them.
la another preferred embodiment of the use according to the present invention the soy product contains at least one isoflavone in an amount of at least 50 weight-%, preferably in an amount of at least 70 weight-%, more preferably in an amount of at least 80 weight-%, most preferably in an amount of at least 90 weight-%, based on the total weight of the soy product.
In a preferred embodiment of the invention a polysaccharide, preferably a pectin, is used to improve the flowability of a powder of an isoflavone or of a soy product containing such an'isoflavone, especially of a powder of an isoflavone, preferably of an isoflavone of the


formula I or of a soy product containing such an isoflavone, more preferably of a powder of such an isoflavone of the formula I, (Formula Removed)
wherein R, R1 and R2 have the same meanings and preferences as mentioned above, or to improve the flowability of a powder of (a soy product containing) a phannaceutically acceptable salt or a pharmaceutically acceptable derivative of said isoflavone.
In the most preferred embodiment of the present invention a polysaccharide, preferably a pectin, is used to improve the flowability of a powder of an isoflavone of the formula I with R1 and R2 being both hydroxyl (— genistein), of a pharmaceutically acceptable salt or of a pharmaceutically acceptable derivative thereof, preferably of genistein itself.
The invention is illustrated further by the following Examples.

Example 1
A pectin solution was prepared by dissolving 2.47 g of pectin (GENU® pectin USP/100, 8.88% moisture content, CP Kelco, Lille Skensved, Denmark) in 222.5 g of water to give a pectin solution containing 1.0 weight-% pectin, based on the total weight of the pectin solution.. Genistein powder was placed in a Glatt Fluidized-Bed granulator (Model Uniglatt, Glatt GmbH, Binzen, Germany) and sprayed with a fine mist of the pectin solution. The granulation conditions were suitably as follows:
Genistein powder: 298.5 g
Pectin solution: 150 g
Pectin solution spraying rate: 12 g/minute
After the completion of spraying the pectin solution, the granules were further dried in the granulator for about 10 minutes. The granules had a water activity of 0.28 and a granule size distribution as shown in Example 5.
Example 2
A pectin solution was prepared by dissolving 3.95 g of pectin (GENU® pectin USP/100, 8.88% moisture content, CP Kelco, Lille Skensved, Denmark) in 176.1 g of water to give a pectin solution containing 2.0 weight-% pectin, based on the total weight of the pectin solution. Genistein powder was placed hi a Glatt Fluidized-Bed granulator ((Model Uniglatt, Glatt GmbH, Binzen, Germany) and sprayed with a fine mist of the pectin solution. The granulation conditions were suitably as follows:
Genistein powder: 297 g
Pectin solution; 150 g
Pectin solution spraying rate: 15.8 g/minute
After the completion of spraying pectin solution, the granules was farther dried in the granulator for about 10 minutes. The granules had a water activity of 0.17 and a granule size distribution as shown in Example 5.
Example 3
A pectin solution was prepared by dissolving 5.93 g of pectin (GENU® pectin USP/100, 8.88% moisture content, CP Kelco, Lille Skensved, Denmark) in 174.1 g of water to give a pectin solution containing 3.0 weight-% pectin, based on the total weight of the pectin so-

lution. Genistein powder was placed in a Glatt Fluidized-Bed granulator (Model Uniglatt, Glatt GmbH, Binzen, Germany) and sprayed with a fine mist of the pectin solution. The granulation conditions were suitably as follows:
Genistein powder: 295.5 g
Pectin solution: 150 g
Pectin solution spraying rate: 14,6 g/minute
After the completion of spraying pectin solution, the granules was further dried in the granulator for about 10 minutes. The granules had a water activity of 0.25 and a granule size distribution as shown in Example 5.
Example 4
A pectin solution was prepared by dissolving 9.87 g of pectin (GENU® pectin USP/100, 8.88% moisture content, CP Kelco, Lille Skensved, Denmark) in 215.1 g of water to give a pectin solution containing 4.0 weight-% pectin, based on the total weight of the pectin solution. Genistein powder was placed in a Glatt Fluidized-Bed granulator (Model Uniglatt, Glatt GmbH, Binzen, Germany) and sprayed with a fine mist of the pectin solution. The granulation conditions were suitably as follows:
Genistein powder: 294 g
Pectin solution: 150 g
Pectin solution spraying rate: 11.8 g/minute
After the completion of spraying pectin solution, the granules was further dried in the granulator for about 10 minutes. The granules had a water activity of 0.25 and a granule size distribution as shown in Example 5.
Example 5
The granule size distributions of Example 1-4 were analyzed by sieve analysis and the results are shown in the following table. The flowability was determined by the time needed to have 100 g of genistein crystals or genistein granules flowing through an 11- mm orifice of a funnel.(Table Removed)







