Title of Invention

PIGMENTED INKJET INK WITH A POLYMERIC DISPERSANT CONTAINING A LONG ALIPHATIC CHAIN (METH) ACRYLATE

Abstract A pigmented inkjet ink comprising a pigment and a polymeric aispersant wherein the polymeric dispersant is a statistical copolymer comprising between 3 and 11 moi% of a long aliphatic chain (meth)acrylate wherein the long aliphatic chain contains at least 10 carbon atoms.
Full Text

Description
PIGMENTED INKJET INK WITH A POLYMERIC DISPERSANT CONTAINING A
LONG ALIPHATIC CHAIN (METH)ACRYLATE
Technical field
[0001] The present invention relates to stable pigmented inkjet inks with a polymeric dispersant containing a long chain (meth)acrylate.
Background art
[0002] Pigment dispersions are made using a dispersant. A dispersant is a
substance for promoting the formation and stabilization of a dispersion of pigment particles in a dispersion medium. Dispersants are generally surface-active materials having an anionic, cationic or non-ionic structure. The presence of a dispersant substantially reduces the dispersing energy required. Dispersed pigment particles may have a tendency to re-agglomerate after the dispersing operation, due to mutual attraction forces. The use of cjispersants alsgjjpunteracts this re-agglomeration tendency of the pigment particles.
[0003] The dispersant has'to meet particularly high requirements when used for inkjet inks. Inadequate dispersing manifests itself as increased viscosity in liquid systems, loss of brilliance and/or hue shifts. Moreover, particularly good dispersion of.'the. pigment particles is required to ensure unimpeded passage of the pigment particles through the nozzles of the print head which are usually only a few micrometers in diameter. In addition, pigment particle agglomeration and the associated blockage of the printer nozzles has to be avoided in the standby periods of the printer.
[0004] Polymeric dispersants contain in one part of the molecule so-called anchor groups, which adsorb onto the pigments to be dispersed. In a spatially separate part of the molecule, polymeric dispersants have a polymer chain which sticks out and whereby pigment particles are made compatible with the dispersion medium, i.e. stabilized.
[0005] The properties of polymeric dispersants depend on both the nature of the monomers and their distribution in the polymer. Polymeric dispersants obtained by randomly polymerizing monomers (e.g. monomers A and B polymerized into ABBAABAB) or by polymerizing alternating monomers

(e.g. monomers A and B polymerized into ABABABAB) generally result in a poor dispersion stability. Improvements in dispersion stability were obtained using graft copolymer and block copolymer dispersants. Graft copolymer dispersants consist of a polymeric backbone with side chains attached to the backbone.
CA 2157361 (DU PONT) discloses pigment dispersions made by using a graft copolymer dispersant with a hydrophobic polymeric backbone and hydrophilic side chains.
Other graft copolymer dispersants are disclosed in US 6652634 (LEXMARK), US 6521715 (DU PONT) and US 2004102541 (LEXMARK). Block copolymer dispersants containing hydrophobic and hydrophilic blocks have been disclosed in numerous inkjet ink patents.
US 5859113 (DU PONT) discloses an AB block copolymer dispersant with a polymeric A segment of polymerized glycidyl (meth)acrylate monomers reacted with an aromatic or aliphatic carboxylic acid, and a polymeric B segment of polymerized alkyl (meth)acrylate monomers having 1-12 carbon atoms in the alkyl group, hydroxy alkyl (meth)acrylate monomers.
US 6413306 (DU PONT) discloses ABC block copolymer dispersants with a polymeric A segment of polymerized alkyl (meth)acryiate monomers having 1-12 carbon atoms in the alkyl group, aryl (meth)acrylate monomers, cycloalkyl (meth)acrylate monomers, a polymeric B segment of polymerized alkyl amino alkyl(meth)acrylate monomers with a quaternized alkyl group, and a polymeric C segment of polymerized hydroxyalkyl (meth)acrylate monomers.
The design of polymeric dispersants for inkjet inks is discussed in SPINELLI, Harry J.. Polymeric Dispersants in Ink Jet Technology. Advanced Materials. 1998, vol.10, no.15, p.1215-1218. A wide variety of polymeric dispersants has been proposed, but the dispersion stability of pigments, especially in inkjet, still needs further improvement. For consistent image quality, the inkjet ink requires a dispersion stability capable of dealing with high temperatures (above 60°C) during transport of the ink to a customer and changes in the

