Title of Invention

"IMPROVEMENT OF INTESTINAL BARRIER INTEGRITY"

Abstract The invention concerns a method for sumulatiriii barrier integrity in a mamroil by ;tcf:iimsti;:rmj 10 a mammal a composition comprising: eicosapcntaenoic acid (EPA), docosalie\aenoic acid (DHA) and arachidcmic acid (ARA >, and at least two distinct oligosaccharidfts.
Full Text IMPROVEMENT OF INTESTINAL BARRIER INTEGRITY
FIELD OF THE INVENTION
The present invention relates to a method for improving intestinal barrier integrity and a composition suitable for use in such method.
BACKGROUND OF THE INVENTION
The gastrointestinal epithelium normally functions as a selective, barrier perrmUmg the . absorption of nutrients, electrolytes and water and preventing the exposure to dietary and rnicrobial antigens, including food allergens. The gastrointestinal .:pi'.helium limits the passage of antigens to the systemic circv.htion, that may be CCU..M;.: ;nfla:~matory reactions, e.g. allergic reactions. As the incidence of allergy, parxjuu;;, i:.H)>_ jilergy, is increasing, many research groups search for (preventive) cures for ii>c^ ailments.
EP1272058 describes a composition containing indigestible oii.'.^sac'har.des for improving tight junction to redxice intestinal permeability .mo :.-iljcmg allergic reaction. The composition may comprise LC-PUFA's (long cha:n-pol>-.n:sarai-^:ed favy acids).
EP 745001 describes a combination of indigestible oligosaccharidoi and n-'} and n-6 fatty acids for treatment ulcerative colitis.
Usami et al (Clinical Nutrition 2001, 20(4): 351-359) de;ait«e the effect of eicosapentaenoic acid (EPA) on tight junction permeability in intestinal monolayer cells. In their hands, EPA was found to increase permeability, indicating tha: KPA is unsuitable to improve intestinal barrier integrity.
The prior art formulations are not optimally suited for improving bairn.-: intesnty.
SUMMARY OF THE INVENTION
The present invention provides a combination of selected long clum pclyunsaturated fatty acids (LC-PUFA's) and selected oligosaccharides. The presetu combination of LC-PUFA's and oligosacchaiides effectively improves hamci integrity, by
synergistically improving intestinal permeability and mucus production, and is particularly suitable for improving barrier integrity in human infants.
It was surprisingly found that selected LC-PUFA's effectively reduce epithelial paracellular permeability. In contrast to what Usami et al (Clinical Nutrition 2001, 20(4): 351-359) have reported, die present inventors found that CIS and C20 polyunsaturated fatty acids, particularly eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and arachidonic acid (ARA), are capable of effectively voducing intestinal tight junction permeability.
In addition to the LC-PUFAs, the present composition contains oligosaccharides. The selected oligosaccharides improve the barrier integrity by stimulating the production of the mucus, which results in an increased mucus layer thickness. It is believed this effect is caused by the effects of the distinct oligosaccharides on the short chain fatty acid (SCFA) production. Hence, when enterally administered to a mammal, the present combination of LC-PUFA and indigestible oligosaccharides synergistically improve barrier integrity and/or synergistically reduce intestinal permeability by simultaneous
*--
reduction of tight junction permeability and stimulation of mucus production.
In a further aspect, the present composition improves the quality of the, intestinal mucus layer. The mucus layer comprises mucins. Mucins are high molecular mass glycoproteins that are synthesized and secreted by goblet cells. They form a gel-like layer on the mucosal surface, thereby improving barrier integrity The mucus layer comprises different types of mucins, e.g. acid, neutral and sulphonatcd mucins. An increased heterogeneity of the mucus layer is believed to improve barrier functionality.
The present composition preferably comprises at least two different oligosaccharides, which influence the mucosal architecture and advantageously influence mncin heterogeneity in the mucus layer, either directly or by changing the intestinal flora. Each different selected oligosaccharide is believed to have a different effect on mucus quantity and quality. Moreover, the two distinct oligosaccharides are also able to stimulate quality of mucus as reflected by the degree of sulphation through their synergistic stimulation of SCFA production, It was surprisingly found by the present
inventors that a mixture of two different oligosaccharides according to the present invention synergistically stimulates acetate production. It was also found by the present inventors mucus production is dependent on acetate production.
The present composition is preferably further improved by providing both long- and short-chain oligosaccharides, The supply of different chain lengths results in stimulation of mucus production in different parts of the ileum and colon. The short chain oligosaccharides (typically with a degree of polymerisation (DP) of 2,3,4 or 5) stimulate mucin production in the proximal colon and/or distal ileurn, while the oligosaccharides with longer chain lengths (preferably with a degree, oi polymerisation (DP) of more than 5 up to 60) are believed to stimulate mucin production in the more distal parts of the colon.
Even further improvements can be achieved by providing the at least two different oligosaccharides both as short-ch;iin and long-chain oligosaccharidf.s. These preferred embodiments all contribute to further improved barrier integrity throughout the ileum andyor colon.
Furthermore, it was surprisingly round that EPA, DHA and ARA WOK: able to reduce the harmful effects of interleukin 4 (IL-4) on intestinal permeability. IL-4 is a cytokine which is secreted in increased amounts by mucosal T-cells i» certain patients and induces intestinal permeability. Hence the present invention also p/ovuies for a method for the treatment and/or prevention of diseases wherein intestinal 11.4 concentration is increased, such as allergy, particularly atopic dermatitis.
DETAILED DESCRIPTION OF THE INVENTION
The present invention relates to a nutritional composition comprising:
a) EPA, DHA and ARA, wherein the content of long chain polyunsuiurated fatty acid
with 20 and 22 carbon atoms does not exceed 15 wt.% of the loUi) I'at content; and
b) at least two distinct oligosaccharides, wherein the two distinct uligosaccharides
have a homology in monose units below 90 %.
This composition can be advantageously used in a method for stimulating intestinal barrier integrity, said method comprising administering to a mammal stud composition.
Polyunsaturjted fatty acids
The present inventors surprisingly found that eicosapentaenoic acid (EPA, n-3), docosahexaenoic acid (DHA, n-3) and arachidonic acid (AJRA, n-6) effectively reduce intestinal tight junction permeability. Hence the present composition, which is particularly suitable for improving intestinal barrier integrity, cornpuses EPA, DHA and ARA.
