Title of Invention

A PROCESS FOR CONTROLLING OF A QUENCHING DEVICE FOR A CONVERTER BRIDGE AND A QUENCHING DEVICE THEREOF

Abstract The invention relates to a method for controlling a quenching device (LOV) for a converter bridge (SRB) with line regeneration, whereby the converter bridge controlled by a network-timed control circuit (AST) by ignition pulses is connected with its" three points (1U1, 1V1, 1W1) to the phases (U, V, W) of a three-phase network and the two outputs (1C1, 1D1) of the bridge are connected to a direct-current motor (MOT) which feeds, when operated as a generator, current back to the three-phase network via the bridge. The quenching device is controlled by a trigger unit (ALE) which emits trigger pulses depending on the monitoring of electrical and temporary variables. The inventive device is characterized in that the measuring values "direct output current" and/or "supply voltages" are used to determine characteristic values which are compared with theoretical characteristics values. Depending on the result of said comparison, the quenching device is optionally activated.
Full Text DESCRIPTION
The invention relates to a method for controlling a quenching device for a converter bridge with line regeneration, whereby the converter bridge controlled by a network-timed control circuit by ignition pulses is connected with its three inputs to the phases of a three-phase network and the two outputs of the bridge are connected to a direct current motor, which feeds, when operated as a generator, current back to the three-phase network, and the quenching device is controlled by a trigger unit which emits trigger pulses depending on the monitoring of electrical and temporary variables.
The invention also relates to a corresponding quenching device.
With line-commutated converters, as are described for example in AT 404 414 B written by the applicant, faults in the voltage or current waveform, especially overvoltages and/or commutation errors, lead to a destruction of the expensive thyristors or switches of such a bridge.
In more precise terms the basic problem which arises with said line-commutated converters is that of shoot-through which occurs in feedback operation. In such cases an overcurrent arises on power outage and sufficient dc voltage, e.g. a corresponding armature voltage of the motor, which further increases and is also no longer able to be quenched by the converter itself. The inevitable result is then a triggering of fuses which are generally provided and are intended to protect the thyristors. The consequence is a longer downtime of the converter and of the motor fed by it since an appropriate period of time is required to replace the fuses
which are usually embodied as fast semiconductor fuses. Efforts were thus made to create various, sometimes complex devices, to limit and to interrupt the overcurrent or to either prevent a shoot-through or to end it in a controlled manner, such as in the above-mentioned patent of the applicant for example.
Fast direct current switches are known for example which lie in the direct current path. If their secure function is to be guaranteed, additional highly-controllable chokes are necessary to restrict the rise in the current and the costs are accordingly considerable, quite apart from the problematic dimensioning and regular maintenance required for secure operation.
Other methods for direct thyristor quenching with quenching capacitors are also known, for example the quenching of only one of the two halves of the converter bridge with a capacitor, whereby the motor current still fully loads the valves of the second half of the bridge until the motor current is completely reduced to zero and thereby protection is not possible in all cases. A similar method is the quenching of both bridge halves with two capacitors and with a voltage limitation in parallel to this in each case, which however allows overvoltages at the motor. In addition the stated methods do not protect against an overvoltage in the event of a power outage if there is a transformer between network and converter bridge.
One object of the invention lies in specifying a method for control of a quenching device, with which the thyristors of a converter with line regeneration can be quenched so quickly that the upstream semiconductor fuses of the thyristors individually or the converter as a whole, especially in the
case of a shoot-through, are protected before they melt or are damaged (ageing). Where fuses are present, the melting integral (I2t) should not be reached, with fuseless operation the limit load integral (I2t) of the thyristors may not be reached. In addition the converter should be protected from overvoltages, especially such as occur with power outages, above all for operation with a transformer, and which are often the cause of commutation errors and result in the destruction of the thyristors.
These objects are achieved by a method mentioned at the start in that, in accordance with the invention, the waveforms of at least two phases of the three-phase network are measured over a predeterminable range of the phase angle as a function of the phase angle, a characteristic value is determined from the waveform of the two phases as a function of the phase angle, the determined characteristic value is compared with a corresponding, theoretical characteristic value, and if the characteristic value determined from the measured values of the phases deviates by a predeterminable value from the theoretical characteristic value, the quenching device is activated.
