Title of Invention

NOVEL COMBINATION OF R,R-GLYCOPYRROLATE, ROLIPRAM AND BUDESONIDE

Abstract The invention relates to novel combinations based on anticholinergics, β2-adrenoceptor agonists, PDE 4 Inhibitors, glucocorticoids, and leukotriene-receptor antagonists, process for their production and their use for the treatment of inflammatory diseases, preferably respiratory diseases as bronchial asthma and chronic obstructive pulmonary diseases (COPD) or rheumatic or autoimmune diseases.
Full Text Novel combination of anticholinerqics, ß2-adrenoceptor agonists, antileukotrienes
(leukotriene receptor antagonists), glucocorticoids and/or PDE 4 inhibitors for the treatment
of inflammatory diseases
The invention relates to novel combinations based on anticholinergics, ß2-adrenoceptor
agonists, PDE 4 Inhibitors, glucocorticoids, and leukotriene-receptor antagonists, process for
their production and their use for the treatment of inflammatory diseases, preferably
respiratory diseases as bronchial asthma and chronic obstructive pulmonary diseases
(COPD) or rheumatic or autoimmune diseases.
Asthma bronchiale, affecting as many as 10% of individuals in industrialized nations, is
characterized by bronchoconstriction, chronic airway inflammation, airway hyperreactivity,
and mucosal oedema. Airway remodelling and altered noncholinergic, nonadrenergic
neurotransmission may contribute to irreversible airway obstruction and reduction of
pulmonary function. Asthma is characterized by recurrent episodes of breathlessness,
wheezing, coughing, and chest tightness, termed exacerbations. The severity of
exacerbations can range from mild to life threatening. The exacerbations can be a result of
exposure to e.g. respiratory infections, dust, mould, pollen, cold air, exercise, stress, tobacco
smoke, and air pollutants. Bronchial asthma has emerged as a major public health problem
worldwide over the past 20 years. Although data indicate that current asthma therapies led to
limited decreases in death rates, it continues to be a significant health care problem. It still is
one of the leading causes of preventable hospitalization worldwide and accounts for several
million lost workdays. Along with the increase in asthma prevalence, the costs associated
with this disease have also risen dramatically.
Chronic obstructive pulmonary disease (COPD) is very common world-wide. It is primarily
associated with past and present cigarette smoking but the fact that the society gets older
also plays an even continuously increasing role. The prevalence of COPD varies between
3% and 10% with a steadily increasing trend. Although COPD is a leading cause of illness
and death, its recognition as a public health problem has been slow to evolve despite the
rising mortality rate for COPD and the decline in death rates for most of the cardiovascular
diseases (Hurd Chest 2000; 117(2 Suppl):1S-4S). Additionally, COPD imparts substantial
economic burden on individuals and society. COPD is a disease characterised by chronic
inflammation and irreversible airflow obstruction with a decline in the lung function parameter
FEV1 that is more rapid than normal. The disease has two major aspects of pathology,
namely chronic bronchitis, characterised by mucus hypersecretion from the conducting
airways, and emphysema, characterised by destructive changes in the alveoli.
Asthma and COPD are serious world health problems characterised by a chronic
inflammatory disorder of the airways. Airflow obstruction and airway inflammation are
features of asthma as well as COPD. Although the airway inflammation in asthma and
COPD, respectively, involve different cell types, both diseases are of chronic inflammatory
nature associated with cellular infiltration and activation. While bronchial asthma is
predominantly characterized by eosinophils and CD4+ lymphocytes, neutrophil granulocytes,

CD8+ lymphocytes and macrophages appear to play a major role in the pathogenesis of
COPD (Saetta et al. Am J Respir Crit Care Med 1999; 160:711-7, Shapiro Am J Respir Crit
Care Med 1999; 160:S29-S32).
There is now strong evidence that airway inflammation is a predominant underlying problem
in patients with asthma and COPD.
The pathophysiology of asthma involves an interactive network of molecular and cellular
interactions, although the contribution of each individual factor is probably different from
patient to patient depending on the setting and stimulus. Major participants in the
development of an asthma phenotype include the triggering stimuli such as the allergens
themselves, cells such as T cells, epithelial cells and mast cells that produce a variety of
cytokines including tumor necrosis factor-alpha (TNFa), interleukin(IL)-5, granuloyte-
macrophage colony-stimulating-factor (GM-CSF), IL-3, IL-4 and IL-13 and chemokines such
as eotaxin, adhesion molecules, etc..
Unfortunately, much less is known about the pathogenesis of COPD than that of asthma.
Recent studies have greatly expanded the understanding of pathogenetic mechanisms
underlying COPD. Thus, there is consent that COPD is also an inflammatory disease. From
the present pathogenetical point of view, COPD is defined as a progressive and not fully
reversible airway obstruction with predominantly neutrophilic airway inflammation. In COPD,
the predominant inflammatory cell types are CD8+ T lymphocytes, macrophages, and
neutrophils. Neutrophils and neutrophilic inflammatory markers including IL-8, TNFa and
LTB4 are increased in the airways of COPD patients (Yamamoto et al. Chest 1997; 112:505-
10, Keatings et al. Am J Respir Crit Care Med 1996; 153:530-4).
The current management of asthma and COPD is focussed on the improvement of the lung
function of patients. In both diseases but especially in COPD, the first step is smoking
cessation. There is evidence that smoking reduction or cessation may result in improvement
of some respiratory parameters.
Bronchoconstriction occurs due to bronchial smooth muscle spasm and airway inflammation
with oedema. ß2-adrenoceptor agonists provide a bronchodilator effect to the patients,
resulting in relief from the symptoms of breathlessness. ß2-adrenoceptor agonists can be
short-acting for immediate relief, or long-acting for long-term prevention of respiratory
symptoms. Short-acting ß2-adrenoceptor agonists currently available include salbutamol,
terbutaline, reproterol, pirbuterol, fenoterol, bitolterol. To LABAs belong compounds such as
salmeterol, formoterol, indacaterol.
Whilst it is also known that ß2-adrenoceptor agonists provide symptomatic relief of patients
suffering from asthma or COPD, another component of these airway disorders, i.e.
inflammation often requires separate treatment. Typically this may involve treatment with a
glucocorticoid, a LTRA or a PDE4 inhibitor, respectively. Currently available glucocorticoids
include beclomethasone, triamcinolone, budesonide, fluticasone, mometasone, ciclesonide,

loteprednol, etiprednol, flunisolide. LTRAs include pranlukast, montelukast, zafirlukast. PDE4
inhibitors are now under clinical development. Some of them are shortly before approval, e.g.
roflumilast, AWD-12 281.
Bronchoconstriction and inflammation are also associated with increased bronchial mucus
production and possible bronchial plugging, which can be treated with anticholinergics, such
as ipratropium, oxitropium, tiotropium, glycopyrrolate and in particular the RR enantiomer of
glycopyrrolate.
Bronchodilators (ß2-adrenoceptor agonists and anticholinergics) are now the mainstay of
symptomatic therapy. Short- and long-acting ß2-adrenoceptor agonists such as salbutamol,
fenoterol, salmeterol, formoterol are established therapeutics in the symptomatic COPD
management. Of the short-acting antimuscarinic drugs, ipratropium is widely used although
antimuscarinic drugs are rather less efficacious in the relief of an asthma attack than the ß2-
adrenoceptor agonists (Rodrigo and Rodrigo, Chest 2003; 123:1908-15). Recently,
tiotropium, a long-acting anticholinergic with a certain preference to M3-muscarinic receptors
has now been introduced world-wide (Hansel and Barnes, Drugs Today (Barc) 2002; 38:585-
600, Koumis and Samuel, Clin Ther 2005; 27:377-92). Relatively sufficient anti-inflammatory
therapy with glucocorticoids are available for asthma. However, they are less effective in
COPD. Additionally, tiotropium reduces COPD exacerbations and related hospitalisations
compared to placebo and ipratropium (Barr et al. Cochrane Database Syst Rev 2005;
(2):CD002876). Further long-acting anticholinergics are now under development. They are
more convenient to use for patients with advanced disease who require maintenance therapy
with bronchodilators, and have been shown to provide superior efficacy compared with short-
acting antimuscarinic agents.
The basic tenet of asthma therapy has centred on optimal management of the underlying
inflammatory process. The most recent expert recommendations strongly support the use of
inhaled glucocorticoids. Bronchodilators are used for transient relief of symptoms in these
patients and for additional symptomatic control in patients who have persistent symptoms
despite inhaled glucocorticoid therapy (http://www.ginasthma.com/). In well-defined COPD,
therapeutic alternatives vary. Because there is no currently accepted pharmacologic therapy
that alters the natural history of the disease, therapeutic emphasis is placed on symptom
relief. Unlike in asthma therapy, bronchodilators play a prominent role in the initial therapy for
symptomatic COPD patients. In this regard, long-acting &2-adrenoceptor agonists and the
new long-acting anticholinergic agent (tiotropium) offer distinct advantages. In contrast,
inhaled glucocorticoids appear to have a more limited role in COPD. On the other hand,
inhaled glucocorticoids have been shown to have beneficial effects on health status and to
decrease exacerbation rates in COPD patients.
Autoimmune diseases (e.g. rheumatoid arthritis [RA], systemic lupus erythematosus [SLE],
multiple sclerosis [MS], glomerulonephritis, inflammatory bowel diseases [Morbus Cohn,
colitis ulcerosa], psoriasis) belong to the major health problems worldwide. Autoimmune
diseases are among the ten leading causes of death. Most of autoimmune diseases require

lifelong treatment (Jacobson DL, Gange SJ, Rose NR, Graham NM. Clin Immunol
Immunopathol 1997;84:223-43).
Autoimmune diseases are disorders in which the immune system produces antibodies
against the body's own cells, destroying healthy tissue. These misdirected immune
responses are referred to as autoimmunity, which can be demonstrated by the presence of
autoantibodies or T lymphocytes reactive with host antigens. Human autoimmune diseases
can be divided into two categories: organ-specific and systemic. In organ-specific
autoimmune disease (e.g. Graves' disease, Hashimoto's thyroiditis, type 1 diabetes mellitus),
autoreactivity is directed to antigens unique to a single organ. In systemic autoimmune
disease (e.g. RA, MS, SLE), autoreactivity is largely directed toward a broad range of
antigens and involves a number of tissues.
Systemic lupus erythematosus (SLE) is a chronic, usually life-long, potentially fatal
autoimmune disease. SLE is notable for unpredictable exacerbations and remissions and a
predilection for clinical involvement of the joints, skin, kidney, brain, lung, heart, and
gastrointestinal tract.
Rheumatoid arthritis (RA), juvenile idiopathic arthritis, the seronegative spondylo-
arthropathies including psoriatic arthritis, and systemic lupus erythematosus are all examples
of rheumatic diseases in which inflammation is associated with skeletal pathology. RA is the
most common inflammatory joint disease and a major cause of functional disability,
morbidity, and premature mortality. Inflammation of the synovial membrane surrounding a
joint leads to swollen, tender, and stiff joints. This may be accompanied by fatigue, weight
loss, anxiety, and depression.
Rheumatoid arthritis (RA) usually requires lifelong treatment. Nonsteroidal anti-inflammatory
drugs (NSAIDs) have been the cornerstone of therapy for RA. NSAIDs reduce pain and
inflammation and allow for improvements in mobility and function. Aspirin and other NSAIDs,
such as ibuprofen, diclofenac, fenoprofen, indomethacin, naproxen are strongly anti-
flammatoric and analgetic. Their strong gastrointestinal side effects often limit their use.
Cyclooxygenase-2 (COX-2) inhibitors were initially believed to cause fewer stomach
problems than classical NSAIDs. However, the use of COX-2 inhibitors is considerably
limited due their cardiovascular undesired effects. Corticosteroids, used alone or in
conjunction with other medications, may reduce the symptomatology associated with RA. In
fact, corticosteroids reduce inflammation in RA. However, because of potential long-term
side effects (e.g. gastrointestinal ulceration, osteoporosis, cataract development, glaucoma,
etc.), corticosteroid use is usually limited to short courses and low doses where possible.
Drugs like anticholinergics are frequently used in combination with GCs to reduce ulcer
development induced by GCs.
The current standard of care is aggressive therapy with anti-inflammatory drugs and disease-
modifying anti-rheumatic drugs (DMARDs).
DMARDs most frequently are used in various combination therapy regimens.
Tumor necrosis factor (TNF) inhibitors are a relatively new class of medications used to treat
autoimmune disease. They include etanercept (soluble TNF receptor), infliximab (monoclonal

antibody against TNF), adalimumab (human TNF antiobody) and anakinra (recombinant
human interleukin-1 receptor antagonist).
The term inflammatory bowel disease (IBD) describes a group of chronic inflammatory
disorders of unknown causes involving the gastrointestinal tract (GIT). Patients with IBD can
be divided into two major groups, those with ulcerative colitis (UC) and those with Crohn's
disease (CD). In patients with UC, there is an inflammatory reaction primarily involving the
colonic mucosa. The inflammation is typically uniform and continuous with no intervening
areas of normal mucosa. CD differs from UC in that the inflammation extends through all
layers of the intestinal wall and involves mesentery as well as lymph nodes. CD can occur
anywhere along the intestinal tract.
Current therapies comprise aminosalicylates, drugs that contain 5-aminosalicyclic acid (5-
ASA), which help to control inflammation. Sulfasalazine is mainly useful in colonic disease
because the active compound, 5-aminosalicylic acid (5-ASA), is released in the large bowel
by bacterial degradation of the parent compound. Products such as mesalamine that release
5-ASA in the distal small bowel secondary to pH changes are more useful in patients with
small intestinal Crohn disease. Other 5-ASA agents, such as olsalazine, mesalamine, and
balsalazide, have a different carrier, fewer side effects, and may be used by people who
cannot take sulfasalazine. Immunomodulators such as azathioprine and 6-mercapto-purine
reduce inflammation by affecting the immune system.
Since TNF is a key inflammatory cytokine and mediator of intestinal inflammation,
compounds directed against this cytokine such as infliximab are promising in IBD. In certain
cases, immunosuppressive agents: cyclosporine A, tacrolimus, mycophenolate mofetil may
be effective in treating IBD.
GCs such as prednisone, methylprednisone, and hydrocortisone also reduce inflammation.
They can be given orally, intravenously, through an enema, or in a suppository, depending
on the location of the inflammation. These drugs can cause side effects such as
gastrointestinal ulceration, weight gain, acne, facial hair, hypertension, diabetes, mood
swings, bone mass loss, and an increased risk of infection. For this reason, they are not
recommended for long-term use, although they are considered very affective when
prescribed for short-term use.
In patients who relapse after withdrawal of steroids, other treatment options are required.
Steroids are not indicated for maintenance therapy because of serious complications such as
aseptic necrosis of the hip, osteoporosis, cataract, diabetes, and hypertension.
Multiple sclerosis (MS) is a chronic, potentially debilitating disease that affects the central
nervous system characterized by the destruction of the myelin sheath surrounding neurons,
resulting in the formation of "plaques". MS is a progressive and usually fluctuating disease
with exacerbations and remissions over many decades. MS affects more than 1 million
people around the world.
Current therapies target the immune dysfunction in MS and resultant neural tissue damage
with the goal of preventing or at least reducing the long-term risk of clinically significant