dispersion medium of the inkjet ink during use, for example, evaporation of water and increasing concentrations of humectant. It is highly desirable to be able to manufacture such stable pigmented Inkjet inks using a polymeric dispersant obtained by a simple synthesis, i.e. by randomly polymerizing mongmers.
Objects of the invention [0010] It is an object of the present invention to provide pigmented Inkjet inks
using a polymeric dispersant obtained by simple synthesis, exhibiting high dispersion stability and producing images of high image quality with a high optical density.
[0011] Further objects of the invention will become apparent from the description hereinafter.
Summary of the invention
[0012] It has been surprisingly found that pigmented inkjet inks with high stability and high optical density were obtained when the statistical copolymers contained a certain concentration of long aliphatic chain (meth)acrylate .
[0013] Objects of the present invention have been realized with a pigmented inkjet ink comprising a pigment and a polymeric dispersant wherein the polymeric dispersant is a statistical copolymer comprising between 3 and 11 mol% of a long aliphatic chain (meth)acrylate wherein the long aliphatic chain contains at least 10 carbon atoms.
[0014] Further advantages and embodiments of the present invention will become apparent from the following description.
Detailed description of the invention
[0015]
Definitions
[0016] The term "dye", as used in disclosing the present invention, means a
colorant having a solubility of 10 mg/L or more in the medium in which it is applied and under the ambient conditions pertaining.
[0017] The term "pigment" is defined in DIN 55943, herein incorporated by
reference, as an inorganic or organic, chromatic or achromatic colouring agent that is practically insoluble in the application medium under the

pertaining ambient conditions, hence having a solubility of less than 10
mg/L therein.
The term "dispersion", as used in disclosing the present invention, means
an intimate mixture of at least two substances, one of which, called the
dispersed phase or colloid, is uniformly distributed in a finely divided state
through the second substance, called the dispersion medium.
The term "polymeric dispersant", as used in disclosing the present
invention, means a substance for promoting the formation and stabilization
of a dispersion of a substance in a dispersion medium.
The term " copolymer", as used in disclosing the present invention, means
a macromolecule in which two or more different species of monomers are
incorporated into a polymer chain.
The term " statistical copolymer", as used in disclosing the present
invention, means a copolymer obtained by randomly polymerizing
monomers , e.g. monomers A and B polymerized into ABBAABAB.
The term " block copolymer", as used in disclosing the present invention,
means a copolymer in which the monomers occur in relatively long
alternate sequences in a chain.
The term "spectral separation factor" as used in disclosing the present
invention means thfe value obtained by calculating the ratio of the
maximum absorbance Amax (measured at wavelength Amax) over the
absorbance Aref determined at a reference wavelength Aref.
The abbreviation" SSF" is used in disclosing the present invention for
spectral separation factor.
The term "alkyl" means all variants possible for each number of carbon
atoms in the alkyl group i.e. for three carbon atoms: n-propyl and
isopropyl; for four carbon atoms: n-butyl, isobutyl and tertiary-butyl; for five
carbon atoms: n-pentyl, 1,1-dimethyl-propyl, 2,2-dimethylpropyl and 2-
methyl-butyl etc.
The term 'substituted" as used in disclosing this present invention means
that one or more of the carbon atoms and/or that a hydrogen atom of one
or more of carbon atoms in an aliphatic group, an aromatic group or an
alicyclic hydrocarbon group, are replaced by an oxygen atom, a nitrogen

atom, a halogen atom, a silicon atom, a sulphur atom, a phosphorous atom, selenium atom or a tellurium atom. Such substituents include hydroxyl groups, ether groups, carboxylic acid groups, ester groups, amide groups and amine groups.
Pigmented Inkjet ink
[0027] The pigmented inkjet ink according to the present invention contains at least three components: (i) a pigment, (ii) a polymeric dispersant, and (iii) a dispersion medium.
[0028] The pigmented inkjet ink according to the present invention may further contain at least one surfactant.
[0029] The pigmented inkjet ink according to the present invention may further contain at least one biocide.
[0030] The pigmented inkjet ink according to the present invention may further contain at least one pH adjuster.
[0031] The pigmented inkjet ink according to the present invention may contain at least one humectant to prevent the clogging of the nozzle, due to its ability to slow down the evaporation rate of ink.
[0032] The viscosity of the pigmented inkjet ink according to the present invention is preferably lower than 100 mPa.s, more preferably lower than 30 mPa.s, and most preferably lower than 10 mPa.s at a shear rate of 100 s~1 and a temperature between 20 and 110°C.
[0033] The pigmented inkjet ink according to the present invention is preferably an aqueous or solvent based pigmented inkjet ink.
[0034] The pigmented inkjet ink according to the present invention may be radiation curable and may contain monomers, oligomers and/or prepolymers possessing different degrees of functionality. A mixture including combinations of mono-, di-, tri-and higher functionality monomers, oligomers or prepolymers may be used. A catalyst called a photo-initiator for initiating the polymerization reaction may be included in the radiation curable pigmented inkjet ink.
Pigments