The present inventors found that lower concentration of LC-PUFA's, were effective in reducing tight junction permeability (see Examples vs. Usami et al), Hence, the content of LC-PUFA with 20 and 22 carbon atoms in the present composition, preferably does not exceed 15 wt.% of the total fat content, preferably does not exceed 10 wt.%. even more preferably does not exceed 5 wt.% of the, total fat content. Preferably the present composition comprises at least 0.1 wt.%, preferably at least0.25 wt, more preferably at least 0.5 wt.%, even more preferably at least 0.75 wt.% LC-PUFA with 20 and 22 carbon atoms of the total fat content. For the same reason, the EPA content preferably does not exceed 5 wt.% of the total fat, more preferably does not exceed 1 wt.%, but is preferably at least 0.05 wt%, more preferably at least 0.1 wt.% of ihe total fat. The DHA content preferably does not exceed 5 wt.%, more preferably does not exceed 1 wt.%, but is at least 0.1 wt% of the total fat. As ARA was found lo be particularly effective in reducing tight junction permeability, the present composition comprises relatively high amounts, preferably at least 0.1 wt.%, even more prefer,ihly ar least 0.25 wt.%, most preferably at least 0.5 wt.% of the total fat. The ARA content preferably does not exceed 5 wt.%, more preferably does not exceed 1 wt.% of (he total fat. In the present ARA containing enteral composition, EPA and DHA are advantageously added to balance the action of ARA, e.g. reduce the potential proinflammaiory action of ARA metabolites. Excess metabolites from ARA may cause inflamnijuiou. Hence, the present composition preferably comprises ARA, EPA and DMA, wlieieiu the weight ratio ARA/DHA preferably is above 0.25, preferably above 0.5, even more preferably above 1. The ratio is preferably below 25. The weight ratio AR A/EPA is preferably between 1 and 100, more preferably between 5 and 20.
The present composition preferably comprises between 5 and 75 wt.'Jr poiyunsaturated fatty acids based on total fat, preferably between 10 and 50 wt.%.
If the present composition is used as an infant formula (e.g. a method for feeding an infant, said method comprising administering the present composition to an infant), the content of LC-PUFA, particularly the LC-PUFA with 20 and 22 carbon atoms, preferably does not exceed 3 wt,% of the total fat content as it is desirable to mimic human milk as closely as possible. For the same reason, the omegao LC-PUFA content preferably does not exceed 1 wt.% of the total fat content; the oim-r,;i-6 LC-PUFA content preferably does not exceed 2 wt.% of the total fat content; :u Af The LC-PUFA with 20 and 22 carbon atoms may be provided as tree Tatty acids, in triglyceride form, in phospbolipid form, or as a mixture of one of more of the above. The present composition preferably comprises at least one of ARA and DHA in phospholipid form.
The present nutritional composition preferably also provides ome^a-y Qlieosaccharides
Suitable oligosaccharides according to the invention are saccharuks which have a degree of polymerisation (DP) of at least 2 monose units, which ore not or only partially digested in the intestine by the action of acids or digestive enzymes present in the human upper digestive tract (small intestine and stomach;, but which are fermentable by the human intestinal flora. The term monose units jek-rs to units having a closed ring structure, preferably hexosc, e.g. the pyranose or furojjose forms. The degree of polymerisation of the oligosaccharide is typically below 60 monose units, preferably below 40, even more preferably below 20.
The present composition comprises at least two different oligosaccharides, wherein the oligosaccharides have a homOlogy in monose units below about 90%. preferably below 50%, even more preferably below 25%, even more preferably below 5%. The term "homology" as used in the present invention is the cumulative of the percentage of same monose units in the different oligosaccharides. For example, oligosaccharide 1 (OL1) has the structure fruc-fruct-glu-gal, and thus comprises 50% hue, 25% gal and 25% glu. Oligosaccharide 2 (OL2) has the structure fruc-fruc-glu, mid thus comprises 66% fruc, 33% glu. The different oligosaccharides thus have a homology of 75% In a preferred embodiment, the present composition comprises galactuoligosaccharides and at least one selected from the group consisting of fructooligosaecli.'irides and inulin.
Each of the present oligosaccharides preferably comprises at least 66%, more preferably at least 90% monose units selected from the group consisting of mannose, arabmose, fructose, Sicose, rhamnose, galactose, p-D-galactopyranose, ribose. glucose, xylose, uronic acid and derivatives thereof, calculated on the tola! number of monose units contained therein.
According to a further embodiment at least one of the oHgosacchnrides of the present composition is selected from the group consisting of fructans, fmciooligosarcharides, indigestible dextrins galactooligosaccharides (including transgaJacrouligosacchandes), xylooligosaccharides, arabinooligosaccharicies, glucooligosacchaudr.s, rnannooligo-saccharides, fucooligosaccharides, acidic oligosaccharides (see below, e.g. uronic acid oligosaccharides such as pectin hydrolysate) and mixtures thereof. Preferably the present composition comprises at least one, preferably at k-uit two, of the oligosaccharides selected from the group consisting of fructooligusao:harides or inulin, galactooligosaccharides and pectin hydrolysate.
For good mucus quantity and quality, the present composition pieferitbly comprises at least one oligosaccharide, which comprises at least 66% galaio:^ or fructose as a monose unit. In a preferred embodiment the composition comprises at least one
oligosaccharide which comprises at least 66% galatose as a monose unit and at least one oligosaccharide which comprises at least 66% fructose as a monose unit. In a particularly preferred embodiment, the present composition comprises galactooligosaccharide and an oUgosaccharide selected from the group consisting of tructooligosaccharides and inulin. Fructooiigosaccharides stimulate sulfomucm production in the distal colon of human flora-associated rats (Kleesscn et al. (2003) Brit J Nutr 89:597-606) and galactooligosaccharides stimulate the acid mucin production (Meslin et al, Brit. J.Nutr (1993), 69: 903-912)).
For further improvement of mucus layer thickness over the whole area of the cc '.on, at least 10 wt.% of the oligosaccharides in the present composition has a DP of 2 to 5 (i.e. 2, 3,4 and/or 5) and at least 5 wt.% has a DP of 10 to 60. Preferably ai least 50 ^vt.Tc, more preferably at least 75 wt.% of the oligosaccharides have a DP of 2 u> 9 (i.e 2, 3, 4, 5,6, 7,8, and/or 9), because these are believed to work throughoui the ileum arid proximal and middle parts of the colon and because the weight percentage of oligosaccharides that needs to be incorporated in the composition to acliicve tru- desired effect is reduced. ^
Preferably the weight ratios:
a. (oligosaccharides with DP 2 to5): (oligosaccharides with DP 6.7,!i and/or 9 > 1:
and
b. (oligosaccharides with DP 10 tof»0): (oiifosaccharides with DP (>,'/,8 and/c: 9) > 1
are both above 1.
Preferably both weight ratios are above 2, even more preferably above .1
For even further improvement of mucus layei thickness and qualjiy over the wr.ole area of die colon, preferably each of the at least two different oligosaccti.uides are provided in different chain lengths, preferably at least 10 wt.% of each oli^osnccharide based on the total weight of the respective oligosacdiaride has a DP of 2 to 5> (i.e. 2, 3, 4 .md/or 5) and at least 5 wt.% has a DP between 10 and 60. Preferably at kast 50 wt.^r. more preferably at least 75 wt.% of the oligosaccharide based on the total weight of :hat
oligosaccharides has a DP between 2 and 10, because these are believed to work throughout in the ileum and proximal and middle parts of the colon.
Acidic oligosaccharides