As an alternative or in addition, said objects are achieved with a method mentioned at the start in that, in accordance with the invention, the motor direct output current is determined as a function of the time, the second derivation of the direct output current is formed according to the time, and for the case in which the second derivation assumes a value equal to or greater than zero in an area between two consecutive trigger points, the quenching device is activated.
In this way, solely by determining process variables ("output direct current", "three-phase voltage"), which are required in
any event for the normal function of the converter, criteria are derived on the basis of which the quenching device is activated. Determination of these criteria is thus relatively simple to arrange and leads to a reliable control of the quenching device.
Advantageous embodiments and developments of the invention are explained in the subclaims and will be explained in greater detail within the context of a description of the Figures.
The invention is explained in greater detail below with reference to the drawing. The Figures show
Fig. 1 in a schematic block diagram, a converter bridge triggered by a control circuit for supplying a direct current motor together with a quenching device with an associated trigger device,
Fig. 2a and 2b schematic diagrams of the three-phase network waveforms in conjunction with a first embodiment of the invention, and
Fig. 3 a current graph with a further alternative or additional embodiment of the invention.
For a better understanding of the invention, Figure 1 first shows a converter bridge triggered by a control circuit for supplying a direct current motor along with a typical quenching device with an associated trigger device. Such a quenching device is particularly well suited within the context of the invention, but basically other quenching devices can be used within the framework of the invention, which differ from the quenching device shown in some of their details which are not explained at any greater length here.
As can be seen from Figure 1, the three phases U, V, W of a
three-phase network are connected via commutation chokes Lu, Lv, Lw to the three-phase side of a converter bridge SRB. In this case a network fuse not shown in the drawing usually lies in each phase, as described for example in AT 404 414 B in conjunction with its Fig. 2. The controlled rectifier switches Vll, ..., V16 and V21, ..., V26 are embodied as thyristors or comparable components.
A control device AST is provided for both bridges which looks after network-timed ignition of the thyristors. By shifting the ignition times a speed or torque regulation can be undertaken in a known manner. The three-phase voltages of the network and the motor clamping voltage, as well as via two current converters Wu, Ww the phase currents are fed to the control circuit so that corresponding information is available for the regulation and the control of the rectifier bridge.
The two direct current terminals 1C1, 1D1 of bridge SRB are routed to a direct current motor MOT which, in generator operation, feeds current via the bridge consisting of the switches Vll, ..., V16 back to the three-phase network. It should be noted here that only generator operation (flow of energy into the network) is of interest in conjunction with the invention. The other bridge V21, ..., V26 can also operate in feedback mode if the motor EMC is present reversed (requires reversed direction of rotation). For the sake of simplicity the case will now be examined here in which the bridge consisting of switches Vll, V16 is also a bridge with line regeneration. No problem which requires an intervention in the sense of quenching can arise in the actual feeding bridge, regardless of which one this currently is. In concrete terms, if there is a power outage in a feeding bridge the current falls. For further understanding it should be remembered that the equivalent circuit can be shown as a
The direct current side of the diodes V41, , V46 arranged in a bridge circuit is connected via diodes V47 or V48 to the input of the voltage limiter SBG and to the protective capacitor C3. Within the course of the quenching process they make it possible to reduce the current in the commutation chokes on the one hand and in a normal operation of the converter bridges (motor and generator) the transfer of transient overvoltages from the network and of commutation voltage peaks from the converter itself.
The quenching process (for the polarity of the motor EMC shown in the drawing) will now first be explained below, in which case quenching capacitors Cl, C2 charged in accordance with the drawing are a prerequisite. Their charging will be explained further below.
On ignition of the quenching thyristors, V33 and V39, V40 by the trigger unit ALE the currents commutate both from the upper half bridge Vll, V13, V15 into the capacitor Cl, and also from the lower half bridge V14, V16, V12 into the capacitor C2, whereby all currents in the line regeneration converter Vll, ..., V16 are immediately quenched. Simultaneously with the emission of the quenching pulses (ignition pulses for the quenching thyristors) the ignition pulses for the bridge SRB are also blocked.
The voltages at the capacitors Cl, C2 oscillate through the motor current until the latter commutates via the thyristors V35 and V37 ignited shortly beforehand in the capacitor C3 present at the voltage limiter SBG. If the voltage at C3 has not yet reached the limiting level of the limiter SGB it is charged up to this by the motor current. It should be noted here that currents only flow through the thyristors V32, V34, V36 and V38 with reversed motor EMC.