The pigment used in the pigmented inkjet ink according to the present
invention may be black, cyan, magenta, yellow, red, orange, violet, blue,
green, brown, mixtures thereof, and the like.
The pigment may be chosen from those disclosed by HERBST, W, et al.
Industrial Organic Pigments, Production, Properties, Applications. 2nd
edition, vch, 1997.
Particular preferred pigments are C.I. Pigment Yellow 1, 3, 10, 12, 13, 14,
17,55,65,73,74,75,83,93, 109,111, 120, 128, 138, 139, 150, 151,
154, 155, 180,185 and 213.
Particular preferred pigments are C.I. Pigment Red 17, 22, 23, 41, 48:1,
48:2,49:1,49:2,52:1,57:1,81:1,81:3,88, 112, 122, 144, 146, 149,
169,170, 175, 176, 184, 185, 188, 202, 206, 207, 210, 216, 221, 248, 251
and 264.
Particular preferred pigments are C.I. Pigment Violet 1, 2, 19, 23, 32, 37
and 39.
Particular preferred pigments are C.I. Pigment Blue 15:1, 15:2, 15:3, 15:4,
16, 56, 61 and (bridged) aluminum phthalocyanine pigments.
Particular preferred pigments are C.I. Pigment Orange 5, 13, 16, 34, 40,
43, 59, 66, 67, 69, 71 and 73.
Particular preferred pigments are C.I. Pigment Green 7 and 36.
Particular preferred pigments are C.I. Pigment Brown 6 and 7.
Particular preferred pigments are C.I. Pigment White 6.
Particular preferred pigments are C.I. Pigment Metal 1, 2 and 3.
For the black ink, suitable pigment materials include carbon blacks such
as Regal™ 400R, Mogul™ L, Elftex™ 320 from Cabot Co., or Carbon
Black FW18, Special Black™ 250, Special Black™ 350, Special Black™
550, Printex™ 25, Printex™ 35, Printex™ 55, Printex™ 90, Printex™ 150T
from DEGUSSA Co., MA8 from MITSUBISHI CHEMICAL Co., and C.I.
Pigment Black 7 and C.I. Pigment Black 11.
The pigment particles in the pigmented inkjet ink should be sufficiently
small to permit free flow of the ink through the inkjet printing device,
especially at the ejecting nozzles. It is also desirable to use small particles
for maximum colour strength and to slow down sedimentation.

[0048] The average particle size of the pigment in the pigmented inkjet ink should be between 0.005 pm and 15 pm. Preferably, the average pigment particle size is between 0.005 and 5 pm, more preferably between 0.005 and 1 pm, particularly preferably between 0.005 and 0.3 pm and most preferably between 0.040 and 0.150 pm. Larger pigment particle sizes may be used as long as the objectives of the present invention are achieved.
[0049] The pigment is used in the pigmented inkjet ink in an amount of 0.1 to 20 wt%, preferably 1 to 10 wt% based on the total weight of the pigmented inkjet ink.
Polymeric dispersant
[0050] The polymeric dispersant used in the pigmented inkjet ink according to the present invention is a copolymer comprising between 3 and 11 mol% of a long aliphatic chain (meth)acrylate wherein the long aliphatic chain contains at least 10 carbon atoms.
[0051] The long aliphatic chain (meth)acrylate contains 10 to 18 carbon atoms.The long aliphatic chain (meth)acrylate is preferably decyl (meth)acrylate.
[0052] The polymeric dispersant used in the pigmented inkjet ink according to the present invention can be prepared with a simple controlled polymerization of a mixture of monomers and/or oligomers including between 3 and 11 mol% of a long aliphatic chain (meth)acrylate wherein the long aliphatic chain contains at least 10 carbon atoms.
[0053] The polymeric dispersant used in the pigmented inkjet ink according to the present invention comprises preferably at least 2 other monomers and/or oligomers.
[0054] The polymeric dispersant used in the pigmented inkjet ink according to the present invention preferably has an average molecular weight Mw smaller than 100000, more preferably smaller than 50000 and most preferably smaller than 30000.'
Other monomers and/or oligomers
[0055] The monomers and/or oligomers used to prepare the polymeric dispersant used in the pigmented inkjet ink according to the present invention can be

any monomer and/or oligomer round in the Polymer Handbook, Vol. 1 + 2. 4th edition. Edited by J. BRANDRUP, et al. Wiley-lnterscience , 1999. Suitable examples of monomers include: acrylic acid, methacrylic acid, maleic acid, acryloyloxybenzoic acid and methacryloyloxybenzoic acid (or their salts), maleic anhydride; alkyl(meth)acrylates (linear, branched and cycloalkyl) such as methyl(meth)acrylate, n-butyl(meth)acrylate, tert-butyl(meth)acrylate; cyclohexyl(meth)acrylate and 2-ethylhexyl(meth)acrylate; aryl(meth)acrylates such as benzyl(meth)acrylate and phenyl(meth)acrylate; hydroxyalkyl(meth)acrylates such as hydroxyethyl(meth)acrylate and hydroxypropyl(meth)acrylate; (meth)acrylates with other types of functionalities (e.g. oxirane, amino, fluoro, polyethylene oxide, phosphate-substituted) such as glycidyl (meth)acrylate, dimethylaminoethyl(meth)acrylate, trifluoroethyl acrylate, methoxypolyethylereglycol (meth)acrylate and
tripropyleneglycol(meth)acrylate phosphate; allyl derivatives such as allyl glycidyl ether; styrenics such as styrene, 4-methylstyrene, 4-hydroxystyrene, and 4-acetoxystyrene; (meth)acrylonitrile; (meth)acrylamides (including N-mono and N,N-disubstituted) such as N-benzyl (meth)acrylamide; maleimides such as N-phenyl maleimide, N-benzyl maleimide and N-ethyl maleimide; vinyl derivatives such as vinylcaprolactam, vinylpyrrolidone, vinylimidazole, vinylnaphthalene and vinyl halides; vinylethers such as vinylmethyl ether; and vinylesters of carboxylic acids such as vinylacetate and vinylbutyrate. The polymeric dispersant used in the pigmented Inkjet ink according to the present invention comprises preferably at least 25 mol% n-butyl (meth)acrylate.
The polymeric dispersant used in the pigmented inkjet ink according to the present invention comprises preferably at least 25 mol% (meth)acrylic acid.
The polymeric dispersant used in the pigmented inkjet ink according to the present invention comprises preferably at least 5 mol% methyl (meth)acrylate.