To further improve barrier integrity, the present composition preferably includes acidic oligosaccharides with a DP between 2 and 60. The term acid oligosaccharide refers to oligosaccharides comprising at least one acidic group selected I mm the group consisting of N-acetylneuraminic acid, N-glycoloylneuraminic acid, lice or esterified carboxylic acid, sulfuric acid group and phosphoric acid group. The acidic oligosaccharide preferably comprises uronic acid units (i.e. uronic acid polymer), more preferably galacturonic acid units. The acid oligosaccharide may be a homogeneous or ^heterogeneous carbohydrate. Suitable examples are hydrolysatcs of pectin and/or alginate. In the intestinal tract, the uronic acid polymers are hydroly>al to uronic acid monomers, which stimulate production of intestinal acetate, which iu turn stimulates intestinal mucus secretion (Barcelo et al., Gut 2000; 46:218-224). Preferably the acid oligosaccharide has the structure I below, wherein the terminal hexose (left) preferably comprises a double bond. The hexose un.it> other than the terminal hexose unit(s) are preferably uronic acid units, c.ven more preferably galacturonic acid units. The carboxylic acid groups on these unit-, may be free or (partly) esterified, and preferably at least 10% is methylated (see below).
Structure I: Polymeric acid oligosaccharide
wherein:
R is preferably selected from the group consisting of hydrogen, hydr
preferably hydroxy; and
r acid group,
at least one selected from the group consisting of R2, RS, Rt and RS repiesents N-acetylneuramiruc acid, N-glycoloylneuraminic acid, free or esterified carhoxylic acid, sulfuric acid group and phosphoric acid group, and the remaining of R?., IM, R4 and R5 representing hydroxy and/or hydrogen. Preferably one selected from the group consisting of R2, Rj, R4 and Rs represents N-acetylneuraminic acid, N glycoloylneuraminic acid, free or esterified carboxylic acid, sulfuric acid group or phosphoric acid group, and the remaining represent hydroxy and/or hydiogen. Even more preferably one selected from the group consisting of R2, R3, R.i and R5 represents free or esterified carboxylic acid and the remaining of Rj, R3, R4 and ). n is an integer and refers to a number of hexose units (see also D«gK-f of Polymerisation, below), which may be any hexose unit. Suitably n is an integer between 1-5000. Preferably the hexose unit(s) is a uronic acid unit. Most preferably RI, Ra and RS represent hydroxy, R4 represent hydrogen, R5 represents carboxylic acid, n is any number between 1 and 250, preferably between 1 and 10 and the hexose unit is galacturonic acid.
The detection, measurement and analyses of the preferred acid oligosaccharides as used in the present method are given in applicants earlier patent application relating to acid oligosaccharides, i.e. WO 0/160378.
For stimulation improvement of mucus layer thickness over Uit .viiolc arc.; of The colon, the present composition preferably comprises at I.C.I.M 10 wt.r; acid oligosaccharides with a DP of 2 to 5 (i.e. ?., 3, 4 and/or 5) and :ii least 5 wt % acid oligosaccharides with a DP between 10 and 60, said wt.% bein» (used on the total weight of the oligosaccharides.
The acid oligosaccharides used in the invention are preferably prepared from pectin, pectate, alginate, chondroitine, hyaluronic acids, heparine, heparane, bacterial carbohydrates, sialoglycans, fucoidan, fucooligosaccharides or orrageenan. more preferably from pectin and/or alginate.
Content of oligosaccharide
When in ready-to-feed liquid form, the present composition preferably comprises 0.1 to
100 grams indigestible oligosaccharide per liter, more preferably between 0.5 and 50
grams per liter even more preferably between 1 and 25 grams per Jiter. A too high
content of oligosaccharides may cause discomfort due to excessive fermentation, while
a very low content may result in an insufficient mucus layer.
The weight ratio of the at least two different oligosaccharides is preferably between 1
and 10, more preferably between 1 and 5. These weight ratios stimulate mucin
production of different types at different sites in the intestine optimally
The oligosaccharide is preferably included in the present composition according to the invention in an amount exceeding 0.1 wt.%, preferably exceeding 0.2 wt.%, more preferably exceeding 0.5 wt.% and even more preferably exceeding J wt.% based on the total dry weight of the composition. The present composition preferably has an oligosaccharide content below 20-wt.%, more preferably below io-wt.% even more preferably below 5-wt,%.
Addition of nucleotides and/or nucleosides to the present composition further improves gut mucosal barrier function, particularly as it inhibits and/or or reduces the incidence of bacterial translocation and decreases intestinal injury. Hence, the present composition preferably also comprises between 1 and 500 mg midrosides and/or nucleotides per 100 gram of the dry formula, even more preferably between 5 and 100 mg,
Application
The present composition can be advantageously used in a method for improving barrier integrity in mammals, particularly humans. The present composition can also be advantageously used in a method for the treatment or prevention of diseases associated with reduced barrier integrity, said method comprising administejint; to a mammal the present composition. The present composition is preferably administered orally.
For the ill and infants, the present composition is preferably combined with complete nutrition, including protein, carbohydrate and fat. The present composition is
advantageously administered to infants with the age between 0 and 2 years. The composition may be administered to patients which suffer from an impaired barrier integrity and healthy patients. The present composition is advantageously used in a method for providing the nutritional requirements of a premature infant (an infant bom before 37 weeks gestation).
The present composition can also be advantageously used in a method for treatment and/or prevention of intestinal damage by administering the present composition to the patient prio to or after a medical treatment, which may cause intestinal damage. Such medical treatment may for example be surgery or enteral medicim- treatment (e.g. antibiotic, analgesic, NSAID, chemotherapeuiic agents etc).
The present composition can also be advantageously used to treni or prevent diseases wherein intestinal barrier disruption is underlying the development of the course of the disease, e.g. in a method for the treatment or prevention of cluonic inflammatory diseases, particularly inflammatory bowel disease (IBD), irritable bowel syndrome (IBS), celiac disease, pancreatitis, hepatitis, arthritis or diabetes. I urUiermore. the invention can be used in a method for providing nutrition to patients whidi have undergone or are undergoing abdominal surgery and patients that experience postoperative dysfunction of the gut and/or malnourished patients.
In a further embodiment of the invention the present composition is advantageously administered to patients suffering from acquired immune deficiency syndrome (AIDS) and/or patients which are infected with the human immunodeficiency vims (HFV), e.g. in a method for the treatment of AIDS and/or HIV infection. Said method comprises the oral administration of the present composition, preferably combined with nutrients selected from the group consisting of carbohydrate, protein and fat.
Furthermore, the invention can also be used to treat or prevent complications resulting from reduced barrier integrity, particularly in a method foi the treatment and/or prevention of diarrhea, particularly infant diarrhea. Due to the reduced incidence in infant diarrhea, the present composition can also be advantageously used to reduce diaper rash.