disability. These therapies are currently available: interferon(IFN)-ß and glatiramer acetate
(Copaxone®) (Linker RA, Stadelmann C, Diem R, Bahr M, Bruck W, Gold R. Fortschr Neurol
Psychiatr 2005;73:715-27; Strueby L, Nair B, Kirk A, Taylor-Gjevre RM. J Rheumatol
2005,34:485-8). All of these medications appear to modulate the immune response in MS,
although glatiramer acetate and IFN medications probably work through different
mechanisms. Each of these treatments (interferons and glatiramer acetate) offer different
advantages and disadvantages. Great disadvantages are route of administration by injection
and the high costs.
The key to successful treatment of MS is to slow the inflammatory process early in the
disease. In order to prevent progression of disability, mitoxantrone, cyclophosphamide,
methotrexate, azathioprine and cyclosporine are applied. GCs (e.g. methylprednisolone) are
also frequently used. There is evidence that GCs slow down the brain atrophy progression in
MS patients (Zivadinov R. J Neurol Sci 2005;233:73-81.
Psoriasis is a chronic, recurrent autoimmune disease of variable severity that is considered
to be a genetically programmed disease of dysregulated inflammation, which is driven and
maintained by multiple components of the immune system.
Although topical drug preparations are usually sufficient to control psoriasis symptoms in
patients with relatively mild disease, patients with moderate to severe disease usually require
phototherapy or systemic drugs. The treatment of psoriasis includes ultraviolet,
photochemotherapy, CsA, methotrexate and oral retinoid therapy (Naldi L, Griffiths CE. Br J
Dermatol 2005; 152:597-615). There is also considerable experience supporting the efficacy
of systemic therapy for psoriasis (Bissonnette R. Skin Therapy Lett 2006; 11:1-4). Many
different treatment options are available to control the symptoms of psoriasis. Mild to
moderate cases are often treated first with topical treatments, such as coal tar, calcipotriol,
salicylic acid, GCs. However, as the disease becomes more severe, treatment options such
as phototherapy, systemic medication, and new biologies are employed. Some common
systemic medications include: methotrexate, cyclosporine A, retinoids, vitamin A derivatives.
Biologic medications, such as T-cell modulators and TNF inhibitors (e.g. infliximab, alefacept,
efalizumab etanercept), offer an alternative to other advanced therapies like systemic
medications, and phototherapy (Menter A, Cather JC, Baker D, Farber HF, Lebwohl M, Darif
M. J Am Acad Dermatol 2006;54:61-3; Papp KA, Miller B, Gordon KB, Caro I, Kwon P,
Compton PG, Leonardi CL; J Am Acad Dermatol 2006,54(4 Suppl 1):S164-70).
Besides the mentioned drug classes, there are several novel drugs with interesting modes of
actions are now in clinical development for the treatment of autoimmune diseases.
Current therapies for autoimmune diseases are not cures, but are aimed at reducing
symptoms to provide the patient with an acceptable quality of life. In organ-specific
autoimmune disorders, symptoms can be corrected by metabolic control with biologically
active compounds. For example, hypothroidism can be controlled by the administration of
thryroxine or diabetes mellitus can be treated with injections of insulin. Drugs used in most
cases of autoimmune disease, especially systemic autoimmune disease, provide general
nonspecific suppression of the immune system. For the most part these drugs do not

distinguish between the pathological immune response and the protective immune response.
Immunosuppressive drugs (e.g., GCs, azathioprine, cyclophoshamide, CsA) are often given
to suppress the proliferation of autoreactive lymphocytes. Anti-inflammatory drugs also are
prescribed to patients with RA. Unfortunately these drugs, besides not working in many
patients, have very serious side-effects. The general suppression of the immune response
puts the patient at greater risk to infection and cancer. Additionally, NSAIDs are effective in
the pain management, their use may be associated with serious systemic adverse effects,
particularly gastrointestinal disorders. Therefore, current treatments for autoimmune
diseases are not satisfactory. Given the high prevalence of these diseases, improved, more
effective and more convenient therapeutic interventions are highly desirable. Clearly there is
a significant need for agents capable of treating autoimmune diseases. It would be desirable
if such therapy could be administered in a cost-effective and timely fashion, with a minimum
of adverse side effects.
In general, treatment modalities in the therapy of autoimmune diseases include symptomatic
treatments using anti-inflammatory drugs, immunosuppressant medications,
immunomodulating therapy and others. No single regimen is appropriate. Therefore,
combinations of different medications are preferred.
Various approaches have been taken to suppress this inappropriate autoimmune
inflammatory response. The efficacy of different classes of drugs, e.g. GCs, PDE4 inhibitors
and others have shown only limited efficacy, perhaps because blocking only one of many
pathways does not provide a sufficiently large decrease in overall inflammatory processes.
The other approach is the use of a combination of drugs which target several pathogenetical
processes.
Glycopyrrolate belongs to the so-called anticholinergic drugs and antagonizes the
neurotransmitter acetylcholine at its receptor site. This effect leads to a considerable
bronchodilatation and a reduced mucus secretion. Long-acting ß2-adrenoceptor agonists
(LABA) (e.g. salmeterol, formoterol, indacaterol) are the basis therapy of asthma and
frequently in COPD. They stimulate the adenylate cyclase and increase the intracellular
cAMP content resulting in bronchodilation. Antagonists of BLT- and CysLT-receptors
reduce the inflammatory processes in the airways. Thus, these effects of LT-receptor-
antagonists result in an improved mucosal and bronchial function in patients suffering from
bronchial asthma or COPD. To date, one of the most effective medications for airway
inflammation is inhaled glucocorticoids (GCs). These compounds practically inhibit all
important inflammatory processes involved in asthma and partly in COPD, at least, to a
considerable extent. Inhibitors of the isoenzyme PDE4 reduce the inflammatory processes
both in asthma and COPD.
A cornerstone in the management of asthma and COPD is the control of airway
inflammation. All drug classes mentioned above are able to reduce airway inflammation to
various extents. Therefore, our intention was to combine these drug classes with the aim to
improve the bronchodilatory effect and to enhance the anti-inflammatory activity.

The pharmacodynamic properties of all these drug classes, anticholinergics (especially R,R-
glycopyrrolate), ß2-adrenoceptor agonists, antagonists of BLT- and CysLT-receptors, PDE4
inhibitors, and/or inhaled GCs complement one another and result in more efficacious
treatment of the mentioned diseases, which is surprisingly over-additive even compared to
the dual combinations. Furthermore, since the doses of monocompounds are in the
combination lower, the incidence of adverse effects can be reduced by using the
combination. Additionally, the patients' compliance is also increased.
Both short- and long-acting ß2-adrenoceptor agonists play a pivotal role in the acute and
chronic management of asthma. They ß2-adrenoceptor agonists are an integral part of the
treatment in COPD and asthma, and combination of two or more bronchodilator agents
generally is needed to control symptoms. Patients with either condition can benefit from
bronchodilators. Their major action on the airways is the relaxation of smooth muscle cells. In
addition to their bronchodilator properties, ß2-adrenoceptor agonists may have other effects
through their activation of ß2-adrenoceptors expressed on resident airway cells such as
epithelial cells and mast cells and circulating inflammatory cells such as eosinophils and
neutrophils. These non-bronchodilator activities of ß2-adrenoceptor agonists may enhance
their efficacy in the management of asthma. In pre-clinical studies, the anti-inflammatory
effects of ß2-adrenoceptor agonists are demonstrated through their stabilizing effect on mast
cells and their inhibition of mediator release from eosinophils, macrophages T-lymphocytes,
and neutrophils. In addition, ß2-adrenoceptor agonists may inhibit plasma exudation in the
airway, and mediator release from epithelial cells.
The regular use of short-acting ß2-adrenoceptor agonists alone has been shown to have
deleterious effects on asthma control. Therefore, short-acting agents should only be used
when needed for rescue of acute symptoms. Monotherapy with long-acting ß2-adrenoceptor
agonists (LABAs) has also been associated with poor asthma control. However, when given
concomitantly with inhaled glucocorticoids, ß2-adrenoceptor agonists may potentiate the anti-
inflammatory effect of glucocorticoid, improve asthma control and prevent exacerbations
(Hanania and Moore, Curr Drug Targets Inflamm Allergy 2004; 3:271-7). Basically, the
combination of LABAs and inhaled GCs is useful in both conditions.
Antimuscarinic treatment of asthma and COPD has a relatively long history leading to its
present day use as an effective bronchodilating drug for obstructive pulmonary diseases.
Anticholinergic agents are exemplified by the belladonna alkaloids atropine and scopolamine,
which inhibit the muscarinic action of acetylcholine on structure innervated by postganglionic
cholinergic nerves. These agents typically inhibit bronchoconstriction by relaxing of smooth
muscles and cause considerable bronchodilation. Anticholinergic agents also are known to
exert central effects which include pupil dilatation and stimulation and/or depression of the
central nervous system. Novel anticholinergic Pharmaceuticals have been developed which
have a limited capacity to pass across the blood-brain barrier, and therefore have a limited
capacity to produce central effects. Examples of these agents are the quaternary ammonium
compounds methscopolamine, ipratropium, oxitropium, tiotropium and the enantiomers of

glycopyrrolate. Some experts recommend ipratropium as the first choice. It has a very slow
onset and can be used as maintenance therapy for people with emphysema and chronic
bronchitis with few severe side effects. However, a patient should not take more than 12
inhalations per day. The recently introduced tiotropium has a long duration of action and
superior to ipratropium.
Anticholinergic medications have been accepted as an important treatment modality in
COPD and chronic asthma. The anticholinergic bronchodilator, the muscarinic receptor
antagonist, used in this invention will be a long-acting compound. Any compound of this type
can be used in this combination therapy approach. By long-lasting it is meant that the drug
will have an effect on the bronchi that lasts around 12 hours or more, up to 24 hours. The
recently approved long acting inhaled anticholinergic drug, tiotropium, produces sustained
bronchodilation throughout the 24 hour day (Calverley et al. Thorax 2003a; 58:855-60). In
fact, bronchodilators improve symptoms and quality of life, in COPD patients, but, with the
exception of tiotropium, they do not significantly influence the natural course of the disease
(Caramori and Adcock, Pulm Pharmacol Ther 2003; 16:247-77).
Glycopyrrolate, a quaternary ammonium anticholinergic compound, consists of four
stereoisomers. It is poorly absorbed from mucus membranes, thus reducing anticholinergic
side effects (Ali-Melkkila et al. Acta Anaesthesiol Scand 1993; 37:633-42). Glycopyrrolate
possesses no selectivity in its binding to the M1 M3 receptors. Kinetics studies, however,
showed that glycopyrrolate dissociates slowly from M3 muscarinic receptors (Haddad et al. Br
J Pharmacol 1999; 127:413-20). Similarly to tiotropium, this behavior explains
glycopyrrolate's relative receptor selectivity and its long duration of action. Indeed, there is
evidence that racemic glycopyrrolate produces considerable and long-lasting bronchodilatbry
effects both in asthmatic and in COPD patients (Walker et al. Chest 1987; 91:49-51,
Schroeckenstein et al. J Allergy Clin Immunol 1988; 82:115-9, Gilman et al. Chest 1990;
98:1095-8, Cydulka and Emerman, Ann Emerg Med 1995; 25:470-3, Hansel et al. Chest
2005; 128:1974-9). As asthma and COPD are characterized by increased mucus secretions,
the antisecretory effect of anticholinergics such glycopyrrolate is an additional advantage for
their use in the therapy of these diseases.
A cornerstone in the management of asthma and COPD is the control of airway
inflammation.
Inhaled glucocorticoids (GCs) are the most effective long-term therapy in controlling
chronic asthma symptoms (Barnes Ernst Schering Res Found Workshop. 2002; 40:1-23).
Randomized, controlled clinical studies confirm the efficacy of early intervention with inhaled
glucocorticoids in patients with mild persistent asthma (Sheffer et al. Ann Allergy Asthma
Immunol 2005; 94:48-54). Inhaled glucocorticoids suppress eosinophilic inflammation in the
airways and are a corner-stone in asthma treatment (van Rensen et al. Thorax 1999;54:403-
8, Barnes Ernst Schering Res Found Workshop. 2002; 40:1-23). However, patients show a
variable response to inhaled glucocorticoids and some exhibit glucocorticoid resistance.