[0060] The polymeric dispersant used in the pigmented inkjet ink according to the present invention preferably has Mn smaller than 10000.
[0061] An example of a commercially available polymeric dispersant suitable for the pigmented inkjet ink according to the present invention is EDAPLAN™ 482 available from MUNZING CHEMIE, which contains about 6 mo!% of a long aliphatic chain (meth)acrylate.
[0062] The polymeric dispersant is used in the pigmented inkjet ink in an amount of 5 to 200 wt%, preferably 10 to 100 wt% based on the weight of the pigment.
Dispersion medium
[0063] The dispersion medium used in the pigmented inkjet ink according to the present invention is a liquid. The dispersion medium may consist of water and/or organic solvent(s). Preferably the dispersion medium is water.
[0064] If the pigmented inkjet ink is a radiation curable pigmented inkjet ink, water and/or organic solvent(s) are replaced by one or more monomers and/or oligomers to obtain a liquid dispersion medium. Sometimes, it can be advantageous to add a small amount of an organic solvent to improve the dissolution of the dispersant. The content of organic solvent should be lower than 20 wt% based on the total weight of the pigmented inkjet ink.
[0065] Suitable organic solvents include alcohols, aromatic hydrocarbons, ketones, esters, aliphatic hydrocarbons, higher fatty acids, carbitols, cellosolves, higher fatty acid esters. Suitable alcohols include, methanol, ethanol, propanol and 1-butanol, 1-pentanol, 2-butanol, t.-butanol. Suitable aromatic hydrocarbons include toluene, and xylene. Suitable ketones include methyl ethyl ketone, methyl isobutyl ketone, 2,4-pentanedione and hexafluoroacetone. Also glycol, glycolethers, N-methylpyrrolidone, N,N-dimethylacetamid, N, N-dimethylformamid may be used.
Surfactant
[0066] The pigmented inkjet ink according to the present invention may contain at least one surfactant. The surfactant(s) can be anionic, cationic, non-ionic, or zwitter-ionic and are usually added in a total quantity less than 20 wt% based on the total weight of the pigmented inkjet ink and particularly in a

total less than 10 wt% based on the total weight of the pigmented inkjet ink.
[0067] Suitable surfactants for the pigmented inkjet ink according to the present invention include fatty acid salts, ester salts of a higher alcohol, alkylbenzene suiphonate salts, sulphosuccinate ester salts and phosphate ester salts of a higher alcohol (for example, sodium dodecylbenzenesulphonate and sodium dioctylsulphosuccinate), ethylene oxide adducts of a higher alcohol, ethylene oxide adducts of an alkylphenol, ethylene oxide adducts of a polyhydric alcohol fatty acid ester, and acetylene glycol and ethylene oxide adducts thereof (for example, polyoxyethylene nonylphenyl ether, and SURFYNOL™ 104, 104H, 440, 465 and TG available from AIR PRODUCTS & CHEMICALS INC.).
Biocides
[0068] Suitable biocides for the pigmented inkjet ink of the present invention include sodium dehydroacetate, 2-phenoxyethanol, sodium benzoate, sodium pyridinethion-1 -oxide, ethyl p-hydroxybenzoate and 1,2-benzisothiazolin-3-one and salts thereof.
[0069] Preferred biocides are Bronidox™ available from HENKEL and Proxel™ GXL available from ZENECA COLOURS.
[0070] A biocide is preferably added in an amount of 0.001 to 3 wt.%, more preferably 0.01 to 1.00 wt. %, each based on the total weight of the pigmented inkjet ink.
pH adjusters
[0071] The pigmented inkjet ink according to the present invention may contain at least one pH adjuster. Suitable pH adjusters include NaOH, KOH, NEt3, NH3, HCI, HNO3, HzS04and (poly)alkanolamines such as triethanolamine and 2-amino-2-methyl-1-propaniol. Preferred pH adjusters are NaOH and
H2SO4.
Humectants
[0072] Suitable humectants include triacetin, N-methyl-2-pyrroIidone, glycerol, urea, thiourea, ethylene urea, alkyl urea, alkyl thiourea, dialkyl urea and dialkyl thiourea, diols, including ethanediols, propanediols, propanediols, butanediols, pentanediols, and hexanediols; glycols, including propylene