Administering the present composition reduces passage of dietary and microbial antigens, particularly food allergens, from the intestinal lumen into ilie mucosal or systemic circulation, and hence can be advantageously used in a method for the treatment or prevention of allergy and/or allergic reaction, particularly in a method for the treatment or prevention of food allergy, e.g. allergic reaction resulting from the ingestion of foodstuff.
It was also found by the present inventors that EPA, DHA and/or ARA are capable of reducing the effects of IL-4 on intestinal permeability. Hence, one aspect of the present invention provides for a method for the treatment and/or prevention of diseases wherein intestinal IL-4 concentration is increased (e.g. allergic diseases), said method comprising administering an LC-PUFA preferably selected from the group consisting of EPA, DHA and ARA, preferably combined with the present selected oligosaccharides. Hence, the present composition can also be advantageously used in a method for the treatment of atopic dermatitis.
Since the barrier function of newboms has not been fully developed, the present composition can be advantageously administered to young infants, i.t- infants with the age between 0 and 6 months. The composition may be administered to the infant in the form of an infant formula without human milk or admixed with human milk. Hence the present invention also provides for a formula feed comprising human milk and the present composition. The compositions including human milk ;-md the present composition are particularly suitable for feeding premature infants.
The present composition is preferably provided as a packaged ponder or packaged ready-to-feed formula. To prevent spoilage of the product, packnjMuf size of ready-to-feed formula preferably does not exceed one serving, e.g. prefernbly does not exceed 500 ml; and packaging size of the present composition in powder form preferably does not exceed 250 servings. Suitable packaging sizes for the powde; are 2000 grams or less, preferably per 1000 grams or less.
The packaged products provided with labels that explicitly or implicitly direct the consumer towards the use of said product in accordance with one or more of the above or below purposes, are encompassed by the, present invention. Such labels may for example make reference to the present method for preventing allergic. leaction to food allergens by including wording like "reduced food sensitivity", "improving intestinal tolerability", "improved food tolerance" or similar wording. Similarly, reference to the present method for treating and/or preventing allergy may be made by incorporating terminology equivalent to "improved resistance" or "reduced sensitivity".
Formula's
It was found that the present composition can be advantageously applied in food, such as baby food and clinical food. Such food preferably comprises lipid. protein and carbohydrate and is preferably administered in liquid form. The term "liquid food" as used in the present invention includes dry food (e.g. powders) which are accompanied with instructions as to admix said dry food mixture with a suitable liquid (e.g. water).
Hence, the present invention also relates to a nutritional composition which preferably comprises between 5 and 50en% lipid, between 5 and 50 en% protein, between 15 and 90 en% carbohydrate and the present combination of oligosaccharides and LC-PUFA's. Preferably the present nutritional composition preferably contains between 10 and 30 en% lipid, between 7.5 and 40 en% protein and between 25 and V;> cu1?;. carbohydrate (en% is short for energy percentage and represents the relative nmoum each constituent contributes to the total caloric value of the preparation).
Preferably a combination of vegetable lipids and at least one oil 'selected from the group consisting offish oil and omega-3 vegetable, algae or bacteiiaJ oil is used
The proteins used in the nutritional preparation are preferably selected from the group of non-human animal proteins (such as milk proteins, meat protein., and egg proteins), vegetable proteins (such as soy protein, wheat protein, rice protein and pea protein), free amino acids and mixtures theieof. Cow milk derived nitioyen source, particularly cow rnilk protein proteins such as casein and whey proteins are particularly preferred.
A source of digestible carbohydrate may be added to the nutritional formula. It preferably provides about 40% to about 80% of the energy of the nutritional composition. Any suitable (source of) carbohydrate may be used, for esimple sucrose, lactose, glucose, fructose, corn syrup solids, and maltodextrins, and mixtures thereof.
The present composition is preferably used as an infant formula and preferably contains 7.5 to 12.5 energy % protein; 40 to 55 energy % carbohydrates; and 35 to 50 energy % fat. As the present composition is suitably used to reduce the aiK-r^ic icaction in an infant, the protein of the infant formula is preferably selected from the group consisting of hydrolyzed milk protein (e.g. hydrolyzed casein or hydrolyzed whey protein), vegetable protein and/or amino acids. The use of these proteins further reduced the allergic reactions of the infant.
Stool irregularities (e.g. hard stools, insufficient stool volume, diarrhoea) is a major problem in many babies and ill subjects that receive liquid foods. It was found that stool problems may be reduced by administering the present oligosaccharides in liquid food which have an osmolality between 50 and 500 mOsm/kg, more preferably between 100 and 400 mOsm/kg.
In view of the above, it is also important that the liquid food does m >i have an excessive caloric density, however still provides sufficient calories to feed the. .inject. Hence, the liquid food preferably has a caloric density between 0.1 and 2.5 kcal/ml, even more preferably a caloric density of between 0.5 and 1.5 kcal/ml, must preferably between 0.6 and 0.8 kcal/ml.
EXAMPLES
Example 1: Effect of LC-PUFA on barrier integrity
Monolayers (MC) of intestinal epithelial cell lines T84 (American Type Culture Collection (ATTC), Manassas, USA) were cultured on trans we 11 filters (Corning, Costar BV, The Netherlands) allowing both mucosal and serial sampling and stimulation of human intestinal epithelial cells. Two weeks post confluency the
monolayers were incubated in the luminal compartment with polyuusaturated fatty acids ARA (arachidonic acid; 5,8,11,14-eicosatetraenoic acid), DHA (cis-4,7,10,13,16,19 docosahexaenoic acid), EPA (eicosapentaenoic acid) or control palmitic (C 16:0) acid (Palm) (Sigma, St. Louis, USA). The latter procedure was chosen to mimic the in vivo administration route of the dietary compounds. Cells were incubated with ARA, DHA, EPA, or palmitic acid for 0, 24, 48 and 12 hi at different concentrations (10 uM and 100 pM). Experiments were performed to evaluate basal barrier integrity. The epithelial barrier function was determined by measuring the transepithelial resistance (TER, Q.cm2) was measured by epithelial volt-ohm meter (EVOM; World Precision Instruments, Germany) and permeability Cor 4kD FITC dextran (paracellular permeability marker. Sigma. USA). Resistance (. Epithelial permeability for 4 kDa FITC-dextran was determined as follows. Prior to dextran fluxes the medium was refreshed with culture medium without phenol red for one hour followed by addition of 5 ul (stock 100 mg/ml) 4 kDa FITC-dextran to the lumenal compartment. After 30 min incubation 100 \i\ sample was collected from the serosal compartment and the fluorescent signal measured at excitation wnvdvm'th 485 nm and emission 520 nm (FLUOstar Galaxy®. BMG Labtechnologies, USA). FITC-dextran fluxes were calculated as pmol FITC-doxtran/cm2/h. Statistical analyses were performed using the ANOVA (SPSS version 10).
Results of the effect of fatty acids (100 jaM') on spontaneous barrier Lniegiity after 72 hr incubation are given in Table 1. Table 1 shows that the LC-PU17A s AKA, EPA and DHA reduce the molecular flux and improve epithelial resistance. In contrast the control experiments show that palmitic acid has the opposite effects, i.e. compromises barrier integrity'. These results are indicative for the advantageous use of EPA. DHA and ARA, and in particularly ARA in the composition according to the present invention and for use in a method according to the present invention, e.g. in a method for improving barrier integrity. These result further support the syneryistic effects of the present combination of fatty acids and indigestible oligosacchai ides. Figure 1 shows the time and dose (lOjaM and lOOpM) dependent effects of various fatty acids (palmitic acid, DHA, GLA, and AA) on basal barrier integrity (TER). Figure 1 shows that the LC-PUFA's AA, DHA, and GLA, improve the «pitheliaJ barrier integrity as reflected by increased resistance (TER), These results me indicative for the advantageous use of EPA, DHA, GLA and ARA, in particularly ARA, in the
composition according to the present invention and for use in a method according to the present invention, i.e. in a method for improving barrier integrity. These results further support the synergistic effects of the present combination of fatty acids and indigestible oligosaccharides.
Table 1
Example 2: Effect of LC-PUFA on IL-4 mediated barrier disruption Monolayers (MC) of intestinal epithelial cell lines T84 (ATCC, USA) were culrared on transwell filters (Corning, Costar BV, The Netherlands) allowing both mucosal and serosal sampling and sumulation of human intestinal epithelial cells. Two weeks post confluency the monolayers were incubated in the presence of 11 .-4 ('. ng/ml serosal compartment, Sigma, USA ) with or without polyunsaturated fatty acids ARA. DHA, GLA, EPA, or control palmitic acid (10 uM or 100 uM, mucosal compartment. Sigma, St. Louis, USA). Cells were pre-incubated with ARA, DHA, EPA, or p«drnitic acid for 48 hr prior to the IL-4 incubation. The co-incubation of PUFA's and palmetic acid with IL-4 was continued for another 48 lir; while culture medium urnl aJditi\e^ were changed every 24 hr. The epithelial barrier function was determined by measuring the transepithelial resistance (TER) and permeability as described in example 1. Statistical evaluation was performed as described in example 1.
Results of the effect of ARA, DHA, EPA and palmitic acid (100 uM) on IL4 mediated barrier disruption are given in Table 2. Table 2 shows that the LC-I'lJFA's ARA, DHA and EPA inhibit the increased flux caused by EL-4. In contrast paliuetic acid had a detrimental effect and decreased barrier disruption compared to control. These results are indicative for the advantageous use of ARA, DHA, and EPA in clinical and infantnutrition formulations to prevent or reduce IL-4 mediated barrier disruption, e.g. as occurs in food or cows milk allergy. These result further support the synergistic effects of the present combination of fatty acids and indigestible oligosacchajides.
Figure 2 gives the time and dose (lOuM and LOOuM) dependent protective effects of various FA's (palmitic ac:d, DHA, GLA, and AA) on JL-4 mediated barrier destruction (Flux). Figure 2 shows that ARA, DHA and GLA protect against IL-4 mediated barrier disruption as reflected by decreased 4kD dextran flux. These results ate indicative for the advantageous use of ARA. DHA and GLA in clinical and infant nutrition formulations to prevent or reduce IL-4 mediated barrier disruption, c.g as occurs in food or cows milk allergy. These result further support the syneif.istic of fens of the present combination of fatty acids and indigestible oligosaccharidcs.
Table 2