1. Use of a polysaccharide, preferably of a pectin, for improving the flowability of a pow
der of a component selected from the group consisting of isoflavones, soy products,
preferably those containing at least one isoflavone, and mixtures thereof.
2. The use of a polysaccharide according to claim 1, wherein the soy product is essentially
free of soy-proteins or of phytosterols.
3. The use of a polysaccharide according to claim 1 or 2, wherein the soy product con
tains at least one isoflavone in an amount of at least 50 weight-%, preferably in an.
amount of at least 70 weight-%, more preferably in an amount of at least 80 weight-%,
most preferably in an amount of at least 90 weight-%, based on the total weight of the
soy product.
4. The use of a polysaccharide according to claim 1 or 3, wherein the soy product is es
sentially free of soy-proteins and of phytosterols.
5. The use of a polysaccharide, preferably of pectin, according to any of the preceding
claims, wherein the flowabih'ty of a powder of an isoflavone or of a soy product con
taining such isoflavone, preferably of an isoflavone of the formula I or of a soy product
containing such isoflavone,(Formula Removed)


I wherein R signifies hydrogen, C1-18-alkyl or C1-18-alkylcarbonyl, R signifies hydrogen

or hydroxyl or C1-18-alkyloxy or C1-18-alkylcarbonyloxy, and R2 signifies hydroxyl or C1-18 g-allcoxy or Cug-alkylcarbonyloxy,
of a pharmaceutically acceptable salt or of a pharmaceutically acceptable derivative thereof is improved.

6. The use of a polysaccharide according to claim 5, wherein the flowability of a powder
of an isoflavone of the formula I or of a soy product containing such isoflavone of the
formula I with R being hydrogen and R and R being both hydroxyl, i.e. of genistein, is improved.
7. The use of a polysaccharide according to any one of claims 1 to 4, wherein at least one
isoflavone has a solubility of below 5 weight-% in water at 30°C.
8. The use of a polysaccharide according to any one of claims 1 to 4 or 7, wherein at least
one isoflavone has a solubility of below 5 weight-% in methylene chloride at 30°C.
9. A composition comprising:

a) a first component selected from the group consisting of isoflavones, soy products
containing at least one isoflavone, and mixtures thereof, and
b) a second component which is a polysaccharide.
10. The composition according to claim 9, wherein the isoflavone is selected from the
group consisting of isoflavones of the formula I(Formula Removed)

wherein R signifies hydrogen, C1-18-alkyl or C1-18-alkylcarbonyl, R signifies hydrogen.
n
or hydroxyl or C1-18-alkyloxy or C1-18-alkylcarbonyloxy., and R signifies hydroxyl or
1-18-alkylcarbonyloxy, pharmaceutically acceptable salts and derivatives thereof.
11. The comp osition according to claim 10, wherein R is hydrogen and R1 and R2 are both hydroxyl.