glycol, polypropylene glycol, ethylene glycol, polyethylene glycol, diethylene glycol, tetraethylene glycol, and mixtures and derivatives thereof. Preferred humectants are glycerol and 1,2-hexanediol. The humectant is preferably added to the inkjet ink formulation in an amount of 0.1 to 20 wt% of the formulation, more preferably 0.1 to 10 wt% of the formulation, and most preferably approximately 4.0 to 6.0 wt%.
Preparation of a pigmented inkjet ink
[0073] The pigmented inkjet ink according to the present invention may be
prepared by precipitating or milling the pigment in the dispersion medium in the presence of the polymeric dispersant.
[0074] Mixing apparatuses may include a pressure kneader, an open kneader, a planetary mixer, a dissolver, and a Dalton Universal Mixer. Suitable milling and dispersion apparatuses are a ball mill, a'pearl mill, a colloid mill, a high-speed disperser, double rollers, a bead mill, a paint.conditioner, and triple rollers. The dispersions may also be prepared using ultrasonic energy.
[0075] Methods for preparation of very fine dispersions of pigments are disclosed in e.g. US 5679138 (KODAK), US 5538548 (BROTHER), US 5443628 (VIDEOJET SYSTEMS), US 4836852 (OLIVETTI) , US 5285064 (EXTREL), US 5184148 (CANON) and US 5223026 (XEROX).
Spectral Separation Factor
[0076] The spectral separation factor SSF was found to be an excellent measure to characterize a pigmented inkjet ink, as it takes into account properties related to light-absorption (e.g. wavelength of maximum absorbance Amax, shape of the absorption spectrum and absorbance-value at Amax) as well as properties related to the dispersion quality and stability.
[0077] A measurement of the absorbance at a higher wavelength gives an
indication on the shape of the absorption spectrum. The dispersion quality can be evaluated based on the phenomenon of light scattering induced by solid particles in solutions. When measured in transmission, light scattering in pigment inks may be detected as an increased absorbance at higher wavelengthsrthan the absorbance peak of the actual pigment. The

dispersion stability can be evaluated by comparing the SSF before and after a heat treatment of e.g. a week at 80°C. [0078] The spectral separation factor SSF of the ink is calculated by using the data of the recorded spectrum of an ink solution or a jetted image on a substrate and comparing the maximum absorbance to the absorbance at a reference wavelerigth. The spectral separation factor is calculated as the ratio of the maximum absorbance Amax over the absorbance Aref at a reference wavelength.
[0079] The SSF is an excellent tool to design inkjet ink sets with large colour
gamut. Often inkjet ink sets are now commercialized, wherein the different
inks are not sufficiently matched with each other. For example, the
combined absorption of all inks does not give a complete absorption over
the whole visible spectrum, e.g. "gaps" exist between the absorption
spectra of the colorants. Another problem is that one ink might be
absorbing in the range of another ink. The resulting colour gamut of these
inkjet ink sets is low or mediocre. EXAMPLES Materials [0080] All materials used in the following examples were readily available from
standard sources such as Aldrich Chemical Co. (Belgium) and Acros
(Belgium) unless otherwise specified.
The water used was deionized water.
Inkjet Magenta™ E02VP2621 is C.I. Pigment Red 122 available from
CLARIANT.
AA is acrylic acid from from Acros.
MAA is methacrylic acid from Acros.
MMA is methyl methacrylate from Acros.
BnMA is benzylmethacrylate from Acros.
BuA is n-butylacrylate from Acros.
BuMA is n-butyl methacrylate from Acros.
MPEGMA is an abbreviation for methoxypolyethyleneglycol 350

methacrylate from Cognis Performance Chemicals under the tradename of
Bisomer™ MPEG 350MA.
EHA is 2-ethyl hexyl acrylate from Acros.
STY is styrene from Acros.
LCMA is decyl methacrylate from Fluka.
WAKO™ V601 is the initiator 2-(1-Methoxycarbonyl-1-methyl-ethyl azo)-2-
methyl-propionic acid methyl ester from Wako.
IPA is isopropanol from Lamers & Pleuger.
a-MSTY is a-methylstyrene dimer from Goi Chemical Co.
C.I. Pigment Blue 15:3 is SunFast™ Blue 15:3 from Sun Chemical Corp.
C.I. Pigment Red 122 is InkJet Magenta™ E02VP2621 from Clariant.
C.I. Pigment Yellow 74 is Hansa Briljant™ Yellow 1 5GX 03.
C.I. Pigment Black 7 is Printex™ 90 from Degussa.
Joncryl™ 8078 from Johnson Polymer.
Edaplan™ 482 froru Munzing Chemie. Measurement methods [0081]
1. SSF factor [0082] The spectral separation factor SSF was calculated as the ratio of the
maximum absorbance Amax (measured at wavelength Amax) over the
absorbance Aref determined at the reference wavelength of Amax+200 nm. [0083] The absorbance was determined in transmission with a Hewlett Packard
8452A Diode Array spectrophotometer. The ink was diluted to have a
pigment concentration of 0.005%. A spectrophotometry measurement of
the UV-VIS-NIR absorption spectrum of the diluted ink was performed in
transmission-mode with a double beam-spectrophotometer using the
settings of Table 1. Quartz cells with a path length of 10 mm were used
and water was chosen as a blank.