The voltage limiter SBG and its function are discussed in greater detail below, in which case a requirement is that the polarity of the motor voltage (voltage at motor or device terminals) is reversed briefly, for around 11 ms, by the quenching process. Once the original motor voltage is reached again the motor current has increased slightly in relation to its initial value at the quenching point. The current in the armature inductance of the motor is only reduced to zero by a higher voltage and this voltage must be controlled by the voltage limiter SBG in the sense of a limitation to a maximum value.
The limitation is undertaken in a known manner by a controlled triggering of ballast resistors at the input terminals of the limiter SBG and thus at the protective capacitor C3. The ballast resistors are connected in a different clock pulse depending on the voltage level, with electrical energy being converted into heat energy. De facto a two-state controller is available with around 10% hysteresis which switches the ballast resistors on and off. 'To make a higher sum quenching voltage possible the voltage limiter SBG can only be switched off during the synchronization of the capacitors Cl, C2 via the thyristors V35, .../ V38. Four diodes could also be used here but since these necessarily form a bridge converter with C3 the said sum quenching voltage during the initial rectification would exceed the value of the instantaneous voltage of C3 and would cause a significant (unrestricted/damaging current surge). Therefore four quenching thyristors are used, which are ignited at around the time of the zero crossing of the capacitor voltages Cl and C2. The there is namely no longer the danger since the motor current, which commutates into the limiter as already described above, is predetermined (or impressed or quasi constant). The capacitor C3 designated as protection capacitor
could also be omitted with use of another limiter SBG, with voltage-dependent resistors or Zener diodes being considered here for example.
The voltage limiter SBG is however permanently connected via the already mentioned diodes V47, V48 to the diode bridge V41, ..., V46. This makes it possible for all overvoltages coming from the network to also be limited. For example significant overvoltages can occur which an upstream transformer is switched off under load. This is not discussed in any greater detail below.
To avoid permanent leakage power at the said resistors of the voltage limiter SBG, this can feature a further switch with a somewhat lower voltage threshold, at which the clocked ("chopped") resistors or a resistor possess or possesses a significantly higher resistance value than the given values of the voltage limiter.
It should be stated here that in a practical embodiment the chopped resistor effectively processes 250 mOhm. The implementation is undertaken in parallel through four IGBT switches and four resistors each with 1 Ohm. A current of 900 A flows through each resistor on limitation.
The two quenching capacitors Cl, C2 must be charged up to a part - typically 0.5 to 0.9 - of the peak value of the phase-to-phase ac voltage. The two capacitors Cl and C2 are charged in the reverse order after a quenching process. The circuit described below thus strictly speaking first causes a discharging to zero and only then a charging. The manner in which the two capacitors are charged is of no significance for the principle of invention, however an option for a charging circuit proven in practice, integrated into the overall circuit of the quenching device, is described below. For each
capacitor Cl or C2 this features two charge resistors Rl, R2 or R3, R4, which lead to the plus pole - Rl, R3 - or to the minus pole - R2, R4 - of the bridge circuit V41. V46. Switches, SI, S2, for Cl and S3, S4 for C2 which lie in series with the charge resistors Rl, R2 and R3, R4, are controlled by the two-state controller not shown in the drawing. Charging is only possible if the quenching thyristors are switched off. In addition, with this circuit this avoids a duplicate voltage load on the quenching thyristors V31 and V33, or V32 and V34.
When quenching occurs, immediately after the ignition of the quenching thyristors during the synchronization of the voltage at the quenching capacitors Cl and C2, these must be disconnected from the charge circuit by the previously-mentioned semiconductor switches SI .. S4 in order to prevent the quenching thyristors remaining conductive after a successful current reduction through the charge current. This would namely prevent a further charge process and the result would be an overloading of the charge resistors Rl, R4. As soon as the capacitors Cl and C2 are sufficiently charged again, a new quenching process can take place, with however the repeat frequency of quenching processes or the number of quenching processes within a specific period being determined by the dimensioning of the circuit, especially of the charge resistors and of the voltage limiter.
The overall circuit can be controlled by an analog circuit with microprocessor support for communication with the converter. The inventive method for a "trigger unit for a thyristor quenching device" will now be discussed in greater detail. The thyristor quenching device is triggered in this case on the basis of measured voltages and currents and/or times which are determined by suitable software for example.