(Table Remove)
Example 3: Effectpf oligosaccharides.on acetate production
Micro-organisms were obtained from fresh faeces from bottle fed babies. Fresh faecal material from babies ranging 1 to 4 month of age was pooled and pur into preservative medium within 2 h. As substrate either prebiotics (TOS; TOS/inuliu nil*) mixture in a 9/1 (w/w) ratio; inulin; olzgofructose(OS)/inulin mixture in a 1/1 (w'w) ratio, or none (blanc) were used. The transgalactooligosiiccharides(TOS) were obuined from Vivina! GOS, Borculo Dorao Ingredients. Zwolle. The Netherlands and comprises as indigestible oligosaccharides: 33 wt.% disaccharides, 39 wt.% irisaccharides, 18 \vi.% tetrasaccharides, 7 v*t.% pentasaccharides sad 3 wt.% hexa-, hepta en octasaccharides. The inulin (HP) Orafti active food ingredients, Tienen, Belgium, i c. Raftiline HP®,
with an average DP of 23.Media: McBain & MacFarlane medium: buffered peptone water 3.0g/l, yeast extract 2.5 g/1. mucin (brush borders) 0.8 g/1, trypume 3.0g/l, L-Cysteine-HCl 0.4 g/1, bile salts 0.05 g/1, K2HPO4.3H20 2.6 g/1, NaHCOl 0.2 g/1, NaCl 4.5 g/1, MgSO4.7H2O 0.5 g/l, CaC12 0,228 g/1, FeS04.7H2O 0.005 g/1. Fill 500 ml Scott botties with the medium and sterilized 15 minutes at 121 °C. Buffered medium: K2HP04.3H2) 2.6 g/1, NaHCO3 0.2 g/1, NaCl 4.5 g/1, MgS04.7H2O, 0.5 g/1, CaC12 0.228 g/1, FeSO4.7H2O 0.005 g/1. Adjust to pH 6.3 i 0.1 with K2HFO4 or NaHCOS. Fill 500ml Scott bottles with the medium and sterilized 15 minutes at 121 °C. Preservative medium: Buffered peptone 20.0 g/1, L-Cysteine-HCI Oo g/1, Sodiiun thioglycollate 0.5 g/1, resazurine tablet 1 per Hire, adjust to pH 6,7 ~ 0.1 with 1 M NaOH or HC1. Boiled in microwave. Serum bottles were filled with 11.*) nil medium and sterilized for 15 minutes at 121 °C.
Fresh faecal samples were mixed with preservative medium and siotcd for several hours at 4 °C, The preserved solution of faeces was centrifuged at 13,000 rpm for 15 minutes, supernatant removed and faeces mixed with McBain & Mac Farlane medium in a weight ratio of 1:5. Of this faecal suspension 3 ml were combined with 85 mg glucose or prebiotic or with no addition (blanc) in a bottle and mixed thoroughly. A t=0 sample was withdrawn (0.5 ml). 2.5 ml of the resulting suspension is brought in a dialysis tube in a 60 ml bottle filled with 60 ml of the buffered medium. The buttle was closed well and incubated at 37°C. Samples were taken from the dialysis tube (0.2 ml) or dialysis buffer (1.0 ml) with a hypodermic syringe after 3, 24, and 48 hours and immediately put it on ice to stop fermentation. The experiment was carried out using the following samples; l)85mgTOS
2) 85 mg inulin
3) 85mg TOS/inulin in a ratio of 9/1 (w/w) and
4) 85mg OS/inulin in a ratio of 1 /I (w/w).
SCFA (acetate, propionate, butyrate) were quantitated usinf u Varian 3800 gas chromatograph (GC) (Varian Inc., Walnui Creek, U.S.A.) equipped with a flame ionisation detector. 0.5 ul of the sample was injected at 80 °C in the column (Stabilwax, 15 x 0.53 mm, film thickness 1.00 um, Restek Co., U.S.A.) usiii{j, helium as a carrier gas (3.0 psi). After injection of the sample, the oven was heated to 160 °C at a speed of
16 °C/min, followed by heating to 220 °C at a speed of 20 °C/min ana iinauy maintained at 220 °C for 1.5 minutes. The temperature of the injector rind detector was 200 °C. 2-ethylbytyric acid was used as an internal standard.
Figure 3 depicts the absolute (Figure 3A) and relative SCFA profile (Figure 3B) resulting from fermenting the different oligosaccharides. Figure "5 A shows that a mixture of two different oligosaccharides (TOS/Inulin), wherein the two distinct oligosaccharides have a homology in manose units below 90 and ii different chain length results in a significantly and synergisticaliy increased amount of SCFA (particularly acetate) per gram fiber than single components. Figuic jH shows that the addition of a combination of TOS/Inulin favored a higher proportion of the beneficial acetate (B). The acetate production in vivo translates to improved mucus producrion by goblet cells and a measure for intestinal mucus layer thickness (see example 4) These results are indicative for the advantageous use of the present composiiion.
i
Example 4: Effects of SCFA on mucus production.
Monolayers of intestinal epithelial T84 cell? (ATCC, USA) cells VM-I- cut aired in 24 or 96 wells tissue culture plates (Corning B.V.). T84 were incubated with ihe short chain fatty acids acetate, proprionate and butyrate (SCFA, Merck, US At for 24 h in a concentration range of 0.025-4.0 mM. Supcrnatants and/or cells wore collected and MUC-2 (mucin) expression determined. A dotblot technique was used to determine MUC-2 expression in the cell cultures, since mucins are extremely large glycuproteins (over 500 kDa) which makes them difficult to handle in western bluing techniques. The method was validated using pre-immuiie serum (T84 stained negative), CCD-18Co (ATCC, USA) negative control cells and bovine serum albumin (BSA). Cell samples were collected in Laemmli (protein isolation buffer) and ptoteia determination performed using a microprotein assay (Biorad, USA) according TO the manufacturers protocol. Samples (0.3-0.7-1.0 }j,g/2 ul) were dotted on nitrocellulose membranes (Schleicher & Schuell, German)'), Membranes were blocked in rnST/50c> Protivar (Nutricia, The Netherlands) followed by 1 h incubation with ami-MUC-2 antibody (kindly donated by Dr. Einerhand.. Erasmus University, Rotterdam, The Netherlands). After washing, blots were incubated with goat anti-rabbi MIRP (Santacruz Biotechnology, USA) and for substrate detection ECL (Roche Diagnostics, The Netherlands) was used. Densitometry was performed usinjj the Lumi-Imager
(Boehringer Mannheim B.V., The Netherlands) and the signal was expressed in light units (BLU). BLU's were also expressed relative to control incubations (%BLU). To compare the stimulatory effect of SCFA on MUC-2 expression basal MTJC-2 expression levels were deducted.
Figure 4 shows the differential effects of SCFA (acetate, proprumate, butyrate) on MUC-2 expression in intestinal epithelial cells (MC T84) and epithelial-mesenchymal cell co-cultures (CC T84). Figure 2 also shows that acetate i$ more potent in stimulating MUC-2 expression (mucus production) as compared to propionate. and butyrate. Hence, the present combination of oligosaccbarides (which was shown to increase acetate production (see example 1)) is particularly useful for stimulating mucus production and can be advantageously used in a method fcr .stimulating barrier integrity.
Example 5; Infant milk formula I
Ingredients (per liter), energy 672 Kcal; Protein 15 g; Whey: Casein ratio 60:40; Fat 36 g; Carbohydrate 72 g; Vitamin A 750 RE; Mixed natural carotids, 100 IU; Vitamin D 10.6 meg; Vitamin F 7,4 mg; Vitamin K 6~.0 meg; Vitamin B.sub.l (thiamin) 1000 meg; Vitamin B.sub.2 (riboflavin) 1500 mcL. uprising J gram transgalactooligosaccharides Elix'or™ (BorcuJo Domo Ingredient. Netherlands) and 4 gram RaftilinelM (Orafti Active Food Ingredients, Belgium).