In COPD the airway inflammation is quite different from asthma, so inflammation and anti-
inflammatory treatment in COPD is relatively a new focus of interest. In contrast to asthma,
the practice of using inhaled glucocorticoids in COPD is common but controversial (Crapo et
al. Eur Respir J Suppl 2003; 41:19s-28s, O'Riordan, J Aerosol Med 2003; 16:1-8). It is likely
that inhaled GCs have little effect on the progression of COPD (Vonk et al. Thorax 2003;
58,322-327). glucocorticoids are probably scarcely effective in COPD patients without
overlapping concomitant asthma. The use of inhaled glucocorticoids in patients with
moderately severe disease (FEV1 measured by an increase in FE V1, reduced symptoms and fewer exacerbations (O'Riordan, J
Aerosol Med 2003; 16:1-8). However, there is also clinical evidence that the neutrophil
inflammation may be decreased by inhaled glucocorticoids in clinically stable COPD patients
(Yildiz et al. Respiration 2000; 67:71-6). Consequently, in a recently published guideline on
COPD treatment, adding on inhaled glucocorticoid is recommended in moderate to severe
disease (Pauwels et al. Am J Respir Crit Care Med 2001; 163:1256-76). glucocorticoids
should mainly be used to reduce exacerbations and improve the health status of these
patients (Nishimura et al. Chest 1999; 115:31-7, Selroos, Curr Med Res Opin 2004; 20:1579-
93). But it has to be admitted that current pharmacological treatment of COPD is
unsatisfactory, as it does not significantly influence the severity of the disease or its natural
course. In general, inhaled glucocorticoids have relatively little impact on the inflammatory
processes that characterize COPD (Adcock and Chung, Curr Opin Investig Drugs 2002;
3:58-60) and are not suitable for monotherapy in COPD but can be helpfully combined with
an inhaled bronchodilator (Calverley et al. Eur Respir J 2003b; 22:912-9, Calverley Semin
Respir Crit Care Med 2005; 26:235-45). They have, however, been shown to decrease the
frequency of exacerbations and improve quality of life in patients with COPD (Calverley
Semin Respir Crit Care Med 2005; 26:235-45).
The administration of inhaled glucocorticoids or anticholinergics (e.g. ipratropium) reduced
the risk of hospitalization of COPD patients (Rascati et al. Clin Ther 2005; 27:346-54). The
combination of long-acting muscarinic antagonists and inhaled glucocorticoids is more
efficacious in asthma and COPD than either alone. Indeed, there is evidence that
corticosteroid/muscarinic antagonist combination therapy has complementary, additive, or
synergistic inhibitory effects on proinflammatory signalling pathways, inflammatory mediator
release, and recruitment and survival of inflammatory cells. In the patient with an airway
inflammatory disease such as asthma or COPD, this is reflected in enhanced anti-
inflammatory activity with combination therapy beyond that which can be achieved by either
drug alone, or the potential for antimuscarinic drugs to provide a steroid-sparing effect.
Leukotriene receptor antagonists (LTRA) are a relatively new anti-inflammatory class of
anti-asthma drugs. Leukotrienes (LTs) and their receptors play an important role in the
pathogenesis of asthma, and they are also involved in COPD. More recently, the potential
involvement of the monocyte-macrophage lineage in the etiology of COPD has received
growing attention as a target for leukotriene inhibition (Kilfeather Chest 2002; 121(5
Suppl): 197S-200S). The main effects mediated via LTs are bronchoconstriction, airway
inflammation,.edema and mucus hypersecretion. Arachidonic acid metabolism via 5-

lipoxygenase (5-LOX) results in a group of biologically active lipids known as LTs. LTB4 is a
potent activator of leukocyte chemotaxis. Cysteinyl-LTs (LTC4, LTD4, LTE4) account for the
spasmogenic activity previously described as slow-reacting substance of anaphylaxis (SRS-
A). These inflammatory mediators are produced by a number of cell types including mast
cells, neutrophils, eosinophils, basophils, macrophages and monocytes. They exert their
biological effects by binding and activating specific receptors (LTB4 at the BLT receptor,
cysteinyl-LTs at the cysLT1-receptor). This occurs in a series of events that lead to
contraction of the human airway smooth muscle, chemotaxis and increased vascular
permeability, mucus hypersecretion, decrease of ciliary motility. These effects have led to
their important role in the diseases of asthma, allergic rhinitis and COPD. CysLT-receptor
antagonists (zafirlukast, montelukast and pranlukast) represent an effective and well-
tolerated treatment for asthma in adults and children, particularly for exercise- and aspirin-
induced asthma. According to current guidelines for asthma management, anti-inflammatory
therapy with inhaled glucocorticoids is the cornerstone in the treatment of persistent asthma.
To further optimize asthma control, add-on therapy with LABA or LTRA should be combined
with low to high doses of inhaled glucocorticoids. While the first combination focuses on
optimal control of symptoms and lung function, the second provides a more complete
suppression of the airway inflammation. They can also have clinical applications in the
COPD. Recently, it has been suggested that zafirlukast, a cysLT-receptor antagonist may
increase the tidal volume and alveolar ventilation in patients suffering from COPD (Bu et al.
Chin Med J 2003; 116:459-461).
Even if there are no compelling clinical data for an additional contribution by LTB4 in human
asthma, in other respiratory conditions such as COPD, which are characterised by
pronounced neutrophil infiltration, it may be that the chemotactic properties of LTB4 are more
important (Daniel and O'Byrne, Am Rev Respir Dis 1991; 143:S3-5). In patients suffering
from COPD, the enhanced oxidative stress is paralleled by the increased ability of neutrophil
to synthesize the chemotactic factor LTB4, and may ultimately contribute to the
infiltration/activation of neutrophils into the airways of COPD patients (Santus et al. Am J
Respir Crit Care Med 2005; 171:838-43). Additionally, there is a selective increase in
exhaled LTB4 in patients with COPD (Montuschi et al. Thorax 2003; 58:585-8).
Cyclic adenosine monophosphate (adenosine 3',5'-cyclic monophosphate, [cAMP]) is known
as a second messenger that mediates cellular responses to several compounds e.g.
hormones, mediators, etc. Phosphodiesterases (PDEs) are a family of enzymes that
metabolize 3',5' cyclic nucleotides to 5' nucleoside monophosphates, thereby terminating
cAMP and cGMP second messenger activity. A particular PDE, PDE4, which is a high
affinity, cAMP specific, type 4 PDE, has generated interest as potential targets for the
development of novel anti-inflammatory compounds. In fact, PDE4 regulate intracellular
levels of cAMP and are the predominant PDE expressed in inflammatory cells. Inhibitors of
PDE4 act by increasing intracellular concentrations of cyclic AMP, which has a broad range
of anti-inflammatory effects on various key effector cells involved in asthma and COPD
(Barnette et al. J Pharmacol Exp Ther 1998; 284:420-6, Hatzelmann and Schudt, J
Pharmacol Exp Ther 2001; 297:267-79, Marx et al. Pulm Pharmacol Ther 2002; 15:7-15,

Kuss et al. J Pharmacol Exp Ther 2003; 307:373-85). They show a broad spectrum of activity
in animal models of asthma COPD (Howell et al. 1995, Bundschuh et al. 2002, Billah et al.
2002, Kuss et al. J Pharmacol Exp Ther 2003; 307:373-85). In addition, activation of the
cAMP signalling pathway in airway smooth muscle cells promotes relaxation and blocks
smooth muscle cell replication (Tomlinson et al. Biochem Pharmacol 1995; 49: 1809-19),
thus preventing the airway remodelling observed in the chronic stage of the diseases.
Studies on cilomilast, roflumilast and other PDE4 inhibitors in asthma and COPD have
shown a broad range of anti-inflammatory activity, and the available evidence on clinical
outcomes (Compton et al. Lancet 2001; 358:265-7, Dyke and Montana, Expert Opin Investig
Drugs 2002; 11:1-13, Grootendorst et al. Pulm Pharmacol Ther 2003; 16:341-7, Spina Curr
Drug Targets Inflamm Allergy 2004; 3:231-6, Lipworth Lancet 2005; 365:167-75, Baumer et
al. Exp Rev 2005; 1:134-45, Rabe et al. Lancet 2005; 366:563-71). Efforts to minimize or
eliminate the above-mentioned adverse events sometimes associated with PDE4 inhibitors
have included creating inhibitors which do not penetrate the central nervous system, and
administering PDE4 inhibitors by inhalation rather than orally. It is likely that these class-
associated side effects, mainly nausea and emesis, could be at least partially overcome by
the so-called "second-generation" PDE4 inhibitors that can be applied by inhalation.
The PDE4 inhibitor useful in this invention may be any compound that is known to inhibit the
PDE4 enzyme and which is discovered to act as highly specific PDE4 inhibitors and which is
preferably used per inhalationem. For example, preclinical and clinical studies with the highly
potent and selective PDE4 inhibitor AWD 12-281 showed that this compound has a good
preclinical and clinical efficacy. In Brown Norway rats, AWD 12-281 suppressed allergen-
induced airway eosinophilia with an ID50 of 7 ug/kg when administered directly into the lungs.
The ID50-value of the known glucocorticoid beclomethasone was comparable (0.1 ug/kg). Due
to its unique metabolic profile, the compound has a suitable safety profile after topical (nasal
or inhaled) administration. When AWD 12-281 given to dogs by inhalation, no emesis could
be induced up to the highest feasible dose (15 mg/kg) indicating that AWD 12-281 is useful
for the inhaled treatment of asthma and COPD (Kuss et al. J Pharmacol Exp Ther 2003;
307:373-85).
Inhibition of PDE4 results in an elevation of cAMP in the inflammatory cells, which in turn
downregulates the inflammatory response. For example, rolipram, a PDE4 inhibitor, reduced
the clinical and histological severity of collagen-induced arthritis in rats (Nyman U, Mussener
A, Larsson E, Lorentzen J, Klareskog L: Amelioration of collagen II-induced arthritis in rats by
the type IV phosphodiesterase inhibitor rolipram. ). It has also been demonstrated that
selective PDE4 inhibition suppresses the clinical manifestations of EAE (Sommer N, Martin
R, McFarland HF, Quigley L, Cannella B, Raine CS, Scott DE, Loschmann PA, Racke MK.
Therapeutic potential of phosphodiesterase type 4 inhibition in chronic autoimmune
demyelinating disease. J Neuroimmunol 1997;79:54-61). PDE4 inhibitors might also have
therapeutic benefit both in IBD (Banner KH, Trevethick MA. PDE4 inhibition: a novel
approach for the treatment of inflammatory bowel disease. Trends Pharmacol Sci
2004;25:430-6), and in psoriasis (Houslay MD, Schafer P, Zhang KY. Keynote review:
phosphodiesterase-4 as a therapeutic target. Drug Discov Today 2005; 10:1503-19).

One of the possible side effects induced by PDE4 inhibitors may be a certain sedation,
decrease in locomotor activity. In animal experiments, it has convincingly been demonstrated
that rolipram, a specific PDE4 inhibitor induces sedative effects such as hypoactivity,
decreased locomotion that were completely reversed by adding scopolamine, an
anticholinergic compound (Silvestre et al. Pharmacol Biochem Behav 1999; 64:1-5).
Consequently, an antimuscarinic agents may compensate the possible sedation induced by
a PDE4 inhibitor and thus improve the therapeutic value of the combination.
It is well known that inhaled glucocorticoids represent a first choice pharmacological
intervention in the therapy of inflammatory respiratory diseases. This class of drugs, among
which can be mentioned for example triamcinolone, beclomethasone, mometasone,
fluticasone, budesonide, etc., elicits remarkable pharmacodynamics effects on the
respiratory tract. Additionally, they also elicit undesired effects on different organs, and for
this reason both their clinical use and its interruption cause a series of side effects, some of
which very serious.
Among said toxic effects can be mentioned those affecting the bone tissue leading to an
altered cellular metabolism and a high osteoporosis incidence. Several studies showed that
inhaled glucocorticoids cause a reduction in bone mineral density leading to an increase in
fractures in people taking an inhaled glucocorticoid compared with controls (Ip et al. Chest
1994; 1051722-7, Mortimer et al. Ann Allergy Asthma Immunol 2005; 94:15-21). Strategies
are needed to reduce the systemic effects of inhaled glucocorticoids. Inhibition of PDE4
activity is believed effective for the treatment of osteoporosis by reducing bone loss. There is
evidence that the PDE4 isoenzyme may play an important role in bone turnover through
cAMP and that its inhibitors are candidates for therapeutic drugs for the bone loss diseases
(Miyamoto et al. Biochem Pharmacol 1997; 54:613-7). Indeed, rolipram can enhance
physiological bone formation and thereby increase bone mass in mice (Kinoshita et al. Bone
2000; 27:811-7). PDE4 inhibitors are apparently able to counteract the bone-demineralising
effect of glucocorticoids. Therefore, it would be desirable to provide novel compositions that
contain besides glucocorticoids PDE4 inhibitors as well.
There is evidence that inhaled glucocorticoids are especially advantageous in combination
with bronchodilators (Donohue et al. Treat Respir Med 2004; 3:173-81). Furthermore, it has
also been demonstrated that ß2-adrenoceptor agonists added to the existing therapy regimen
consisting of an anticholinergic (ipratropium) and an inhaled glucocorticoid (beclomethasone)
provides greater symptomatic relief and improvement in lung function than placebo (Gupta
and Chhabra, Indian J Chest Dis Allied Sci 2002; 44:165-72).
Current treatments for asthma and COPD are not satisfactory. Given the high prevalence of
these diseases, improved, more effective and more convenient therapeutic interventions are
highly desirable.
Therefore the problem underlying the invention was to present a pharmaceutical, which is
improved for the treatment of inflammatory diseases especially respiratory diseases as
asthma or COPD, but also for rheumatism or auto-immune diseases.