[0084] Efficient pigmented Inkjet inks exhibiting a narrow absorption spectrum and a high maximum absorbance have a value for SSF of at least 30.
2. Dispersion stability
[0085] The dispersion stability was evaluated by comparing the SSF before and after a heat treatment of one week at 80°C. Pigmented inkjet inks exhibiting good dispersion stability have a SSF after heat treatment still larger than 30 and preferably a % reduction in SSF smaller than 20%.
3. Polymer analysis
[0086] All polymers have been characterized with gel permeation
chromatography (GPC) and nuclear magnetic resonance spectroscopy (NMR). Random or block copolymers were analyzed with NMR by dissolving them in a deuterated solvent. For 1H-NMR ± 20 mg polymer was dissolved in 0.8 mL CDCb or DMSO-d6 or acetonitrile-d3 or D20 (with or without NaOD addition). Spectra were recorded on a Varian Inova 400 MHz instrument equipped with an ID-probe. For 13C-NMR ± 200 mg polymer was dissolved in 0.8 mL CDCb or DMSO-d6 or acetonitrile-d3 or D2O (with or without NaOD addition). Spectra were recorded on a Varian Gemini2000 300 MHz equipped with a SW-probe.
[0087] Mn, Mw, Mz and polydispersity (pd) values were measured using gel
permeation chromatography. For polymers dissolvable in organic solvents PL-mixed B columns (Polymer Laboratories Ltd) were used with THF+5% acetic acid as mobile phase using polystyrene with known molecular weights as calibration standards. These polymers were dissolved in the mobile phase at a concentration of 1mg/mL. For polymers dissolvable in water PL Aquagel OH-60, OH-50, OH-40 and/or OH-30 (Polymer Laboratories Ltd) column combinations were used depending on the molecular weight region of the polymers under investigation. As mobile phase water/methanol mixtures adjusted to pH 9.2 with e.g. disodiumhydrogen phosphate were used with or without the addition of neutral salts e.g. sodium nitrate. As calibration standards polyacrylic acids with known molecular weights were used. The polymers were dissolved in

either water or water made basic with ammonium hydroxide at a concentration of 1*mg/mL Refractive index detection was used. [0088] An example is now given to illustrate the calculation of the average composition of a random (= statistical) copolymer P(MAA-c-EHA). The Mn of the copolymer was determined with GPC to be 5000. The molar percentage of each monomer type by NMR was determined to be: 45 mol% MAA and 55 mol% EHA. Calculation:
(0,45 x MMAA) + (0.55 x MEHA) = 140.09
5000 / 140.09 = total number of monomeric units in average polymer chain = 36
Average number of MAA units = 0.45 x (5000/140.09) = 16 units Average number of EHA units = 0.55 x (5000/140.09) = 20 units Thus, the average composition is P(MAAi6-c-EHA2o). 4. Particle size [0089] The particle size of pigment particles in pigmented inkjet ink was
determined by photon correlation spectroscopy at a wavelength of 633 nm with a 4mW HeNe laser on a diluted sample of the pigmented inkjet ink. The particle size analyzer used was a Malvern™ nano-S available from Goffin-Meyvis. * [0090] The sample was prepared by addition of one drop of ink to a cuvet containing 1.5 mL water and mixed until a homogenous sample was obtained. The measured particle size is the average value of 3 consecutive measurements consisting of 6 runs of 20 seconds. For good ink jet characteristics (jetting characteristics and print quality) the average particle size of the dispersed particles is preferably below 150 nm. EXAMPLE 1 [0091] This example illustrates the high quality, i.e. a large colour gamut (high
SSF), and the high stability of a pigmented magenta inkjet ink containing a long aliphatic chain (meth)acrylate. Synthesis of statistical copolymers

[0092] Polymeric dispersants POL-1 to POL-8 with different compositions were synthesized. The polymeric dispersants POL-6 to POL-8 contained a long aliphatic chain methacrylate (LCMA).