CLAIMS
1. Use of polyunsaturated fatty acids for the manufacture of a composition for use in a
method for stimulating intestinal barrier integrity, said method comprising
administering to a mammal a composition comprising:
a. eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and arachidonic
acid (ARA), wherein the content of long chain polyunsaturateJ fatty acid with
20 and 22 carbon atoms does not exceed 15 wt.% of the total fai content; and
b. at least two distinct oUgosaccharides (OL1 and OL2), wherein the two distinct
oligosaccharides have a homology in monose units below 90 %.
2. Nutritional composition comprising:
a, EPA, DHA and ARA. wherein the content of long chain polyunsaturated fatty-
acid with 20 and 22 carbon atoms does not exceed 15 wt,% of the total fat
content; and
b. at least two distinct oligos-iccharides (OL1 and OL2), wherein ihe two distinct
oligosaccharides have a homology in monose units below 90 %.
3. Composition according to claim 2, comprising galactooligosacdiaride and a fructan
selected from the group consisting of Iructooligosaccharides, iuiilin and mixtures
thereof.
4. Composition according to claim 2 or 3, wherein at k-;i:-;t 10 wt.% of the
oligosaccharide has a degree of polymerisation (OP) of 2 to .^ ami at least 5 wt.%
has a DP of between 10 and 60