This problem is solved by a combination of at least three different pharmaceutically active
substances or their physiologically acceptable salts selected from the group of
anticholinergics, PDE4 inhibitors, glucocorticoids, ß2-adrenoceptor agonists and Leukotriene-
receptor antagonists, which show higher efficiency and reduced side effects compared to the
single substances or double combinations which could not be expected from prior art.
The combinations comprise at least three different pharmaceutically active substances or
their pharmaceutically acceptable salts selected from of the following groups:
A: anticholinergics: 1: methscopolamine, 2: ipratropium, 3: oxitropium, 4: tiotropium
5:racemic glycopyrrolate, 6: R,R-glycopyrrolate
B: PDE 4 Inhibitors 1: rolipram, 2: roflumilast, 3: cilomilast, 4:AWD-12-281
C: Glucocorticoids: 1: budesonide, 2: fluticasone, 3: mometasone, 4: beclomethasone, 5:
ciclesonide, 6: triamcinolone, 7: loteprednol, 8: etiprednol, 9: flunisolide
D: ß2-adrenoceptor agonists 1: salbutamol, 2: terbutaline, 3: salmeterol, 4: formoterol, 5:
indacaterol 6: fenoterol, 7: reproterol, 8: pirbuterol, 9: bitolterol
E: Leukotriene-receptor antagonists 1: pranlukast, 2: montelukast, 3: zafirlukast
Preferred combinations comprise three different pharmaceutically active substances or their
pharmaceutically acceptable salts selected from the groups of
Anticholinergics, PDE4 inhibitors and Glucocorticoids
Anticholinergics, PDE4 inhibitors and ß2-adrenoceptor agonists
Anticholinergics, PDE4 inhibitors and Leukotriene-receptor antagonists
Anticholinergics, Glucocorticoids, and (Vadrenoceptor agonists
Anticholinergics, Glucocorticoids, and Leukotriene-receptor antagonists
PDE4 inhibitors, Glucocorticoids, and ß2-adrenoceptor agonists
PDE4 inhibitors, ß2-adrenoceptor agonists, and Leukotriene-receptor antagonists
Glucocorticoids, ß2-adrenoceptor agonists, and Leukotriene-receptor antagonists
Especially preferred combinations are comprising three different pharmaceutically active
substances or their pharmaceutically acceptable salts selected from the groups of
R,R-glycopyrrolate, PDE4 inhibitors and Glucocorticoids
R,R-glycopyrrolate, PDE4 inhibitors and ß2-adrenoceptor agonists
R,R-glycopyrrolate, PDE4 inhibitors and Leukotriene-receptor antagonists
R,R-glycopyrrolate, Glucocorticoids, and ß2-adrenoceptor agonists
R,R-glycopyrrolate, Glucocorticoids, and Leukotriene-receptor antagonists
The following combinations show the effects according to the invention:
A1.B1, C1; A1.B1, C2; A1.B1, C3; A1.B1, C4; A1.B1, C5; A1.B1, C6; A1.B1, C7; A1.B1, C8;
A1,B1,C9;
A1.B2, C1; A1.B2, C2; A1.B2, C3; A1,B2, C4; A1.B2, C5; A1.B2, C6; A1.B2, C7; A1,B2, C8;
A1.B2, C9;

A1.B3, C1; A1.B3, C2; A1.B3, C3; A1.B3, C4; A1.B3, C5; A1.B3, C6; A1.B3, C7; A1.B3, C8;
A1.B3, C9;
A1 ,B4, C1; A1 ,B4, C2; A1 ,B4, C3; A1 ,B4, C4; A1 ,B4, C5; A1 ,B4, C6; A1 ,B4, C7; A1 ,B4, C8;
A1.B4.C9;
A2.B1, C1; A2.B1, C2; A2.B1, C3; A2.B1, C4; A2.B1, C5; A2.B1, C6; A2.B1, C7; A2.B1, C8;
A2.B1, C9;
A2,B2, C1; A2.B2, C2; A2,B2, C3; A2,B2, C4; A2,B2, C5; A2,B2, C6; A2,B2, C7; A2,B2, C8;
A2.B2, C9;
A2.B3, C1; A2,B3, C2; A2.B3, C3; A2.B3, C4; A2.B3, C5; A2.B3, C6; A2,B3, C7; A2,B3, C8;
A2.B3, C9;
A2.B4, C1; A2.B4, C2; A2.B4, C3; A2,B4, C4; A2,B4, C5; A2,B4, C6; A2.B4, C7; A2,B4, C8;
A2,B4, C9;
A3.B1, C1; A3.B1. C2; A3,B1, C3; A3.B1, C4; A3.B1, C5; A3.B1, C6; A3.B1, C7; A3.B1, C8;
A3.B1, C9;
A3,B2, C1; A3.B2, C2; A3.B2, C3; A3.B2, C4; A3.B2, C5; A3,B2, C6; A3,B2, C7; A3.B2, C8;
A3.B2, C9;
A3,B3, C1; A3,B3, C2; A3.B3, C3; A3,B3, C4; A3.B3, C5; A3.B3, C6; A3.B3, C7; A3.B3, C8;
A3.B3, C9;
A3.B4, C1; A3.B4, C2; A3,B4, C3; A3.B4, C4; A3.B4, C5; A3.B4, C6; A3.B4, C7; A3,B4, C8;
A3,B4, C9;
A4.B1, C1; A4.B1, C2; A4.B1, C3; A4.B1, C4; A4.B1, C5; A4,B1, C6; A4.B1, C7; A4.B1, C8;
A4.B1.C9;
A4.B2, C1; A4,B2, C2; A4.B2, C3; A4.B2, C4; A4.B2, C5; A4,B2, C6; A4.B2, C7; A4.B2, C8;
A4.B2, C9;
A4,B3, C1; A4,B3, C2; A4.B3, C3; A4.B3, C4; A4.B3, C5; A4.B3, C6; A4.B3, C7; A4.B3, C8;
A4.B3, C9;
A4.B4, C1; A4,B4, C2; A4,B4, C3; A4.B4, C4; A4.B4, C5; A4.B4, C6; A4.B4, C7; A4,B4, C8;
A4.B4, C9;
A5.B1, C1; A5,B1, C2; A5.B1, C3; A5.B1, C4; A5.B1, C5; A5,B1, C6; A5.B1, C7; A5.B1, C8;
A5.B1.C9;
A5.B2, C1; A5,B2, C2; A5.B2, C3; A5.B2, C4; A5.B2, C5; A5.B2, C6; A5.B2, C7; A5.B2, C8;
A5.B2, C9;
A5.B3, C1; A5,B3, C2; A5,B3, C3; A5.B3, C4; A5.B3, C5; A5,B3, C6; A5.B3, C7; A5.B3, C8;
A5.B3, C9;
A5,B4, C1; A5,B4, C2; A5.B4, C3; A5.B4, C4; A5.B4, C5; A5.B4, C6; A5,B4, C7; A5.B4, C8;
A5,B4, C9;
A6.B1, C1; A6,B1, C2; A6.B1, C3; A6.B1, C4; A6.B1, C5; A6.B1, C6; A6.B1, C7; A6.B1, C8;
A6.B1, C9;

A6,B2, C1; A6,B2, C2; A6,B2, C3; A6,B2, C4; A6,B2, C5; A6,B2, C6; A6,B2, C7; A6,B2, C8;
A6,B2, C9;
A6,B3, C1; A6,B3, C2; A6,B3, C3; A6,B3, C4; A6,B3, C5; A6,B3, C6; A6,B3, C7; A6,B3, C8;
A6,B3, C9;
A6,B4, C1; A6,B4, C2; A6,B4, C3; A6,B4, C4; A6,B4, C5; A6,B4, C6; A6,B4, C7; A6,B4, C8;
A6,B4, C9;
A1,B1, D1; A1,B1, D2; A1,B1, D3; A1,B1, D4; A1,B1, D5; A1,B1, D6; A1,B1, D7; A1,B1, D8;
A1,B1, D9;
A1,B2, D1; A1,B2, D2; A1,B2, D3; A1,B2, D4; A1,B2, D5; A1,B2, D6; A1,B2, D7; A1,B2, D8;
A1,B2,D9;
A1,B3, D1; A1,B3, D2; A1,B3, D3; A1,B3, D4; A1,B3, D5; A1,B3, D6; A1,B3, D7; A1,B3, D8;
A1,B3,D9;
A1,B4, D1; A1,B4, D2; A1,B4, D3; A1,B4, D4; A1,B4, D5; A1,B4, D6; A1,B4, D7; A1,B4, D8;
A1,B4,D9;
A3,B1, D1; A3,B1, D2; A3,B1, D3; A3,B1, D4; A3,B1, D5; A3,B1, D6; A3,B1, D7; A3,B1, D8;
A3,B1, D9;
A3,B2, D1; A3,B2, D2; A3,B2, D3; A3,B2, D4; A3,B2, D5; A3,B2, D6; A3,B2, D7; A3,B2, D8;
A3,B2, D9;
A3,B3, D1; A3,B3, D2; A3,B3, D3; A3,B3, D4; A3,B3, D5; A3,B3, D6; A3,B3, D7; A3,B3, D8;
A3,B3, D9;
A3,B4, D1; A3,B4, D2; A3,B4, D3; A3,B4, D4; A3,B4, D5; A3,B4, D6; A3,B4, D7; A3,B4, D8;
A3,B4, D9;
A4,B1, D1; A4,B1, D2; A4,B1, D3; A4,B1, D4; A4,B1, D5; A4,B1, D6; A4,B1, D7; A4,B1, D8;
A4,B1, D9;
A4,B2, D1; A4,B2, D2; A4,B2, D3; A4,B2, D4; A4,B2, D5; A4,B2, D6; A4,B2, D7; A4,B2, D8;
A4,B2, D9;
A4,B3, D1; A4,B3, D2; A4,B3, D3; A4,B3, D4; A4,B3, D5; A4,B3, D6; A4,B3, D7; A4,B3, D8;
A4,B3, D9;
A4,B4, D1; A4,B4, D2; A4,B4, D3; A4,B4, D4; A4,B4, D5; A4,B4, D6; A4,B4, D7; A4,B4, D8;
A4,B4, D9;
A5,B1, D1; A5,B1, D2; A5,B1, D3; A5,B1, D4; A5,B1, D5; A5,B1, D6; A5,B1, D7; A5,B1, D8;
A5,B1, D9;
A5,B2, D1; A5,B2, D2; A5,B2, D3; A5,B2, D4; A5,B2, D5; A5,B2, D6; A5,B2, D7; A5,B2, D8;
A5,B2, D9;
A5,B3, D1; A5,B3, D2; A5,B3, D3; A5,B3, D4; A5,B3, D5; A5,B3, D6; A5,B3, D7; A5,B3, D8;
A5,B3, D9;
A5,B4, D1; A5,B4, D2; A5,B4, D3; A5,B4, D4; A5,B4, D5; A5,B4, D6; A5,B4, D7; A5,B4, D8;
A5,B4, D9:

A6,B1, D1; A6,B1, D2; A6,B1, D3; A6,B1, D4; A6,B1, D5; A6,B1, D6; A6,B1, D7; A6,B1, D8;
A6,B1,D9;
A6,B2, D1; A6,B2, D2; A6,B2, D3; A6,B2, D4; A6,B2, D5; A6,B2, D6; A6,B2, D7; A6,B2, D8;
A6,B2, D9;
A6,B3, D1; A6,B3, D2; A6,B3, D3; A6,B3, D4; A6,B3, D5; A6,B3, D6; A6,B3, D7; A6,B3, D8;
A6,B3, D9;
A6,B4, D1; A6,B4, D2; A6,B4, D3; A6,B4, D4; A6,B4, D5; A6,B4, D6; A6,B4, D7; A6,B4, D8;
A6,B4, D9;
A1,B1, E1; A1,B1, E2; A1,B1, E3; A1,B1, E4;
A1,B2, E1; A1,B2, E2; A1,B2, E3; A1,B2, E4;
A1,B3, E1; A1,B3, E2; A1,B3, E3; A1,B3, E4;
A1,B4, E1; A1,B4, E2; A1,B4, E3; A1,B4, E4;
A2,B1,E1; A2,B1, E2;A2,B1, E3; A2,B1, E4;
A2,B2, E1; A2,B2, E2; A2,B2, E3; A2,B2, E4;
A2,B3, E1; A2,B3, E2; A2,B3, E3; A2,B3, E4;
A2,B4, E1; A2,B4, E2; A2,B4, E3; A2,B4, E4;
A3,B1, E1; A3,B1, E2; A3,B1, E3; A3,B1, E4;
A3,B2, E1; A3,B2, E2; A3,B2, E3; A3,B2, E4;
A3,B3, E1; A3,B3, E2; A3,B3, E3; A3,B3, E4;
A3,B4, E1; A3,B4, E2; A3,B4, E3; A3,B4, E4;
A4,B1, E1; A4,B1, E2; A4,B1, E3; A4,B1, E4;
A4,B2, E1; A4,B2, E2; A4,B2, E3; A4,B2, E4;
A4,B3, E1; A4,B3, E2; A4,B3, E3; A4,B3, E4;
A4,B4, E1; A4,B4, E2; A4,B4, E3; A4,B4, E4;
A5,B1, E1; A5,B1, E2; A5,B1, E3; A5,B1, E4;
A5,B2, E1; A5,B2, E2; A5,B2, E3; A5,B2, E4;
A5,B3, E1; A5,B3, E2; A5,B3, E3; A5,B3, E4;
A5,B4, E1; A5,B4, E2; A5,B4, E3; A5,B4, E4;
A6,B1, E1;A6,B1, E2; A6,B1, E3; A6,B1, E4;
A6,B2, E1; A6,B2, E2; A6,B2, E3; A6,B2, E4;
A6,B3, E1; A6,B3, E2; A6,B3, E3; A6,B3, E4;
A6,B4, E1; A6,B4, E2; A6,B4, E3; A6,B4, E4;
A1,C1,D1; A1,C1,D2; A1,C1,D3; A1,C1,D4; A1,C1,D5; A1,C1,D6; A1,C1,D7; A1,C1,D8;
A1,C1,D9;
A1,C2,D1; A1,C2,D2; A1,C2,D3; A1,C2,D4; A1,C2,D5; A1,C2,D6; A1,C2,D7; A1,C2,D8;
A1,C2,D9;