In a first variant of the inventive method the waveforms of at least two phases, in the following the two phases U, V of the alternating current network, are measured as a function of the phase angles cp over a predeterminable area of the phase angle (p. In accordance with the invention, a characteristic value is determined from the waveform of these two phases U, V as a function of the phase angle c, whereby the determined characteristic value Agem is compared with a corresponding, theoretical characteristic value Athe; The process of determining the theoretical characteristic value is examined further on in this document.
If the characteristic value Agem determined from the measured values of phases U, V deviates by a predeterminable value from theoretical characteristic value, the quenching device LOV is activated. Mathematically this condition can also be formulated as
This means that the quenching device is activated if the measured characteristic value Agem is smaller by a specific amount than the theoretical characteristic value Athe-
Figures 2a and 2b show the actual situation in more detail. Figure 2a shows the theoretical waveforms of phases U, V, W (ac mains sine wave) by a thick line (slightly offset) showing the resulting theoretical ideal voltage curve at the output of the converter, which would be produced by an orderly commutation. Also shown is the instantaneous EMC of the motor.
This commutation to the next phase, i.e. from phase U to phase V, should have occurred by point in time tz. In the example shown in Figure 2b this does not occur since the network voltage exhibits a major interruption in phase U (dashed
line), so that, although a change to the new valve (phase V) takes place and current now flows via this phase V, the old valve (Phase U) is not quenched and current is still flowing vi^ this phase. For this reason the abnormal waveform of the voltage at the output of the converter drawn (with a thick line) appears, with the possible resulting detrimental effects .
At point in time tx the current on phase V cannot fully commute and continues to flow in phase U, since the blocking voltage time Agem was far too small.
With the first variant of the invention discussed this type of malfunction can be detected in advance and the quenching device LOV can be activated. In concrete terms a level Agem^ Athe is determined with the present variant as characteristic value which is limited by the waveforms of the phases U, V, with the level being calculated between a predeterminable lower phase angle cpmin and a predeterminable upper phase angle
9max-
The characteristic values are thus produced accordingly
Typical useful values are produced if the lower limit of the phase angle (pmin corresponds to the ignition angle cp or ignition end time tz for an ignition pulse for commutating the first phase U to the second phase V.
An integration usefully takes place only in that area in which V > U applies.
Commutation does not occur for the reason that the level blocking voltage time level Agem is too small since the
downwards-commutating thyristor pair needs a minimum blocking voltage time level Agem so that the charge carriers in the thyristors can be removed and the thyristors are capable of blocking. If this minimum level is not available, the transition of a thyristor pair to the next ("commutation") cannot take place. The old thyristor pair remains conductive. Since in this phase however the three-phase voltage goes in the direction of zero and then into the positive, the current in this path will rise quickly and lead to the fusing. If activated at the right time, the quenching device initially deflects the sharply rising current into the quenching capacitor and consequently reduces it to zero.
The upper limit cpmax/ essentially corresponds to the value of the phase angle in which the first phase U and the second phase V have the same value.
For an ignition angle of cpz = 150° the blocking voltage level Agem or Athe ends 30° after the ignition angle. However it can also be specified generally, i.e. for any given ignition angle, that an upper limit for the phase angle of maximum 30° after the ignition angle cpz is sufficient for integration. If, up to this point in time, no sufficient level has yet been produced by comparison with the theoretical blocking voltage level, the commutation has not in any way taken place correctly and the quenching device is activated to prevent an overcurrent becoming established.
As already mentioned the quenching device LOV will be activated if the measured level Agem is smaller by a specific amount than the theoretical level Athe- The use of the value 0.5 for the above-mentioned factor k has been proven in practice in such cases. Taking this relationship into account an overcurrent can be reliably prevented from becoming
established.
Finally it should also be mentioned that to calculate the theoretical level Athe for the waveforms of the phases U, V, a cosine or sine wave form is assumed for the phase angle dependency.
To calculate the theoretical level Athe the waveforms of two
consecutive phases are used, but every 3.3 ms (=1/6 of the
network period) 2 other phases will be used, i.e. first U and
V, then V and W, then W and U etc.
A further second variant of an inventive method for activating the quenching device makes provision for the motor output direct current IA (also referred to previously in the description as Imotor) to be determined as a function of the time, the second derivation of the output direct current IA to be formed in accordance with the time and for the case in which the second derivation assumes a value equal to or greater than zero in an area between two consecutive ignition times tzi, tZ2;tZ2, tzs; tza, for the quenching device LOV to be activated.