5. Composition according to any one claims 2-4, further comprising an acidic
oligosaccharide, preferably an uronic acid polymer with a Dp bmween 2 and 60.
6. Composition according to any one of claims 2-5, comprising '/.;> to 12.5 energy %
protein; 40 to 55 energy % carbohydrates; and 35 to 50 energy % tat, wherein said
protein comprises a member selected from the group consisting of hydrolyzed milk
protein, vegetable protein and/or amino acids.

7. Composition according to any one of claims 2-6, said composition having a caloric
content of 0,6 to 0.8 kcal/ml; an osmolality of 50 to 500 mOsm/ksi: and a viscosity
below 50 mPas.
8. Composition according to any one of claims 2-7, suitable for feeding an infant,
wherein:
a. the content of long chain polyunsaturateci fatty acid is below 3 wt.% of the total
fat content;
b. the omega-3 long chain polyunsaturated fatty acid is below ! w;. '•<. of the total> fat content;
c. the oraega-6 long chain polyunsaturaied fatty acid is below 2 wt To of the total
fat content;
d. the ARA content is below 1 \vt.% of the total fat content; ard
e. the ratio EPA/DHA is 1 or below,
9. Composition according to any one of claims 2-8, for use as a medicament.
10. Use of a composition according to any oiu-- of claims 2-8 lor ;no T..'inufac:ure of a
medicament for use in a method for the treatment or prevention of aJitnjy, said
method comprising administering to a mammal the composition according to any
one of claims 2-8.
11. Use of a composition accordinp to any one of claims 2-8 for the :r.anuf3dure of a
medicament for use in a method for the Treatment or preveiuioi: method comprising administering to a mammal the composiiion according to any
one of claims 2-8.