A1,C3,D1; A1,C3,D2; A1,C3,D3; A1,C3,D4; A1,C3,D5; A1,C3,D6; A1,C3,D7; A1,C3,D8;
A1,C3,D9;
A1,C4,D1; A1,C4,D2; A1,C4,D3; A1,C4,D4; A1,C4,D5; A1,C4,D6; A1,C4,D7; A1,C4,D8;
A1,C4,D9;
A1,C5,D1; A1,C5,D2; A1,C5,D3; A1,C5,D4; A1,C5,D5; A1,C5,D6; A1,C5,D7; A1,C5,D8;
A1,C5,D9;
A1,C6,D1; A1,C6,D2; A1,C6,D3; A1,C6,D4; A1,C6,D5; A1,C6,D6; A1,C6,D7; A1,C6,D8;
A1,C6,D9;
A1,C7,D1; A1,C7,D2; A1,C7,D3; A1,C7,D4; A1,C7,D5; A1,C7,D6; A1,C7,D7; A1,C7,D8;
A1,C7,D9;
A1,C8,D1; A1,C8,D2; A1,C8,D3; A1,C8,D4; A1,C8,D5; A1,C8,D6; A1,C8,D7; A1,C8,D8;
A1,C8,D9;
A1,C9,D1; A1,C9,D2; A1,C9,D3; A1,C9,D4; A1,C9,D5; A1,C9,D6; A1,C9,D7; A1,C9,D8;
A1,C9,D9;
A2,C1,D1; A2,C1,D2; A2,C1,D3; A2,C1,D4; A2,C1,D5; A2,C1,D6; A2,C1,D7; A2,C1,D8;
A2,C1,D9;
A2,C2,D1; A2,C2,D2; A2,C2,D3; A2,C2,D4; A2,C2,D5; A2,C2,D6; A2,C2,D7; A2,C2,D8;
A2,C2,D9;
A2,C3,D1; A2,C3,D2; A2,C3,D3; A2,C3,D4; A2,C3,D5; A2,C3,D6; A2,C3,D7; A2,C3,D8;
A2,C3,D9;
A2,C4,D1; A2,C4,D2; A2,C4,D3; A2,C4,D4; A2,C4,D5; A2,C4,D6; A2,C4,D7; A2,C4,D8;
A2,C4,D9;
A2,C5,D1; A2,C5,D2; A2,C5,D3; A2,C5,D4; A2,C5,D5; A2,C5,D6; A2,C5,D7; A2,C5,D8;
A2,C5,D9;
A2,C6,D1; A2,C6,D2; A2,C6,D3; A2,C6,D4; A2,C6,D5; A2,C6,D6; A2,C6,D7; A2,C6,D8;
A2,C6,D9;
A2,C7,D1; A2,C7,D2; A2,C7,D3; A2,C7,D4; A2,C7,D5; A2,C7,D6; A2,C7,D7; A2,C7,D8;
A2,C7,D9;
A2,C8,D1; A2,C8,D2; A2,C8,D3; A2,C8,D4; A2,C8,D5; A2,C8,D6; A2,C8,D7; A2,C8,D8;
A2,C8,D9;
A2,C9,D1; A2,C9,D2; A2,C9,D3; A2,C9,D4; A2,C9,D5; A2,C9,D6; A2,C9,D7; A2,C9,D8;
A2,C9,D9;
A3,C1,D1; A3,C1,D2; A3,C1,D3; A3,C1,D4; A3,C1,D5; A3,C1,D6; A3,C1,D7; A3,C1,D8;
A3,C1,D9;
A3,C2,D1; A3,C2,D2; A3,C2,D3; A3,C2,D4; A3,C2,D5; A3,C2,D6; A3,C2,D7; A3,C2,D8;
A3,C2,D9;
A3,C3,D1; A3,C3,D2; A3,C3,D3; A3,C3,D4; A3,C3,D5; A3,C3,D6; A3,C3,D7; A3,C3,D8;
A3,C3,D9;
A3,C4,D1; A3,C4,D2; A3,C4,D3; A3,C4,D4; A3,C4,D5; A3,C4,D6; A3,C4,D7; A3,C4,D8;
A3,C4,D9;
A3,C5,D1; A3,C5,D2; A3,C5,D3; A3,C5,D4; A3,C5,D5; A3,C5,D6; A3,C5,D7; A3,C5,D8;
A3,C5,D9;

A3,C6,D1; A3,C6,D2; A3,C6,D3; A3,C6,D4; A3,C6,D5; A3,C6,D6; A3,C6,D7; A3,C6,D8;
A3,C6,D9;
A3,C7,D1; A3,C7,D2; A3,C7,D3; A3,C,7,D4; A3,C7,D5; A3,C7,D6; A3,C7,D7; A3,C7,D8;
A3,C7,D9;
A3,C8,D1; A3,C8,D2; A3,C8,D3; A3,C8,D4; A3,C8,D5; A3,C8,D6; A3,C8,D7; A3,C8,D8;
A3,C8,D9;
A3,C9,D1; A3,C9,D2; A3,C9,D3; A3,C9,D4; A3,C9,D5; A3,C9,D6; A3,C9,D7; A3,C9,D8;
A3,C9,D9;
A4,C1,D1; A4,C1,D2; A4,C1,D3; A4,C1,D4; A4,C1,D5; A4,C1,D6; A4,C1,D7; A4,C1,D8;
A4,C1,D9;
A4,C2,D1; A4,C2,D2; A4,C2,D3; A4,C2,D4; A4,C2,D5; A4,C2,D6; A4,C2,D7; A4,C2,D8;
A4,C2,D9;
A4,C3,D1; A4,C3,D2; A4,C3,D3; A4,C3,D4; A4,C3,D5; A4,C3,D6; A4,C3,D7; A4,C3,D8;
A4,C3,D9;
A4,C4,D1; A4,C4,D2; A4,C4,D3; A4,C4,D4; A4,C4,D5; A4,C4,D6; A4,C4,D7; A4,C4,D8;
A4,C4,D9;
A4,C5,D1; A4,C5,D2; A4,C5,D3; A4,C5,D4; A4,C5,D5; A4,C5,D6; A4,C5,D7; A4,C5,D8;
A4,C5,D9;
A4,C6,D1; A4,C6,D2; A4,C6,D3; A4,C6,D4; A4,C6,D5; A4,C6,D6; A4,C6,D7; A4,C6,D8;
A4,C6,D9;
A4,C7,D1; A4,C7,D2; A4,C7,D3; A4,C7,D4; A4,C7,D5; A4,C7,D6; A4,C7,D7; A4,C7,D8;
A4,C7,D9;
A4,C8,D1; A4,C8,D2; A4,C8,D3; A4,C8,D4; A4,C8,D5; A4,C8,D6; A4,C8,D7; A4,C8,D8;
A4,C8,D9;
A4,C9,D1; A4,C9,D2; A4,C9,D3; A4,C9,D4; A4,C9,D5; A4,C9,D6; A4,C9,D7; A4,C9,D8;
A4,C9,D9;
A5,C1,D1; A5,C1,D2; A5,C1,D3; A5,C1,D4; A5,C1,D5; A5,C1,D6; A5,C1,D7; A5,C1,D8;
A5,C1,D9;
A5,C2,D1; A5,C2,D2; A5,C2,D3; A5,C2,D4; A5,C2,D5; A5,C2,D6; A5,C2,D7; A5,C2,D8;
A5,C2,D9;
A5,C3,D1; A5,C3,D2; A5,C3,D3; A5,C3,D4; A5,C3,D5; A5,C3,D6; A5,C3,D7; A5,C3,D8;
A5,C3,D9;
A5,C4,D1; A5,C4,D2; A5,C4,D3; A5,C4,D4; A5,C4,D5; A5,C4,D6; A5,C4,D7; A5,C4;D8;
A5,C4,D9;
A5,C5,D1; A5,C5,D2; A5,C5,D3; A5,C5,D4; A5,C5,D5; A5,C5,D6; A5,C5,D7; A5,C5,D8;
A5,C5,D9;
A5,C6,D1; A5,C6,D2; A5,C6,D3; A5,C6,D4; A5,C6,D5; A5,C6,D6; A5,C6,D7; A5,C6,D8;
A5,C6,D9;
A5,C7,D1; A5,C7,D2; A5,C7,D3; A5,C7,D4; A5,C7,D5; A5,C7,D6; A5,C7,D7; A5,C7,D8;
A5,C7,D9;
A5,C8,D1; A5,C8,D2; A5,C8,D3; A5,C8,D4; A5,C8,D5; A5,C8,D6; A5,C8,D7; A5,C8,D8;
A5,C8,D9;

A5,C9,D1; A5,C9,D2; A5,C9,D3; A5,C9,D4; A5,C9,D5; A5,C9,D6; A5,C9,D7; A5,C9,D8;
A5,C9,D9;
A6,C1,D1; A6,C1,D2; A6,C1,D3; A6,C1,D4; A6,C1,D5; A6,C1,D6; A6,C1,D7; A6,C1,D8;
A6,C1,D9;
A6,C2,D1; A6,C2,D2; A6,C2,D3; A6,C2,D4; A6,C2,D5; A6,C2,D6; A6,C2,D7; A6,C2,D8;
A6,C2,D9;
A6,C3,D1; A6,C3,D2; A6,C3,D3; A6,C3,D4; A6,C3,D5; A6,C3,D6; A6,C3,D7; A6,C3,D8;
A6,C3,D9;
A6,C4,D1; A6,C4,D2; A6,C4,D3; A6,C4,D4; A6,C4,D5; A6,C4,D6; A6,C4,D7; A6,C4,D8;
A6,C4,D9;
A6,C5,D1; A6,C5,D2; A6,C5,D3; A6,C5,D4; A6,C5,D5; A6,C5,D6; A6,C5,D7; A6,C5,D8;
A6,C5,D9;
A6,C6,D1; A6,C6,D2; A6,C6,D3; A6,C6,D4; A6,C6,D5; A6,C6,D6; A6,C6,D7; A6,C6,D8;
A6,C6,D9;
A6,C7,D1; A6,C7,D2; A6,C7,D3; A6,C7,D4; A6,C7,D5; A6,C7,D6; A6,C7,D7; A6,C7,D8;
A6,C7,D9;
A6,C8,D1; A6,C8,D2; A6,C8,D3; A6,C8,D4; A6,C8,D5; A6,C8,D6; A6,C8,D7; A6,C8,D8;
A6,C8,D9;
A6,C9,D1; A6,C9,D2; A6,C9,D3; A6,C9,D4; A6,C9,D5; A6,C9,D6; A6,C9,D7; A6,C9,D8;
A6,C9,D9;
A1,C1,E1; A1,C1,E2; A1,C1,E3;
A1,C2,E1; A1,C2,E2; A1,C2,E3;
A1,C3,E1; A1,C3,E2; A1,C3,E3;
A1,C4,E1; A1,C4,E2; A1,C4,E3;
A1 ,C5,E1; A1 ,C5,E2; A1 ,C5,E3;
A1 ,C6,E1; A1 ,C6,E2; A1 ,C6,E3;
A1 ,C7,E1; A1 ,C7,E2; A1 ,C7,E3;
A1,C8,E1; A1,C8,E2;A1,C8,E3;
A1 ,C9,E1; A1 ,C9,E2; A1 ,C9,E3;
A2,C1 ,E1; A2,C1 ,E2; A2,C1 ,E3;
A2,C2,E1; A2,C2,E2; A2,C2,E3;
A2,C3,E1; A2,C3,E2; A2,C3,E3;
A2,C4,E1; A2,C4,E2; A2,C4,E3;
A2,C5,E1; A2,C5,E2; A2,C5,E3;
A2,C6,E1; A2,C6,E2; A2,C6,E3;
A2,C7,E1; A2,C7,E2; A2,C7,E3;
A2,C8,E1; A2,C8,E2; A2,C8,E3;
A2,C9,E1; A2,C9,E2; A2,C9,E3;
A3,C1,E1; A3,C1,E2; A3,C1,E3;
A3,C2,E1; A3,C2,E2; A3,C2,E3;

A3,C3,E1; A3,C3,E2; A3,C3,E3;
A3,C4,E1; A3,C4,E2; A3,C4,E3;
A3,C5,E1; A3,C5,E2; A3,C5,E3;
A3,C6,E1; A3,C6,E2; A3,C6,E3;
A3,C7,E1; A3,C7,E2; A3,C7,E3;
A3,C8,E1; A3,C8,E2; A3,C8,E3;
A3,C9,E1; A3,C9,E2; A3,C9,E3;
A4,C1,E1;A4,C1,E2;A4,C1,E3;
A4,C2,E1; A4,C2,E2; A4,C2,E3;
A4,C3,E1; A4,C3,E2; A4,C3,E3;
A4,C4,E1; A4,C4,E2; A4,C4,E3;
A4,C5,E1; A4,C5,E2; A4,C5,E3;
A4,C6,E1; A4,C6,E2; A4,C6,E3;
A4,C7,E1; A4,C7,E2; A4,C7,E3;
A4,C8,E1; A4,C8,E2; A4,C8,E3;
A4,C9,E1; A4,C9,E2; A4,C9,E3;
A5,C1,E1; A5,C1,E2; A5,C1,E3;
A5,C2,E1; A5,C2,E2; A5,C2,E3;
A5,C3,E1; A5,C3,E2; A5,C3,E3;
A5,C4,E1; A5,C4,E2; A5,C4,E3;
A5,C5,E1; A5,C5,E2; A5,C5,E3;
A5,C6,E1; A5,C6,E2; A5,C6,E3;
A5,C7,E1; A5,C7,E2; A5,C7,E3;
A5,C8,E1; A5,C8,E2; A5,C8,E3;
A5,C9,E1; A5,C9,E2; A5,C9,E3;
A6,C1 ,E1; A6,C1 ,E2; A6,C1 ,E3;
A6,C2,E1; A6,C2,E2; A6,C2,E3;
A6,C3,E1; A6,C3,E2; A6,C3,E3;
A6,C4,E1; A6,C4,E2; A6,C4,E3;
A6,C5,E1; A6,C5,E2; A6,C5,E3;
A6,C6,E1; A6,C6,E2; A6,C6,E3;
A6,C7,E1; A6,C7,E2; A6,C7,E3;
A6,C8,E1; A6,C8,E2; A6,C8,E3;
A6,C9,E1; A6,C9,E2; A6,C9,E3;
A1,D1,E1;A1,D1,E2; A1,D1,E3;
A1,D2,E1; A1,D2,E2; A1,D2,E3;
A1 ,D3,E1; A1 ,D3,E2; A1 ,D3,E3;
A1,D4,E1; A1,D4,E2; A1,D4,E3;
A1,D5,E1; A1,D5,E2; A1,D5,E3;
A1 ,D6,E1; A1 ,D6,E2; A1 ,D6,E3;