Figure 3 shows a typical waveform of the motor output direct current IA as a function of the time t or the phase (p. Between the ignition times tzi and tz2 or tZ2 and tz3 the waveform of IA exhibits a typical waveform, only at the ignition times tzi, with 1=1, 2, 3 does the waveform changed abruptly; This is normal however since at this point in time a new thyristor pair is ignited. The quenching device is not activated at this point in time.
If however the current waveform exhibits an untypical waveform, such as is the case at point in time tu - at this point in time the waveform changes from IA as function of the
time abruptly, although this time tu lies after the ignition time tz3a but still before the next ignition time - meaning that at this point the converter is not in an orderly state since no new thyristor pair is ignited here. Thus the quenching device is activated at this time.
For each current cup it must thus be the case that
d2IA/dt2 that as a result of a failure of the three-phase voltage an
overcurrent will form within a short time and the quenching
device can already be activated before an overcurrent is
reached.
Variant 1 and variant 2 are suitable separately for controlling the quenching device, however it is advantageous for both variants to be used simultaneously. Both variants are suitable for activating the quenching device before an overcurrent is reached.
Variant 1 is especially suitable for detecting the establishment of an overcurrent at a point in time around the ignition time, while variant 2 is suitable above all in an area between two ignition times.
In this case with variant 2 - regardless of whether it is used together with or independently of variant 1 - the output direct current IA will be measured directly on the motor side, or, in a method which is easier to implement in many cases and provides comparatively good results, the output direct current IA is derived from at least two three-phase currents.
The quenching device can be already activated before an overcurrent can occur by variants 1 and/or 2. This protects all operating resources such as motors, fuses, thyristors, circuit breakers etc. in the best possible manner.
In the sense of an uninterruptible operation it is however necessary for no incorrect activation to occur, meaning that the quenching device is not activated without a good reason. If the variants 1 and/or 2 are designed so that they only activate the quenching device if a commutation is certainly not possible - for example by corresponding choice of parameter k in variant 1 - then it is additionally also useful
H*
for a further protective device to be provided if the commutation still fails.
To this end further provision is made for the motor output direct current IA to be determined and for the quenching device to be activated if a predeterminable threshold value IAs of the monitored output direct current.is exceeded.
A typical value for this threshold value in this case is two and a half to three times the rated current of the converter bridge SRB (see Figure 3).
Finally a number of examples of operating (error) states are provided which can be managed by the inventive quenching device.
With lightning strikes in high-voltage or medium-voltage equipment protective paths or gas—filled overvoltage protection elements are ignited. These then burn until the next current zero crossing. This produces a low-resistance power outage lasting between 3 and 20 ms. However a longer failure of the three-phase voltage can also occur in which one or more transformers or other loads hold the network at low resistance at zero.
With a short-circuit on a parallel circuit on the same network a power outage only occurs initially. The assigned fuse then melts and disconnects the faulty circuit from the network. A
short overvoltage pulse then occurs in this way, in which case the duration and the strength of the outage depend on the network impedance and the error current.
Further possibilities for low-resistance power outages are all types of short circuits on the supply network.
In the examples given which all relate to low-resistance power outages and with simultaneous line equalization via the converter in the same network, the motor current immediately increases in accordance with the EMC and the armature inductance plus a network impedance until the triggering unit requests the quenching device to switch it off. The average switch-off time, i.e. the time until the motor current has fallen to zero, amounts to around 5 ms. Any overvoltage peaks when the power returns are limited as described above.
When a main circuit breaker directly in front of the converter is switched off the commutation inductances and the anchor inductance must be able to be discharged. This is achieved by the mains voltage limiting which is always active as described above. This means that there is no shoot-through, but without such an overvoltage protection there is often cross ignition. The energy reduction mainly takes place in the main circuit breaker, which however is to be avoided simply because of contact wear.
On switching off a feed transformer, e.g. at the medium-voltage level, the higher internal resistance of the network does not cause any significant current increase (on shoot-through) to occur. Specific thyristors in the converter however no longer quench and the result is a cross-igniter. This condition is likewise detected in good time and the quenching device initiates a switchover of the current. Any overvoltages occurring through demagnetization of the said
transformer are in turn limited by the quenching device (diode bridge V41, ..., V46 via V47, V48 to C3 in parallel to the voltage limiter).