Documents:

7747-delnp-2006-Abstract-(26-04-2013).pdf

7747-delnp-2006-abstract.pdf

7747-delnp-2006-Claims-(20-02-2014).pdf

7747-delnp-2006-Claims-(26-04-2013).pdf

7747-delnp-2006-claims.pdf

7747-DELNP-2006-Correspondence Others-(05-06-2012).pdf

7747-delnp-2006-Correspondence Others-(10-09-2012).pdf

7747-delnp-2006-Correspondence Others-(20-02-2014).pdf

7747-delnp-2006-Correspondence-others (02-06-2008).pdf

7747-delnp-2006-Correspondence-Others-(15-10-2012).pdf

7747-delnp-2006-Correspondence-Others-(26-04-2013).pdf

7747-delnp-2006-correspondence-others.pdf

7747-delnp-2006-Description (Complete)-(26-04-2013).pdf

7747-delnp-2006-description (complete).pdf

7747-delnp-2006-Drawings-(26-04-2013).pdf

7747-delnp-2006-drawings.pdf

7747-DELNP-2006-Form-1.pdf

7747-delnp-2006-Form-18 (02-06-2008).pdf

7747-delnp-2006-form-2.pdf

7747-DELNP-2006-Form-3-(05-06-2012).pdf

7747-delnp-2006-Form-3-(15-10-2012).pdf

7747-DELNP-2006-Form-3.pdf

7747-delnp-2006-form-5.pdf

7747-delnp-2006-GPA-(10-09-2012).pdf

7747-delnp-2006-gpa.pdf

7747-DELNP-2006-PCT-306.pdf

7747-delnp-2006-pct-search report.pdf


Patent Number 263104
Indian Patent Application Number 7747/DELNP/2006
PG Journal Number 41/2014
Publication Date 10-Oct-2014
Grant Date 07-Oct-2014
Date of Filing 20-Dec-2006
Name of Patentee N.V.NUTRICIA
Applicant Address EERSTE STATIONSSTRAAT 186, 2712 HM ZOETERMEER, THE NETHERLANDS
Inventors:
# Inventor's Name Inventor's Address
1 VAN TOL. ERIC ROEMER VISSCHERSTRAAT 62, NL-6824 MZ AMERSFOORT, THE NETHERLANDS
2 WILLEMSEN, LINETTE EUSTACHIA CROSESTRAAT 94, NL-3522 AJ UTRECHT, THE NETHERLANDS
3 KOETSIER, MARLEEN ANTOINETTE ANKERSTRAAT 96, NL-8161 XJ EPE, THE NETHERLANDS
4 BEERMANN, CHRISTOPHER BAHNHOFSTRASSE 120A, D-61267 NEU-ANSPACH, GERMANY
5 STAHL, BERND BRESLAUER STRASSE 77, D-61191 ROSBACH, GERMANY
PCT International Classification Number A23L 1/29
PCT International Application Number PCT/NL2004/000444
PCT International Filing date 2004-06-22
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 NA