A1,D7,E1;A1,D7,E2;A1,D7,E3;
A1,D8,E1; A1,D8,E2; A1,D8,E3;
A1 ,D9,E1; A1 ,D9,E2; A1 ,D9,E3;
A2,D1 ,E1; A2,D1 ,E2; A2,D1 ,E3;
A2,D2,E1; A2,D2,E2; A2,D2,E3;
A2,D3,E1; A2,D3,E2; A2,D3,E3;
A2,D4,E1; A2,D4,E2; A2,D4,E3;
A2,D5,E1; A2,D5,E2; A2,D5,E3;
A2,D6,E1; A2,D6,E2; A2,D6,E3;
A2,D7,E1; A2,D7,E2; A2,D7,E3;
A2,D8,E1; A2,D8,E2; A2,D8,E3;
A2,D9,E1; A2,D9,E2; A2,D9,E3;
A3,D1,E1;A3,D1,E2; A3,D1,E3;
A3,D2,E1; A3,D2,E2; A3,D2,E3;
A3,D3,E1; A3,D3,E2; A3,D3,E3;
A3,D4,E1; A3,D4,E2; A3,D4,E3;
A3,D5,E1; A3,D5,E2; A3,D5,E3;
A3,D6,E1; A3,D6,E2; A3,D6,E3;
A3,D7,E1; A3,D7,E2; A3,D7,E3;
A3,D8,E1; A3,D8,E2; A3,D8,E3;
A3,D9,E1; A3,D9,E2; A3,D9,E3;
A4,D1 ,E1; A4,D1 ,E2; A4,D1 ,E3;
A4,D2,E1; A4,D2,E2; A4,D2,E3;
A4,D3,E1; A4,D3,E2; A4,D3,E3;
A4,D4,E1; A4,D4,E2; A4,D4,E3;
A4,D5,E1; A4,D5,E2; A4,D5,E3;
A4,D6,E1; A4,D6,E2; A4,D6,E3;
A4,D7,E1; A4,D7,E2; A4,D7,E3;
A4,D8,E1; A4,D8,E2; A4,D8,E3;
A4,D9,E1; A4,D9,E2; A4,D9,E3;
A5,D1,E1; A5,D1,E2; A5,D1,E3;
A5,D2,E1; A5,D2,E2; A5,D2,E3;
A5,D3,E1; A5,D3,E2; A5,D3,E3;
A5,D4,E1; A5,D4,E2; A5,D4,E3;
A5,D5,E1; A5,D5,E2; A5,D5,E3;
A5,D6,E1; A5,D6,E2; A5,D6,E3;
A5,D7,E1; A5,D7,E2; A5,D7,E3;
A5,D8,E1; A5,D8,E2; A5,D8,E3;
A5,D9,E1; A5,D9,E2; A5,D9,E3;

A6,D1 ,E1; A6,D1 ,E2; A6,D1 ,E3;
A6,D2,E1; A6,D2,E2; A6,D2,E3;
A6,D3,E1; A6,D3,E2; A6,D3,E3;
A6,D4,E1; A6,D4,E2; A6,D4,E3;
A6,D5,E1; A6,D5,E2; A6,D5,E3;
A6,D6,E1; A6,D6,E2; A6,D6,E3;
A6,D7,E1; A6,D7,E2; A6,D7,E3;
A6,D8,E1; A6,D8,E2; A6,D8,E3;
A6,D9,E1; A6,D9,E2; A6,D9,E3;
B1,C1,D1; B1,C1,D2; B1,C1,D3; B1,C1,D4; B1,C1,D5; B1,C1,D6; B1,C1,D7; B1,C1,D8;
B1,C1,D9;
B1,C2,D1; B1,C2,D2; B1,C2,D3; B1,C2,D4; B1,C2,D5; B1,C2,D6; B1,C2,D7; B1,C2,D8;
B1,C2,D9;
B1,C3,D1; B1,C3,D2; B1,C3,D3; B1,C3,D4; B1,C3,D5; B1,C3,D6; B1,C3,D7; B1,C3,D8;
B1,C3,D9;
B1,C4,D1; B1,C4,D2; B1,C4,D3; B1,C4,D4; B1,C4,D5; B1,C4,D6; B1,C4,D7; B1,C4,D8;
B1,C4,D9;
B1,C5,D1; B1,C5,D2; B1,C5,D3; B1,C5,D4; B1,C5,D5; B1,C5,D6; B1,C5,D7; B1,C5,D8;
B1,C5,D9;
B1,C6,D1; B1,C6,D2; B1,C6,D3; B1,C6,D4; B1,C6,D5; B1,C6,D6; B1,C6,D7; B1,C6,D8;
B1,C6,D9;
B1,C7,D1; B1,C7,D2; B1,C7,D3; B1,C7,D4; B1,C7,D5; B1,C7,D6; B1,C7,D7; B1,C7,D8;
B1,C7,D9;
B1,C8,D1; B1,C8,D2; B1,C8,D3; B1,C8,D4; B1,C8,D5; B1,C8,D6; B1,C8,D7; B1,C8,D8;
B1,C8,D9;
B1,C9,D1; B1,C9,D2; B1,C9,D3; B1,C9,D4; B1,C9,D5; B1,C9,D6; B1,C9,D7; B1,C9,D8;
B1,C9,D9;
B2,C1,D1; B2,C1,D2; B2,C1,D3; B2,C1,D4; B2,C1,D5; B2,C1,D6; B2,C1,D7; B2,C1,D8;
B2,C1,D9;
B2,C2,D1; B2,C2,D2; B2,C2,D3; B2,C2,D4; B2,C2,D5; B2,C2,D6; B2,C2,D7; B2,C2,D8;
B2,C2,D9;
B2,C3,D1; B2,C3,D2; B2,C3,D3; B2,C3,D4; B2,C3,D5; B2,C3,D6; B2,C3,D7; B2,C3,D8;
B2,C3,D9;
B2,C4,D1; B2,C4,D2; B2,C4,D3; B2,C4,D4; B2,C4,D5; B2,C4,D6; B2,C4,D7; B2,C4,D8;
B2,C4,D9;
B2,C5,D1; B2,C5,D2; B2,C5,D3; B2,C5,D4; B2,C5,D5; B2,C5,D6; B2,C5,D7; B2,C5,D8;
B2,C5,D9;
B2,C6,D1; B2,C6,D2; B2,C6,D3; B2,C6,D4; B2,C6,D5; B2,C6,D6; B2,C6,D7; B2,C6,D8;
B2,C6,D9;
B2,C7,D1; B2,C7,D2; B2,C7,D3; B2,C7,D4; B2,C7,D5; B2,C7,D6; B2,C7,D7; B2,C7,D8;
B2,C7,D9;

B2,C8,D1; B2,C8,D2; B2,C8,D3; B2,C8,D4; B2,C8,D5; B2,C8,D6; B2,C8,D7; B2,C8,D8;
B2,C8,D9;
B2,C9,D1; B2,C9,D2; B2,C9,D3; B2,C9,D4; B2,C9,D5; B2,C9,D6; B2,C9,D7; B2,C9,D8;
B2,C9,D9;
B3,C1,D1; B3,C1,D2; B3,C1,D3; B3,C1,D4; B3,C1,D5; B3,C1,D6; B3,C1,D7; B3,C1,D8;
B3,C1,D9;
B3,C2,D1; B3,C2,D2; B3,C2,D3; B3,C2,D4; B3,C2,D5; B3,C2,D6; B3,C2,D7; B3,C2,D8;
B3,C2,D9;
B3,C3,D1; B3,C3,D2; B3,C3,D3; B3,C3,D4; B3,C3,D5; B3,C3,D6; B3,C3,D7; B3,C3,D8;
B3,C3,D9;
B3,C4,D1; B3,C4,D2; B3,C4,D3; B3,C4,D4; B3,C4,D5; B3,C4,D6; B3,C4,D7; B3,C4,D8;
B3,C4,D9;
B3,C5,D1; B3,C5,D2; B3,C5,D3; B3,C5,D4; B3,C5,D5; B3,C5,D6; B3,C5,D7; B3,C5,D8;
B3,C5,D9;
B3,C6,D1; B3,C6,D2; B3,C6,D3; B3,C6,D4; B3,C6,D5; B3,C6,D6; B3,C6,D7; B3,C6,D8;
B3,C6,D9;
B3,C7,D1; B3,C7,D2; B3,C7,D3; B3,C7,D4; B3,C7,D5; B3,C7,D6; B3,C7,D7; B3,C7,D8;
B3,C7,D9;
B3,C8,D1; B3,C8,D2; B3,C8,D3; B3,C8,D4; B3,C8,D5; B3,C8,D6; B3,C8,D7; B3,C8,D8;
B3,C8,D9;
B3,C9,D1; B3,C9,D2; B3,C9,D3; B3,C9,D4; B3,C9,D5; B3,C9,D6; B3,C9,D7; B3,C9,D8;
B3,C9,D9;
B4,C1,D1; B4,C1,D2; B4,C1,D3; B4,C1,D4; B4,C1,D5; B4,C1,D6; B4,C1,D7; B4,C1,D8;
B4,C1,D9;
B4,C2,D1; B4,C2,D2; B4,C2,D3; B4,C2,D4; B4,C2,D5; B4,C2,D6; B4,C2,D7; B4,C2,D8;
B4,C2,D9;
B4,C3,D1; B4,C3,D2; B4,C3,D3; B4,C3,D4; B4,C3,D5; B4,C3,D6; B4,C3,D7; B4,C3,D8;
B4,C3,D9;
B4,C4,D1; B4,C4,D2; B4,C4,D3; B4,C4,D4; B4,C4,D5; B4,C4,D6; B4,C4,D7; B4,C4,D8;
B4,C4,D9;
B4,C5,D1; B4,C5,D2; B4,C5,D3; B4,C5,D4; B4,C5,D5; B4,C5,D6; B4,C5,D7; B4,C5,D8;
B4,C5,D9;
B4,C6,D1; B4,C6,D2; B4,C6,D3; B4,C6,D4; B4,C6,D5; B4,C6,D6; B4,C6,D7; B4,C6,D8;
B4,C6,D9;
B4,C7,D1; B4,C7,D2; B4,C7,D3; B4,C7,D4; B4,C7,D5; B4,C7,D6; B4,C7,D7; B4,C7,D8;
B4,C7,D9;
B4,C8,D1; B4,C8,D2; B4,C8,D3; B4,C8,D4; B4,C8,D5; B4,C8,D6; B4,C8,D7; B4,C8,D8;
B4,C8,D9;
B4,C9,D1; B4,C9,D2; B4,C9,D3; B4,C9,D4; B4,C9,D5; B4,C9,D6; B4,C9,D7; B4,C9,D8;
B4,C9,D9;
B1,C1,E1;B1,C1,E2; B1,C1,E3;

B1,C2,E1; B1,C2,E2; B1,C2,E3;
B1,C3,E1; B1,C3,E2; B1,C3,E3;
B1,C4,E1;B1,C4,E2;B1,C4,E3;
B1,C5,E1; B1,C5,E2; B1,C5,E3;
B1,C6,E1; B1,C6,E2; B1,C6,E3;
B1,C7,E1; B1,C7,E2; B1,C7,E3;
B1,C8,E1; B1,C8,E2; B1,C8,E3;
B1,C9,E1;B1,C9,E2;B1,C9,E3;
B2,C1,E1; B2,C1,E2; B2,C1,E3;
B2,C2,E1; B2,C2,E2; B2,C2,E3;
B2,C3,E1; B2,C3,E2; B2,C3,E3;
B2,C4,E1; B2,C4,E2; B2,C4,E3;
B2,C5,E1; B2,C5,E2; B2,C5,E3;
B2,C6,E1; B2,C6,E2; B2,C6,E3;
B2,C7,E1; B2,C7,E2; B2,C7,E3;
B2,C8,E1; B2,C8,E2; B2,C8,E3;
B2,C9,E1; B2,C9,E2; B2,C9,E3;
B3,C1,E1; B3,C1,E2; B3,C1,E3;
B3,C2,E1; B3,C2,E2; B3,C2,E3;
B3,C3,E1; B3,C3,E2; B3,C3,E3;
B3,C4,E1; B3,C4,E2; B3,C4,E3;
B3,C5,E1; B3,C5,E2; B3,C5,E3;
B3,C6,E1; B3,C6,E2; B3,C6,E3;
B3,C7,E1; B3,C7,E2; B3,C7,E3;
B3,C8,E1; B3,C8,E2; B3,C8,E3;
B3,C9,E1; B3,C9,E2; B3,C9,E3;
B4,C1,E1;B4,C1,E2;B4,C1,E3;
B4,C2,E1; B4,C2,E2; B4,C2,E3;
B4,C3,E1; B4,C3,E2; B4,C3,E3;
B4,C4,E1; B4,C4,E2; B4,C4,E3;
B4,C5,E1; B4,C5,E2; B4,C5,E3;
B4,C6,E1; B4,C6,E2; B4,C6,E3;
B4,C7,E1; B4,C7,E2; B4,C7,E3;
B4,C8,E1; B4,C8,E2; B4,C8,E3;
B4,C9,E1; B4,C9,E2; B4,C9,E3;
B1,D1,E1;B1,D1,E2;B1,D1,E3;
B1,D2,E1; B1,D2,E2; B1,D2,E3;
B1,D3,E1; B1,D3,E2; B1,D3,E3;
B1,D4,E1; B1,D4,E2; B1,D4,E3;
B1,D5,E1; B1,D5,E2; B1,D5,E3;

B1,D6,E1; B1,D6,E2; B1,D6,E3;
B1,D7,E1; B1,D7,E2; B1,D7,E3;
B1,D8,E1;B1,D8,E2; B1,D8,E3;
B1,D9,E1; B1,D9,E2; B1,D9,E3;
B2,D1,E1; B2,D1,E2; B2,D1,E3;
B2,D2,E1; B2,D2,E2; B2,D2,E3;
B2,D3,E1; B2,D3,E2; B2,D3,E3;
B2,D4,E1; B2,D4,E2; B2,D4,E3;
B2,D5,E1; B2,D5,E2; B2,D5,E3;
B2,D6,E1; B2,D6,E2; B2,D6,E3;
B2,D7,E1; B2,D7,E2; B2,D7,E3;
B2,D8,E1; B2,D8,E2; B2,D8,E3;
B2,D9,E1; B2,D9,E2; B2,D9,E3;
B3,D1,E1; B3,D1,E2; B3,D1,E3;
B3,D2,E1; B3,D2,E2; B3,D2,E3;
B3,D3,E1; B3,D3,E2; B3,D3,E3;
B3,D4,E1; B3,D4,E2; B3,D4,E3;
B3,D5,E1; B3,D5,E2; B3,D5,E3;
B3,D6,E1; B3,D6,E2; B3,D6,E3;
B3,D7,E1; B3,D7,E2; B3,D7,E3;
B3,D8,E1; B3,D8,E2; B3,D8,E3;
B3,D9,E1; B3,D9,E2; B3,D9,E3;
B4,D1,E1; B4,D1,E2; B4,D1,E3;
B4,D2,E1; B4,D2,E2; B4,D2,E3;
B4,D3,E1; B4,D3,E2; B4,D3,E3;
B4,D4,E1; B4,D4,E2; B4,D4,E3;
B4,D5,E1; B4,D5,E2; B4,D5,E3;
B4,D6,E1; B4,D6,E2; B4,D6,E3;
B4,D7,E1; B4,D7,E2; B4,D7,E3;
B4,D8,E1; B4,D8,E2; B4,D8,E3;
B4,D9,E1; B4,D9,E2; B4,D9,E3;
C1,D1,E1;C1,D1,E2;C1,D1,E3;
C1,D2,E1; C1,D2,E2; C1,D2,E3;
C1,D3,E1; C1,D3,E2; C1,D3,E3;
C1,D4,E1; C1,D4,E2; C1,D4,E3;
C1,D5,E1; C1,D5,E2; C1,D5,E3;
C1,D6,E1; C1,D6,E2; C1,D6,E3;
C1,D7,E1; C1,D7,E2; C1,D7,E3;
C1,D8,E1; C1,D8,E2; C1,D8,E3;
C1,D9,E1; C1,D9,E2; C1,D9,E3;