[0093] The synthesis is exemplified for the polymeric dispersant POL-6, i.e. the statistical copolymer P(AA-c-BuA-c-MMA-c-LCMA). In a 250 ml flask the following ingredients were successively added: 0.10 g WAKO™ V601 initiator, 104.79 g IPA, 14.94 g acrylic acid, 20.33 g butylacrylate, 5.74 g The characterization of the polymeric dispersant POL-6 using GPC resulted in Mn = 2387 and Mw / Mn = 2.29 and using 13C-NMR the

composition was analyzed to consist of: 44 mol% AA, 36 mol% BuA, 15 mol% MMA and 5 mol% LCMA. [0094] The polymeric dispersants POL-1 to POL-5, POL-7 and POL-8 were prepared in a similar way as described for POL-6 but by using the amounts given by Table 2. The resulting composition of the polymeric dispersant is given by Table 3 and was determined by using 13C-NMR for the polymeric dispersants POL-3, POL-4 and POL-6 to POL-8 and by using 1H-NMR for the polymeric dispersants POL-1, POL-2 and POL-5.

[0095] EDAPLAN™ 482 available from MUNZING CHEMIE was used as
polymeric dispersant POL-9. EDAPLAN™ 482 contained about 6 mol% of a long aliphatic chain methacrylate (LCMA).
Preparation of the pigmented magenta inkjet ink
[0096] Each of the pigmented magenta inkjet inks was prepared by the same two steps. In a first step, a concentrated aqueous pigment dispersion was made by mixing the pigment Inkjet Magenta™, the polymeric dispersant and water in a 60 mL flask according to the formulation of Table 4.


[0097] Each concentrated aqueous pigment dispersion was subjected to a wet dispersion treatment using a roller mill and 0.04 mm yttrium stabilized zirconium beads YTZ™ Grinding Media (available from TOSOH Corp.). The flask is filled to half its volume with the grinding beads and put onto the roller mill. The speed is set at 150 rotations per minute for three days. After milling, the dispersion is separated from the beads using a filter cloth.
[0098] The concentrated aqueous pigment dispersion served as the basis for the preparation of the pigmented inkjet ink. The inkjet inks were prepared by mixing the components according to the general formulation of Table 5 expressed in weight % based on the total weight of the ink.
i -—i—_—. 1
Evaluation
[0099] Using the above method, the comparative pigmented inkjet inks COMP-1
to COMP-6 and the inventive pigmented inkjet inks INV-1 to INV-3 were
prepared according to Table 6. The spectral separation factor (SSF) was
determined for each sample directly after preparation and was determined
again after a severe heat treatment of 1 week at 80°C. The results are
listed in Table 6.



[0100] From Table 6, it is clear that the comparative pigmented inkjet inks
COMP-1 to COMP-5, prepared with a statistical copolymer free of a long aliphatic chain methacrylate, were low quality inkjet inks. Either the pigmented inkjet ink exhibited a small SSF (less than 30) or otherwise exhibited a high SSF but having no stability after an ageing test of one week at 80°C. The inventive pigmented inkjet inks INV-1 to INV-3 combined high image quality and high dispersion stability. However, pigmented inkjet inks containing the polymeric dispersant POL-8 with a composition containing more than 10 mol% of decyl methacrylate exhibited again a poor image quality.
EXAMPLE 2
[0101] This example illustrates that the polymeric dispersants containing a long aliphatic chain (meth)acrylate not only have excellent dispersion stability but also are less sensitive to changes in the composition of the dispersion medium of the pigmented inkjet ink. These changes can occur when evaporation of volatile components in the inkjet ink is allowed, for example, in an open ink container or at the nozzle plate of the inkjet printhead. 1,2-Hexanediol was used to alter the composition in dispersion medium of the pigmented inkjet ink.
[0102] The comparative pigmented inkjet inks COMP-7 and COMP-8 and the
inventive pigmented inkjet inks INV-4 and INV-5 were prepared by dilution with 5wt% of 1,2-hexanediol of the comparative pigmented inkjet inks COMP-5 and COMP-6 respectively the inventive pigmented inkjet inks INV-1 and INV-2 prepared for Example 1.
Evaluation

[0103] The average particle size for each of the comparative pigmented inkjet inks COMP-5 to COMP-8 and the inventive pigmented inkjet inks INV-1, INV-2, INV-4 and INV-5 were determined and are given by Table 7.

[0104] From Table 7 it is clear that only the inventive pigmented inkjet inks INV-1, INV-2, INV-4 and INV-5 exhibited average particle sizes of the dispersed particles smaller than 150 nm in both dispersion media having low or high concentration of 1,2-hexanediol.
EXAMPLE 3
[0105] This example shows a pigmented inkjet ink set wherein inks comprising a polymeric dispersant according to the invention exhibit excellent dispersion quality.
Inkjet ink set
[0106] The aqueous pigmented inkjet ink set consists of 7 colour inks, i.e. cyan, yellow, magenta and black full density inks, completed with three light density inks, namely light cyan, light magenta and light black inks.
[0107] The inkjet ink compositions were prepared in the same way as in
EXAMPLE 1 and are the inkjet ink compositions in wt% based on the total weight of the ink are given in Table 8 and Table 9. The dense ink and the light ink of the same colour were obtained from diluting the same concentrated pigment dispersion with different amounts of ink carrier liquid.
[0108]


1 I I I I
[0110] The spectral separation factor (SSF) was determined for each ink of the
ink set. The results are listed in Table 10. [0111]
[0112] The dispersion quality of black inkjet inks was evaluated by particle size measurements. The average particle size measured with a Brookhaven Instruments Particle Sizer BI90plus based upon the principle of dynamic

light scattering. The inkjet ink was diluted between 2,000 and 20,000 times
0
and 5 runs at 23°0'yvere measured at a 90° angle and 635 nm wavelength
with the BI90plus set to graphics = correction function. [0113] The black pigments were finely divided in both the full density and the light
density black inkjet inks with an average particle size for the Black ink of
81 nm and for the Light Black ink of 84 nm. [0114] Images printed with the inkjet ink set were of excellent quality.