12. The composition according to claim 9, wherein the first component a) is selected from
the group consisting of isoflavones, soy products containing at least one isoflavone,
and mixtures thereof, wherein at least one isoflavone has a solubility of below 5
weight-% in water at 30°C and/or wherein at least one isoflavone has a solubility of be
low 5 weight-% in methylene chloride at 30°C.
13. The composition according to any one of claims 9 to 12, wherein the soy product con
tains at least one isoflavone in an amount of at least 50 weight-%, preferably in an
amount of at least 70 weight-%, more preferably in an amount of at least 80 weight-%,
most preferably in an amount of at least 90 weight-%, based on the total weight of the
soy product.
14. The composition according to any one of claims 9 to 13, wherein the soy product con
taining at least one isoflavone is essentially free of soy-proteins or of phytosterols.
15. The composition according to any one of claims 9 to 13, wherein the soy product con
taining at least one isoflavone is essentially free of soy-proteins and of phytosterols.
16. The composition according to one or more of claims 9 and 12 to 15, wherein the
isoflavones present in the composition have a solubility of below 5 weight-% in water
at 30°C.
17. The composition according to one or more of claims 9 and 13 to 16, wherein the
isoflavones present in the composition have a solubility of below 5 weight-% in me
thylene chloride at 30°C.
18. The composition according to any of the claims 9 to 17 in the form of a powder or
granules.
19. The composition according to any of the claims 9 to 18, wherein the polysaccharide is
pectin or alginate or a mixture thereof, preferably wherein the polysaccharide is pectin.
20. The composition according to any of the claims 9 to 19, wherein the polysaccharide is
present in quantities of > 0.1% by weight, based on the total weight of the composition.
21. The composition according to claim 19, wherein the pectin is present in quantities of >
0.5% by weight, based on the total weight of the composition.
22. A process for the manufacture of a composition according to any one of claims 9 to 21
by fluidized-bed granulation, high-shear granulation, extrusion, spray-drying or wet
granulation.
23. A process for the manufacture of a composition according to any one of the claims 9 to
21, which comprises preparing a slurry, preferably an aqueous slurry, of all the compo
nents, preferably having a solid content of 10 to 70% by weight, and preferably 25 to
50% by weight, based on the total weight of the slurry, aad spray-drying the slurry in a
manner known per se.
24. A process for the manufacture of a composition according to any one of the claims 9 to
21, which comprises forming a fluidized bed of the first component with or without
polysaccharide within a fluidized-bed drying device fitted with spray means, said fluid
ized bed being fluidized by air or an inert gas, and spraying a solution, preferably an
aqueous solution, of a polysaccharide or only water in the form of an atomized mist
onto the fluidized particles until the desired granule or powder is obtained.
25.The process according to claim 23 or 24, wherein one of the components / the first
component is an isoflavone, preferably of the formula I, (Formula Removed)

wherein R signifies hydrogen, C1-18-alkyl or C1-18-alkylcafbonyl, R1 signifies hydrogen
n
or hydroxyl or C1-18-alkyloxy or C1-18-alkcylcarboayloxy, and R signifies hydroxyl or
C1-18-alkoxy or C1-18-alkylcarbonyloxy, .
a pharmaceutically acceptable salt or a pharmaceutically acceptable derivative thereof.
26. The process according to claim 25, wherein R is hydrogen and Rl and R2 are both hy-
droxyl.
27. The process as in one or more of claims 24 to 26, wherein the polysaccharide is pectin
or alginate or a mixture thereof, preferably wherein the polysaccharide is pectin,
28. A-dosage form based on a composition as claimed in any of claims 9 to 21,
29. The dosage form according to claim 28, wherein the dosage form is a tablet
Dietary, pharmaceutical and personal care compositions comprising a composition as
claimed in any of claims 9 to 21.

Documents:

6867-delnp-2007-Abstract-(28-02-2014).pdf

6867-delnp-2007-abstract.pdf

6867-delnp-2007-Claims-(28-02-2014).pdf

6867-delnp-2007-claims.pdf

6867-delnp-2007-Correspondence Others-(26-08-2013).pdf

6867-delnp-2007-Correspondence-Others-(28-02-2014).pdf

6867-delnp-2007-correspondence-others.pdf

6867-delnp-2007-description (complete).pdf

6867-delnp-2007-form-1.pdf

6867-delnp-2007-form-2.pdf

6867-delnp-2007-Form-3-(26-08-2013).pdf

6867-delnp-2007-Form-3-(28-02-2014).pdf

6867-delnp-2007-form-3.pdf

6867-delnp-2007-form-5.pdf

6867-delnp-2007-GPA-(28-02-2014).pdf

6867-delnp-2007-gpa.pdf

6867-delnp-2007-pct-210.pdf

6867-delnp-2007-pct-237.pdf

6867-delnp-2007-pct-304.pdf

6867-delnp-2007-pct-373.pdf


Patent Number 261020
Indian Patent Application Number 6867/DELNP/2007
PG Journal Number 23/2014
Publication Date 06-Jun-2014
Grant Date 30-May-2014
Date of Filing 05-Sep-2007
Name of Patentee DSM IP ASSETS B.V
Applicant Address HET OVERLOON 1, NL-6411 TE HEERLEN, THE NETHERLANDS.
Inventors:
# Inventor's Name Inventor's Address
1 CHEN, CHYL-CHENG LINDENSTRASSE 18, CH-4102 BINNINGEN,SWITZERLAND.
2 LEUENBERGER, BRUNO MUHLEBACHWEG 23, CH-4123 ALLSCHWIL, SWITZERLAND.
PCT International Classification Number A61K 31/352
PCT International Application Number PCT/EP2006/001331
PCT International Filing date 2006-02-14
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 05003166.5 2005-02-15 EUROPEAN UNION