C2,D1,E1; C2,D1,E2; C2,D1,E3;
C2,D2,E1; C2,D2,E2; C2,D2,E3;
C2,D3,E1; C2,D3,E2; C2,D3,E3;
C2,D4,E1; C2,D4,E2; C2,D4,E3;
C2,D5,E1; C2,D5,E2; C2,D5,E3;
C2,D6,E1; C2,D6,E2; C2,D6,E3;
C2,D7,E1; C2,D7,E2; C2,D7,E3;
C2,D8,E1; C2,D8,E2; C2,D8,E3;
C2,D9,E1; C2,D9,E2; C2,D9,E3;
C3,D1,E1; C3,D1,E2; C3,D1,E3;
C3,D2,E1; C3,D2,E2; C3,D2,E3;
C3,D3,E1; C3,D3,E2; C3,D3,E3;
C3,D4,E1; C3,D4,E2; C3,D4,E3;
C3,D5,E1; C3,D5,E2; C3,D5,E3;
C3,D6,E1; C3,D6,E2; C3,D6,E3;
C3,D7,E1; C3,D7,E2; C3,D7,E3;
C3,D8,E1; C3,D8,E2; C3,D8,E3;
C3,D9,E1; C3,D9,E2; C3,D9,E3;
C4,D1,E1;C4,D1,E2;C4,D1,E3;
C4,D2,E1; C4,D2,E2; C4,D2,E3;
C4,D3,E1; C4,D3,E2; C4,D3,E3;
C4,D4,E1; C4,D4,E2; C4,D4,E3;
C4,D5,E1; C4,D5,E2; C4,D5,E3;
C4,D6,E1; C4,D6,E2; C4,D6,E3;
C4,D7,E1; C4,D7,E2; C4,D7,E3;
C4,D8,E1; C4,D8,E2; C4,D8,E3;
C4,D9,E1; C4,D9,E2; C4,D9,E3;
C5,D1,E1; C5,D1,E2; C5,D1,E3;
C5,D2,E1; C5,D2,E2; C5,D2,E3;
C5,D3,E1; C5,D3,E2; C5,D3,E3;
C5,D4,E1; C5,D4,E2; C5,D4,E3;
C5,D5,E1; C5,D5,E2; C5,D5,E3;
C5,D6,E1; C5,D6,E2; C5,D6,E3;
C5,D7,E1; C5,D7,E2; C5,D7,E3;
C5,D8,E1; C5,D8,E2; C5,D8,E3;
C5,D9,E1; C5,D9,E2; C5,D9,E3;
C6,D1,E1; C6,D1,E2; C6,D1,E3;
C6,D2,E1; C6,D2,E2; C6,D2,E3;
C6,D3,E1; C6,D3,E2; C6,D3,E3;

C6,D4,E1; C6,D4,E2; C6,D4,E3;
C6,D5,E1; C6,D5,E2; C6,D5,E3;
C6,D6,E1; C6,D6,E2; C6,D6,E3;
C6,D7,E1; C6,D7,E2; C6,D7,E3;
C6,D8,E1; C6,D8,E2; C6,D8,E3;
C6,D9,E1; C6,D9,E2; C6,D9,E3;
C7,D1,E1;C7,D1,E2;C7,D1,E3;
C7,D2,E1; C7,D2,E2; C7,D2,E3;
C7,D3,E1; C7,D3,E2; C7,D3,E3;
C7,D4,E1; C7,D4,E2; C7,D4,E3;
C7,D5,E1; C7,D5,E2; C7,D5,E3;
C7,D6,E1; C7,D6,E2; C7,D6,E3;
C7,D7,E1; C7,D7,E2; C7,D7,E3;
C7,D8;E1; C7,D8,E2; C7,D8,E3;
C7,D9,E1; C7,D9,E2; C7,D9,E3;
C8,D1,E1; C8,D1,E2; C8,D1,E3;
C8,D2,E1; C8,D2,E2; C8,D2,E3;
C8,D3,E1; C8,D3,E2; C8,D3,E3;
C8,D4,E1; C8,D4,E2; C8,D4,E3;
C8,D5,E1; C8,D5,E2; C8,D5,E3;
C8,D6,E1; C8,D6,E2; C8,D6,E3;
C8,D7,E1; C8,D7,E2; C8,D7,E3;
C8,D8,E1; C8,D8,E2; C8,D8,E3;
C8,D9,E1; C8,D9,E2; C8,D9,E3;
C9,D1,E1; C9,D1,E2; C9,D1,E3;
C9,D2,E1; C9,D2,E2; C9,D2,E3;
C9,D3,E1; C9,D3,E2; C9,D3,E3;
C9,D4,E1; C9,D4,E2; C9,D4,E3;
C9,D5,E1; C9,D5,E2; C9,D5,E3;
C9,D6,E1; C9,D6,E2; C9,,D6,E3;
C9,D7,E1; C9,D7,E2; C9,D7,E3;
C9,D8,E1; C9,D8,E2; C9,D8,E3;
C9,D9,E1; C9,D9,E2; C9,D9,E3;

Each of the combinations may be administered orally, topically, preferably inhalative, In free
combinations the single active substances may be presented in the same or different
administration forms, chosen from the possibilities of oral, topical, and inhalative application,
Experimental part
The influence of monocompounds and their various combinations, also in three-in-one on
TNF secretion was investigated by using human monocytes, The study was approved by our
institutional Ethics Committee according to the International Declarations of Helsinki and
Tokyo,
Peripheral blood mononuclear cells (PBMCs) were isolated from heparinized blood samples
of healthy donors by density gradient centrifugation, An equal volume of Hanks buffer
(Invitrogen, Heidelberg, Germany) was added to heparinized whole blood samples, 15ml
Histopaque-1077 (Sigma, Deisenhofen, Germany) were overlayed with a maximum of 40ml
of blood/Hanks mixture and were centrifuged for 30 min at room temperature (2000 rpm), A
visible band containing PBMCs was transferred to a fresh tube and washed twice with
Hanks-buffer, Finally cells are seeded in RPMI 1640 Medium (Life Technologies, Heidelberg,
Germany) with Glutamax I (Gibco BRL, Eggenstein) and 10% FCS (Boehringer Mannheim,
Penzberg, Germany), After isolated, PBMCs were seeded in RPMI 1640 medium (Invitrogen,
Heidelberg, Germnay) with Glutamax I (Invitrogen, Heidelberg, Germany), PBMCs were
cultured in RPMI 1640 medium at 37 °C 5% CO2 overnight, Monocytes were isolated from
other cells by adherence method, non-adherent cells were removed by changing the
medium,
Cells were re-suspended at 106 cells/ml and incubated in 500μl volumes in 24-well tissue
culture plates (Falcon Becton Dickinson Labware, Heidelberg, Germany) at 37°C, 5%CO2,
After pre-incubation with test substances (0,5 μl / 500μl medium) for 30min, cells were
stimulated with lipopolysaccharide (LPS) (Sigma, Deisenhofen, Germany) (1 μg/ml), After 24
h of incubation, cells were sedimented by centrifugation, The supematants were harvested
and kept frozen at -80°C until protein determination,
Cytokine measurements in culture supematants were done by sandwich ELISA using
matched antibody pairs (BD Pharmingen, Heidelberg, Germany), ELISA plates (Maxisorb,
Nunc, Wiesbaden, Germany) were coated overnight with anti-cytokine monoclonal antibody
(mAb) in 0,1 M carbonate buffer, pH 9,5, After being washed, plates were blocked with Assay
Diluent (BD Pharmingen, Heidelberg, Germany) for 1h and washed again, Appropriately
diluted supernatant samples and standards were distributed in duplicates and the plates
were incubated for 2h at room temperature, Plates were washed, incubated for 1h with
working detector (biotinylated anti-cytokine antibody and Avidin-horseradish peroxidase
conjugate) (BD Pharmingen, Heidelberg, Germany), After washing, substrate (TMB and
hydrogen peroxide) was added, The reaction was stopped by adding of 1M H3PO4, Plates
were read at 450nm (reference 570nm) in a microplate reader (Dynatech, Alexandria, USA),

The results were expressed as a percentage of the control level of cytokines production by
cells stimulated in the absence of the compound,
Upon LPS-stimulation, basal TNFa release from monocytes increased from 328 pg/ml up to
7,258 pg/ml, R,R-glycopyrrolate alone did not influence the LPS-induced TNFa release up to
10 μmol/l,
The PDE4 inhibitor rolipram dose dependently inhibited the TNFa release, Maximum
inhibition was around 70%, Consequently, instead of IC50, the IC35-value was determined,
The IC35 for rolipram amounted to 68,9 ± 15,2 nM,
The corticosteroid budesonide also inhibited the TNFa release in a dose-dependent manner,
The IC50 for budesonide was 0,55 ±0,13 nM,
The ß2-adrenoceptor agonists formoterol in concentrations of up to 10 μM did not affect the
LPS stimulated TNF-α release
Based on the results from the single substances , in a first experiment the effect of the PDE4
inhibitor rolipram (10 nM) and the corticosteroid budesonide (0,1 nM) alone and in
combination, and in combination with R,R-glycopyrrolate (10 μM) on the LPS-induced TNFa
release from human PBMCs was investigated, The concentrations chosen for rolipram and
budesonide were considerably below their IC35 and IC50, respectively, The results are
summarized in Fig, 1,
ThePDE4 inhibitor rolipram dose dependently inhibited the TNFa release, Maximum
inhibition was around 70%, Consequently, instead of IC50, the IC35-value was determined,
The IC35 for rolipram amounted to 68,9 ± 15,2 nM,
The corticosteroid budesonide also inhibited the TNFa release in a dose-dependent manner,
The IC50 for budesonide was 0,55 ± 0,13 nM,
The ß2-adrenoceptor agonists formoterol in concentrations of up to 10 μM did not affect the
LPS stimulated TNF-a release
Based on the results from the single substances , in a first experiment the effect of the PDE4
inhibitor rolipram (10 nM) and the corticosteroid budesonide (0,1 nM) alone and in
combination, and in combination with R,R-glycopyrrolate (10 μM) on the LPS-induced TNFa
release from human PBMCs was investigated, The concentrations chosen for rolipram and
budesonide were considerably below their IC35 and IC50, respectively, The results are
summarized in Fig, 1,
As can be seen from Fig, 1, each drug alone hardly affected LPS-induced TNFa release, At
the intentionally low concentrations, each double combination caused only a minor inhibition
of TNFa secretion from PBMCs, In contrast, the three-in-one combination (budesonide,

rolipram and R,R-glycopyrrolate) resulted in statistically significant over-additive inhibition of
the TNFa release,
Similar results were seen for the three-in-one combination (formoterol, budesonide and R,R-
glycopyrrolate) which were evaluated in a second experiment, The double combination of
R,R-glycopyrrolate/formoterol and R,R-glycopyrrolate/budesonide caused only a minor
inhibition of TNF-a secretion, The double combination of formoterol/budesonide inhibited
TNF-α secretion by about 25%, In contrast, the three-in-one combination of formoterol,
budesonide and R,R-glycopyrrolate most effectively inhibited TNF-a secretion by about 50%,
This over-additive effect was statistically significant, The results are summarized in Fig 2,
The medications can be administered in different ways, such as metered-dosage inhalers
(MDIs), in dry powder inhalers (DPIs), and in another liquid formulation suitable for
inhalation, They can also be administered together in a single dosage form, Or they may be
administered in different dosage forms, They may be administered at the same time, Or they
may be administered either close in time or remotely, such as where one is administered in
the morning and the second is administered in the evening, The combination may be used
prophylactically or after the onset of symptoms has occurred, In some instances the
combination(s) may be used to prevent the progression of a pulmonary disease or to arrest
the decline of a function such as lung function,
These drugs, the anticholinergics, ß2-adrenoceptor agonist, the PDE4 inhibitors and GCs,
are usually administered as an aerosol, or as an inhaled powder, Presently available LTRAs
are administered orally, However, there is convincing evidence that LTRAs are also effective
when they are given topically, Zafirlukast administered topically into the eyes effectively
inhibit the development of symptoms and mediator release in an experimental model of
allergic conjunctivitis in rats (Papathanassiou et al, Inflamm Res 2004; 53:373-6) indicating
that they could also be administered as an aerosol or powder, This invention contemplates
either co-administering all drugs in one delivery form such as an inhaler that is putting all
drugs in the same inhaler,
As inhalable compositions pressurized metered dose inhalers, dry powders or inhalation
solutions without propellant can be considered, Among the latter are even sterile, ready for
use or just before use manufactured inhalation solutions, suspensions or concentrates as a
nebulizable composition in an aqueous and/ or organic medium, These dosage forms are
part of the present invention,
Pressurized metered dose inhalers with propellants may contain the active substances in
solution or in dispersion in a propellant, The propellants which can be used for inhalation
aerosols in this invention are well known: mainly halogenated hydrocarbon derivatives,
TG134a and TG227, or their mixtures are applied, Furthermore detergents (eg, oleic acid),
stabilizers (eg, sodium edetate), co-solvents (eg, propyleneglycol, polyethyleneglycol,
glycerol), antioxidants (eg, ascorbic acid), lubricants (eg, polyoxyethylene-glyceryl-trioleate)