We Claim:-
1. A process for controlling of a quenching device (LOV)
for a converter bridge with line regeneration (SRB),
wherein converter bridge controlled by a network- timed
control circuit (AST) with ignition pulses is connected
with its three inputs (1U1,1V1,1W1) to the phases
(U,V,W) of a three-phase network, and the two outputs(1C1,1D1) of the bridge are connected to a direct -current motor (MOT) which feeds, when operated as a. generator, current back into the three-phase network via the bridge, measuring the wave forms of at least two phases (U,V) of three phase converter as a function of the phase angle cp over a predeterminable area of the phase angle cp, determining the characteristic value (Athe) from the waveform of two phases (U,V) as a function of the phase angle cp, comparing the determined characteristic value (Agem) to a corresponding theoretical characteristic value (Athe), controlling the quenching device by a trigger unit emitting trigger pulses depending upon the monitoring of electrical and' temporary variables enabling the quenching device to be activated when determined characteristic value (Agem) compared to the theoretical characteristic value determined from the measured value of the phases (U,V) deviates by a predeterminable value from the theoretical characteristic value.
2. A process as claimed in claim 1, wherein the
characteristic value is an area (Agem/Athe) which is
limited by the waveforms of the phases (U, V) , with the
area being calculated between a predeterminable lower-phase angle (man) and a predeterminable upper phase angle
(φmax) .
3. A process is claimed in claim 2, wherein the area (Agem,
Athe) is calculated according to the formula
(Formula Removed)
4. A process as claimed in claim 2 or 3, wherein the lower limit of the phase angle (man) corresponds to the ignition angle (φz) for an ignition pulse for commutation of the first phase (U) to the second phase (V).
5. A process as claimed in one of the claims 2 to 4,
wherein the upper limit (φmax) essentially corresponds to
the value of the phase angle at which the first phase (U) and the .second phase (V) have the same voltage value.
6. A process as claimed in one of the claims 2 to 5, wherein the upper limit for the phase angle lies a maximum of 30° after the ignition angle (φz) .
7. A process as claimed in one of the claims 2 to 6, wherein the
quenching device (LOV) is activated if the measured level (Agem)
is smaller by a specific amount than the theoretical level (Athe).
8. A process as claimed in any of the preceding claims, wherein the motor output direct current (IA) is. determined as a function of the time, the second derivation of the output direct current (IA) is formed according to time, and for the case in which the second derivation in an area between two consecutive ignition times • (tz1, tz2; tz2, tz3; tz3, tz4) assumes a value equal to or greater than zero, the quenching device (LOV) is activated.
9. A process as claimed in claim 9 or 10, wherein the output direct current (IA) determined as a function of the time is measured directly on the motor side.
10. A process as claimed in claim 9 or 10, wherein the output direct current (IA) is derived from at least two network currents ( ).
11. A process as claimed in any of the preceding claims, wherein the motor output direct current (IA) is determined and the quenching device is activated if a predeterminable threshold value (IAS) of the monitored output direct current is exceeded.
12. A process as claimed in claim 11, wherein the threshold value (IAS) corresponds to three times the rated current of the converter bridge (SRB).
a. A Quenching device (LOV) for a converter bridge with line regeneration (SRB), controlled in accordance with a process as 'claimed in claim 1, comprising converter
bridge controlled by a network-time control circuit (AST) with ignition pulses connected with its three inputs (1U1, 1V1, 1W1) to the phases (U, V, W) of a three-phase network and the two outputs (1C1, 1D1) of the bridge are connected to a direct-current motor (MOT) which feeds, when operated as a generator, current back into the three-phase network via the-bridge, and the quenching device is controlled by a trigger unit (ALE) which emits trigger pulses depending on the monitoring of electrical and temporary variables.
13. Quenching device as claimed in claim 12, wherein the quenching device (LOV) for each half of the bridge (Vll, V13, V15; Vll', V13', V15' or V14, V16, V12; V14', V16', V12') comprises a quenching capacitor (Cl or C2) to be charged by a charge circuit (Rl, S1, R2, . S2 or R3, S3, R4, S4) to a defined quenching voltage, and the quenching capacitors are able to be connected to the halves of the bridge for quenching with the aid of switches (V31, V32, V39 or V34, V33, V40) activated by the trigger unit (ALE).