Claims
1. A pigmented inkjet ink comprising a pigment and a polymeric dispersant
wherein said polymeric dispersant is a statistical copolymer comprising
between 3 and 11 mol%- of a long aliphatic chain (meth)acrylate wherein the
long aliphatic chain contains at least 10 carbon atoms.
2. The pigmented Inkjet ink according to claim 1 wherein said long aliphatic chain
(meth)acrylate is decyl (meth)acrylate.
3. The pigmented inkjet ink according to claim 1 or 2 wherein said polymeric
dispersant further comprises at least 25 mol% n-butyl (meth)acrylate.
4. The pigmented inkjet ink according to any of the preceding claims wherein said
polymeric dispersant further comprises at least 25 mol% (meth)acrylic acid.
5. The pigmented inkjet ink according to any of the preceding claims wherein said
polymeric dispersant further comprises at least 5 mol% methyl (meth)acrylate.
6. The pigmented inkjet ink according to any of the preceding claims wherein said polymeric dispersant has a Mw smaller than 50000.
7. The pigmented inkjet ink according to any of the preceding claims wherein said pigment is a quinacridone.
8. The pigmented inkjet ink according to claim 7, wherein said quinacridone is
C.I. Pigment Red 122 , C.I. Pigment Violet 19 or a mixture thereof.
9. The pigmented inkjet ink according to any of the preceding claims wherein said
inkjet ink is a radiation curable inkjet ink.
10. An inkjet ink set comprising at least one pigmented inkjet ink according to any of the preceding claims.
11. A method for manufacturing a pigmented inkjet ink comprising the steps:
a) providing a statistic^ copolymer comprising between 3 and 11 mol% of a
long aliphatic chain (meth)acrylate wherein the long aliphatic chain contains at
least 10 carbon atoms as a polymeric dispersant;
b) providing a pigment; and
c) precipitating or milling said pigment in a dispersion medium in the presence
of said polymeric dispersant.


Documents:

4652-CHENP-2007 CORRESPONDENCE OTHERS 19-08-2013.pdf

4652-CHENP-2007 OTHERS 19-08-2013.pdf

4652-CHENP-2007 AMENDED CLAIMS 24-02-2014.pdf

4652-CHENP-2007 AMENDED PAGES OF SPECIFICATION 24-02-2014.pdf

4652-CHENP-2007 CORRESPONDENCE OTHERS 16-09-2013.pdf

4652-CHENP-2007 FORM-1 24-02-2014.pdf

4652-CHENP-2007 FORM-3 16-09-2013.pdf

4652-CHENP-2007 PCT VERIFY 24-02-2014.pdf

4652-CHENP-2007 POWER OF ATTORNEY 24-02-2014.pdf

4652-CHENP-2007 CORRESPONDENCE OTHERS 22-04-2014.pdf

4652-CHENP-2007 EXAMINATION REPORT REPLY RECEIVED 24-02-2014.pdf

4652-chenp-2007-abstract.pdf

4652-chenp-2007-claims.pdf

4652-chenp-2007-correspondnece-others.pdf

4652-chenp-2007-description(complete).pdf

4652-chenp-2007-form 1.pdf

4652-chenp-2007-form 3.pdf

4652-chenp-2007-form 5.pdf

4652-chenp-2007-pct.pdf


Patent Number 261060
Indian Patent Application Number 4652/CHENP/2007
PG Journal Number 23/2014
Publication Date 06-Jun-2014
Grant Date 31-May-2014
Date of Filing 18-Oct-2007
Name of Patentee AGFA GRAPHICS NV
Applicant Address SEPTESTRAAT 27, 2640 MORTSEL,
Inventors:
# Inventor's Name Inventor's Address
1 GROENENDAAL, LAMBERTUS, C/O AGFA GEVAERT, CORPORATE IP DEPARTMENT 3800 SEPTESTRAAT 27, 2640 MORTSEL, BELGIUM
2 DEROOVER, GEERT C/O AGFA GEVAERT, CORPORATE IP DEPARTMENT 3800 SEPTESTRAAT 27, 2640 MORTSEL, BELGIUM
PCT International Classification Number C09D 11/00
PCT International Application Number PCT/EP06/61219
PCT International Filing date 2006-03-31
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 05103161.5 2005-04-20 EUROPEAN UNION
2 60/687,044 2005-06-03 EUROPEAN UNION