or buffer systems or other excipients for pH adjustment (eg, hydrochloric acid) are normally
added, The active ingredient may have an average particle diameter of up to 5 urn,
A combination of ethyl alcohol and polyoxyethylene-25-glyceryl-trioleate (trade name: Tagat
TO) can be suitable used as a detergent/stabilizer/co-solvent/lubricant complex in a
concentration between 0,5 and 1,5 %,
The above mentioned aerosols containing a propellant, solutions or suspensions according
to the invention are administered by state of the art inhalers, so-called pressurized metered
dose inhalers (=pMDI), They can be equipped with different-sized metal or plastic stems
responsible for metering and release of the actives,
Administration of the medicament or pharmaceutical composition is preferably by inhalation,
The inhalable form of the medicament may be, for example, an atomizable composition such
as an aerosol comprising the active ingredients, separately or in admixture, in solution or
dispersion in a propellant, or a nebulizable composition comprising a dispersion of the active
ingredient in an aqueous/organic or medium, For example, the inhalable form of the
medicament may be an aerosol comprising a mixture of any composition according to the
invention in solution or dispersion in a propellant, or a combination of an aerosol containing
each single active substance in solution or dispersion in a propellant, In another example, the
inhalable form is a nebulized composition comprising a dispersion of the substances
according to the inventive combination in an aqueous or organic medium, or a combination of
dispersions of each substance in such a medium,
In another embodiment of the invention, the inhalable form is a dry powder, i,e, the
substances are present in a dry powder comprising finely divided each substance optionally
together with a finely divided pharmaceutically acceptable carrier, which is preferably present
and may be chosen from materials known as carriers in dry powder inhalation compositions,
for example saccharides, including monosaccharides, disaccharides, polysaccharides and
sugar alcohols such as arabinose, fructose, ribose, mannose, sucrose, trehalose, lactose,
starches, dextran or mannitol, An especially preferred carrier is lactose, The dry powder may
be in capsules of gelatin or plastic, or in blisters, for in a dry powder inhalation device,
Alternatively, the dry powder may be contained as a reservoir in a dose dry powder
inhalation device,
The inhalation powders according to this invention can be administered by the help of state
of the art dry powder inhalation devices for instance the Novolizer®, The inhalation powder
can be pre-metered in capsules (eg, gelatine) or blisters (aluminium pouches) or metered
just before use from a bulk reservoir, The active substances of the inventive combination can
be there in a fixed combination or both actives are in separate packaging units, that they can
be administered independent of each other from one device or a pack from two or more
different devices or simultaneously,
In the finely divided particulate form of the medicament, and in the aerosol composition
where the active ingredient is present in particulate form, the active ingredient may have an
average particle diameter of up to 4 μm, The finely divided carrier, where present, generally

has a maximum diameter up to approximately 500 μm and conveniently has a mean particle
diameter of 10 to 350 μm, preferably approx, 110 to 290 μm, The particle size of the active
ingredient, and that of the carrier where present in dry powder compositions, can be reduced
to the desired level by conventional methods, for example by grinding in an air-jet mill, ball
mill or vibrator mill, microprecipitation, spray-drying, lyophilisation or recrystallisation from
supercritical media,
The active ingredients may be given from 1 to 8 times a day, sufficient to exhibit the desired
activity, Preferably, the active components are given about once or four times a day, more
preferably once or twice a day,
The inhaled anticholinergic drug, can be administered in an amount of between 5 and 500
μg/day adult human with the preference of 15 to 300 μg/day,
ß2-adrenoceptor agonists can be administered in different amounts dependent on substance
used , for example for formoterol nominal doses of 1 to 20 ug , for salmeterol 10 to 200 μg,
The PDE4 inhibitor can be administered in an amount between 10 and 5000 ug/day adult
human with the preference of 50 to 2000 μg/day in dependence of the intensity of the airway
inflammation,
The glucocorticoid can be administered in an amount of between 50 and 2000 ug/day adult
human with the preference of 100 to 1000 mg/day in dependence of the intensity of the
airway inflammation,
The LT-receptor antagonist can be administered in an amount of between 1 and 1000 μg/day
adult human with the preference of 1 to 500 μg/day especially preferred 1 to 100 mg/day,
The active ingredients in all above aerosol formulations are preferably in the concentration of
0,01 wt% to 5 wt% of the total formulation,
For the treatment of Autoimmune diseases the drugs can preferably be administered either
by oral route or rectally as enema,
The anticholinergic drug, R,R-glycopyrrolate can be administered in an amount between 1
and 199 mg/day for adult patients with the preference of 5 to 50 mg/day,
Basically, the initial doses of oral corticosteroids (for example prednisolone) may vary from 5
mg to 60 mg per day depending on the specific disease entity being treated, In situations of
less severity lower doses will generally suffice while in selected patients higher initial doses
may be required, The recommended dosage of budesonide is 6-9 mg daily,
The usual dosage of PDE4 inhibitors are different: for example for cilomilast, it is at 30
mg/day or for roflumilast, it varies between 0,25 - 1 mg/day,

The dosages of LTRAs vary over a great band width: For example the usual daily dose of
montelukast amounts to 10 mg, Similarly, the daily dose of zafirlukast is 20 mg twice daily,
However, the dose of pranlukast is 225 mg twice daily,
It is contemplated that all active agents would be administered at the same time, or very
close in time, Alternatively, one drug could be taken in the morning and others later in the
day, Or in another scenario, one drug could be taken twice daily and the others once daily,
either at the same time as one of the twice-a-day dosing occurred, or separately, Preferably
all drugs would be taken together at the same time,

Claims
1, Combination of at least three different pharmaceutically active substances or their
physiologically acceptable salts selected from the group of anticholinergics, PDE4
inhibitors, glucocorticoids, ß2-adrenoceptor agonists and Leukotriene-receptor
antagonists for the treatment of inflammatory diseases,
2, Combination according to claim 1 where the anticholinergic is racemic glycopyrrolate,
one of its enantiomers, one of its diastereoisomers or their physiologically acceptable
salts or a mixture thereof,
3, Combination according to claim 1 where the PDE4 inhibitor is selected from a group
comprising rolipram, roflumilast, cilomilast, AWD-12-281 or their physiologically
acceptable salts,
4, Combination according to claim 1 where the glucocorticoid is selected from a group
comprising budesonide, fluticasone, mometasone, beclomethasone, ciclesonide,
triamcinolone, loteprednol, etiprednol, flunisolide or their physiologically acceptable salts,
5, Combination according to claim 1 where the ß2-adrenoceptor agonist is selected from a
group comprising salbutamol, terbutaline, salmeterol, formoterol, indacaterol, fenoterol,
reproterol, pirbuterol, bitolterol or their physiologically acceptable salts,
6, Combination according to claim 1 where the Leukotriene-receptor antagonist is selected
from a group comprising pranlukast, montelukast, zafirlukast or their physiologically
acceptable salts,
7, Combination according to any one of claims 1 to 6 where the inflammatory disease is a
respiratory disease, rheumatism or an auto-immune disease,
8, Combination according to claim 7 where the respiratory disease is asthma or COPD,
9, Combination according to claim 7 where the auto-immune disease is rheumatoid arthritis,
glomerulonephritis, multiple sclerosis, Crohn's disease, ulcerative colitis, systemic lupus
erythematosus or psoriasis

10, Combination according to any one of claims 1 to 9 comprising R,R-glycopyrrolate,
formoterol and budesonide or their physiologically acceptable salts,
11, Combination according to any one of claims 1 to 9 comprising R,R-glycopyrrolate,
rolipram and budesonide or their physiologically acceptable salts,
12, Pharmaceutical for the treatment of inflammatory diseases containing at least three
different pharmaceutically active substances or their physiologically acceptable salts
selected from the group of anticholinergics, PDE4 inhibitors, glucocorticoids, ß2-
adrenoceptor agonists and Leukotriene-receptor antagonists,
13, Pharmaceutical according to claim 12, where the anticholinergic is R,R-glycopyrrolate or
its physiologically acceptable salts,
14, Pharmaceutical according to claim 12, characterized in that it is an inhalable aerosol with
or without propellant,
15, Pharmaceutical according to claim 12, characterized in that it is an inhalable dry powder
16, Pharmaceutical according to claim 12, characterized in that it is an inhalable suspension
or solution,
17, Pharmaceutical according to any one of claims 12-16, presented in an inhaler,

18, Pharmaceutical according to any one of claims 14-17, characterized in that the active
substances are presented in fixed or free combination for simultaneous, sequential or
separate administration together with the usual excipients, adjuncts, and additives in a
pharmaceutical form suitable for inhalative application,
19, Pharmaceutical according to any one of claims 12 to 18 comprising R,R-glycopyrrolate,
formoterol and budesonide or their physiologically acceptable salts,
20, Pharmaceutical according to any one of claims 12 to 18 comprising R,R-glycopyrrolate,
rolipram and budesonide or their physiologically acceptable salts,

The invention relates to novel combinations based on anticholinergics, β2-adrenoceptor agonists, PDE 4 Inhibitors, glucocorticoids, and leukotriene-receptor antagonists, process for their production and their use for the treatment of inflammatory diseases, preferably respiratory diseases as bronchial asthma and chronic obstructive pulmonary diseases (COPD) or rheumatic or autoimmune diseases.

Documents:

01510-kolnp-2008-abstract.pdf

01510-kolnp-2008-claims.pdf

01510-kolnp-2008-correspondence others.pdf

01510-kolnp-2008-description complete.pdf

01510-kolnp-2008-drawings.pdf

01510-kolnp-2008-form 1.pdf

01510-kolnp-2008-form 2.pdf

01510-kolnp-2008-form 3.pdf

01510-kolnp-2008-form 5.pdf

01510-kolnp-2008-international publication.pdf

01510-kolnp-2008-international search report.pdf

01510-kolnp-2008-pct request form.pdf

1510-KOLNP-2008-(09-04-2014)-PETITION UNDER RULE 137.pdf

1510-KOLNP-2008-(13-12-2013)-ABSTRACT.pdf

1510-KOLNP-2008-(13-12-2013)-CLAIMS.pdf

1510-KOLNP-2008-(13-12-2013)-CORRESPONDENCE.pdf

1510-KOLNP-2008-(13-12-2013)-DESCRIPTION (COMPLETE).pdf

1510-KOLNP-2008-(13-12-2013)-DRAWINGS.pdf

1510-KOLNP-2008-(13-12-2013)-FORM-1.pdf

1510-KOLNP-2008-(13-12-2013)-FORM-2.pdf

1510-KOLNP-2008-(13-12-2013)-FORM-3.pdf

1510-KOLNP-2008-(13-12-2013)-FORM-5.pdf

1510-KOLNP-2008-(13-12-2013)-OTHERS.pdf

1510-KOLNP-2008-(13-12-2013)-PETITION UNDER RULE 137.pdf

1510-KOLNP-2008-(31-03-2014)-ABSTRACT.pdf

1510-KOLNP-2008-(31-03-2014)-CLAIMS.pdf

1510-KOLNP-2008-(31-03-2014)-CORRESPONDENCE.pdf

1510-kolnp-2008-ASSIGNMENT-1.1.pdf

1510-KOLNP-2008-ASSIGNMENT.pdf

1510-kolnp-2008-CANCELLED PAGES.pdf

1510-KOLNP-2008-CORRESPONDENCE 1.1.pdf

1510-KOLNP-2008-CORRESPONDENCE 1.2.pdf

1510-kolnp-2008-CORRESPONDENCE.pdf

1510-kolnp-2008-DECISION.pdf

1510-kolnp-2008-EXAMINATION REPORT.pdf

1510-kolnp-2008-FORM 18-1.1.pdf

1510-KOLNP-2008-FORM 18.pdf

1510-kolnp-2008-FORM 26.pdf

1510-kolnp-2008-GRANTED-ABSTRACT.pdf

1510-kolnp-2008-GRANTED-CLAIMS.pdf

1510-kolnp-2008-GRANTED-DESCRIPTION (COMPLETE).pdf

1510-kolnp-2008-GRANTED-DRAWINGS.pdf

1510-kolnp-2008-GRANTED-FORM 1.pdf

1510-kolnp-2008-GRANTED-FORM 2.pdf

1510-kolnp-2008-GRANTED-FORM 3.pdf

1510-kolnp-2008-GRANTED-FORM 5.pdf

1510-kolnp-2008-GRANTED-LETTER PATENT.pdf

1510-kolnp-2008-GRANTED-SPECIFICATION-COMPLETE.pdf

1510-kolnp-2008-INTERNATIONAL PUBLICATION.pdf

1510-kolnp-2008-INTERNATIONAL SEARCH REPORT & OTHERS.pdf

1510-kolnp-2008-OTHERS-1.1.pdf

1510-KOLNP-2008-OTHERS.pdf

1510-KOLNP-2008-PA.pdf

1510-kolnp-2008-PETITION UNDER RULE 137.pdf

1510-kolnp-2008-REPLY TO EXAMINATION REPORT.pdf


Patent Number 262646
Indian Patent Application Number 1510/KOLNP/2008
PG Journal Number 36/2014
Publication Date 05-Sep-2014
Grant Date 02-Sep-2014
Date of Filing 15-Apr-2008
Name of Patentee MEDA PHARMA GMBH & CO KG
Applicant Address BENZSTRASSE 1, 61352 BAD HOMBURG
Inventors:
# Inventor's Name Inventor's Address
1 MAUS, JOACHIM LUDWIGSTRASSE 30, 63165 MUHLHEIM
2 BAUHOFER, ARTUR FACHSPANN 12, 35039 MARBURG
3 SZELENYI, ISTVAN HANDELSTRASSE 32, 90571 SCHWAIG
4 CNOTA, PETER AM WINGERTSBERG 11H, 61348 BAD HOMBURG
5 KASTRUP, HORST HEEKWEG 55, 48161 MUNSTER
PCT International Classification Number A61K 45/06
PCT International Application Number PCT/EP2006/011536
PCT International Filing date 2006-12-01
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 60/752,058 2005-12-21 U.S.A.