Documents:

350-delnp-2007-(21-08-2014)-Form-1.pdf

350-DELNP-2007-Abstract-(22-03-2011).pdf

350-delnp-2007-abstract.pdf

350-delnp-2007-Assignment-(17-03-2011).pdf

350-delnp-2007-Claims-(09-09-2014).pdf

350-delnp-2007-Claims-(21-08-2014).pdf

350-DELNP-2007-Claims-(22-03-2011).pdf

350-delnp-2007-claims.pdf

350-DELNP-2007-Correspondence Form-1 (09.09.2014).pdf

350-delnp-2007-Correspondence Others-(05-04-2011).pdf

350-delnp-2007-Correspondence Others-(09-09-2014).pdf

350-delnp-2007-Correspondence Others-(21-08-2014).pdf

350-DELNP-2007-Correspondence Others-(22-03-2011).pdf

350-delnp-2007-Correspondence-Others-(17-03-2011).pdf

350-delnp-2007-correspondence-others-1.pdf

350-DELNP-2007-Correspondence-Others.pdf

350-DELNP-2007-Darwings-(21-08-2014).pdf

350-delnp-2007-description (complete).pdf

350-delnp-2007-drawings.pdf

350-delnp-2007-Form-1-(05-04-2011).pdf

350-delnp-2007-Form-1-(17-03-2011).pdf

350-DELNP-2007-Form-1-(22-03-2011).pdf

350-delnp-2007-Form-1.pdf

350-DELNP-2007-Form-13-(22-03-2011).pdf

350-DELNP-2007-Form-13.pdf

350-delnp-2007-form-18.pdf

350-delnp-2007-Form-2-(09-09-2014).pdf

350-delnp-2007-Form-2-(21-08-2014).pdf

350-DELNP-2007-Form-2-(22-03-2011).pdf

350-delnp-2007-form-2.pdf

350-DELNP-2007-Form-26.pdf

350-delnp-2007-Form-3-(09-09-2014).pdf

350-delnp-2007-Form-3-(21-08-2014).pdf

350-DELNP-2007-Form-3-(22-03-2011).pdf

350-DELNP-2007-Form-3.pdf

350-delnp-2007-Form-5-(09-09-2014).pdf

350-delnp-2007-Form-5-(21-08-2014).pdf

350-delnp-2007-form-5.pdf

350-delnp-2007-Form-6-(17-03-2011).pdf

350-delnp-2007-GPA-(17-03-2011).pdf

350-delnp-2007-GPA-(21-08-2014).pdf

350-delnp-2007-pct-210.pdf

350-delnp-2007-pct-304.pdf

350-DELNP-2007-Petition 137-(22-03-2011).pdf

350-DELNP-2007-Petition Form-1 (09.09.2014).pdf


Patent Number 263092
Indian Patent Application Number 350/DELNP/2007
PG Journal Number 41/2014
Publication Date 10-Oct-2014
Grant Date 30-Sep-2014
Date of Filing 12-Jan-2007
Name of Patentee SIEMENS AKTIENGESELLSCHAFT
Applicant Address WITTELSBACHERPLATZ 2, D-80333, MUNICH, GERMANY
Inventors:
# Inventor's Name Inventor's Address
1 BIRIBAUER, THOMAS ADAM-BETZ-GASSE 15,1220 WIEN, AUSTRIA
2 HACKL, FRANZ PACASSISTR. 7, A-1130 WIEN, AUSTRIA.
3 HOFMULLER, WILFRIED ANTON-WILDGANS-GASSE 3, A-2000 STOCKERAU, AUSTRIA.
4 PICHORNER, HEINZ LANGOBARDENSTRASSE 126/9/45, A-1200 WIEN, AUSTRIA.
5 RITSCHEL, WILHELM MENDELSSONHNGASSE 9-13/3/12, A-1220 WIEN, AUSTRIA.
6 WOHRER, FRANZ WAGRAMER STRASSE 25/3/78, A-1220 WIEN, AUSTRIA.
PCT International Classification Number H02P 7/28
PCT International Application Number PCT/EP2005/007493
PCT International Filing date 2005-07-11
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 A 1198/2004 2004-07-14 Austria