Title of Invention

COMPOSITIONS COMPRISING LOW-DP POLYMERIZED SURFACTANTS AND METHODS OF USE THEREOF

Abstract Provided are low-irritation personal care compositions comprising a low-DP polymerized surfactants. Also provided are methods of making and using such compositions.
Full Text COMPOSITIONS COMPRISING LOW-DP
POLYMERIZED SURFACTANTS AND METHODS OF USE THEREOF
FIELD OF INVENTION
The present invention relates to compositions comprising polymerized surfactants
and, in particular, compositions comprising polymerized surfactants that are useful in
personal care applications and have relatively low irritation associated therewith.
DESCRIPTION OF THE RELATED ART
Synthetic detergents, such as cationic, anionic, amphoteric, and non-ionic
surfactants, are used widely in a variety of detergent and cleansing compositions to impart
cleansing properties thereto. In addition, in certain compositions (e.g. personal care
compositions such as shampoos, washes, etc.), it may be desirable to use combinations and
levels of surfactants sufficient to achieve relatively high levels of foam volume and/or
foam stability.
However, as is recognized in the art, synthetic detergents tend to be irritating to the
skin and eyes. Thus, as levels of such detergents are increased in attempts to increase
cleansing and foaming properties associated with certain compositions, the irritation
associated with such compositions also tends to increase, making them undesirable for use
on or near the skin and/or eyes.
Certain attempts to produce milder cleansing compositions have included
*
combining relatively low amounts of anionic surfactants (which tend to be relatively high-
foaming but also relatively highly irritating), with relatively lower irritating surfactants
such as nonionic and/or amphoteric surfactants. See, e.g. United States Patent No.
4,726,915. Another approach to producing mild cleansing compositions is to associate the
anionic surfactants with amphoteric or cationic compounds in order to yield surfactant
complexes. See, e.g., United States Patent Nos. 4,443,362; 4,726,915; 4,186,113; and
4,110,263. Disadvantageously, mild cleansing compositions produced via both of such
methods tend to suffer from relatively poor foaming and cleansing performance. Yet
another approach described in, Librizzi et al., (in United States Published Patent
Application US20050075256 Al) discusses the use of a composition including both a
hydrophobically modified polymer and a surfactant to provide low irritation cleansing
composition.
Nevertheless, applicants have recognized the need for additional approaches to
providing reduced irritation compositions and further recognized the need to provide a
variety of compositions and methods having reduced irritation to the skin and/or eye. In
addition, in certain embodiments, applicants have recognized the need for compositions
that are not only mild to the skin and/or eyes, but additionally exhibit desirable foam
properties and/or other desirable aesthetic properties.
SUMMARY OF THE INVENTION
The present invention provides personal care compositions that overcome the
disadvantages of the prior art and have relatively low irritation properties associated
therewith. In particular, applicants have discovered that certain polymerized surfactants
may be used to great advantage to produce compositions having low irritation associated
therewith and, in certain embodiments, combinations of additional beneficial aesthetic and
other properties.
According to one aspect, the present invention provides a personal care
composition comprising a low-DP polymerized surfactant having a PMOD% of less than
about 90%.
In another aspect of the invention, provided are compositions comprising a low-DP
polymerized surfactant, the compositions having a TEP value of about 3 or greater.
In another aspect of the invention, provided are methods of making personal care
compositions comprising combining a polymerized surfactant having a PMOD% of less
than about 90% with at least one other personal care component to produce a personal care
composition having a CMH>% of less than about 90%.
In yet another aspect of the invention, applicants have provided a method of
treating the skin, hair, or vaginal region, the method comprising applying to the skin, hair,
or vaginal region a composition comprising a low-DP polymerized surfactant having a
PMOD% of less than about 90%.
BRIEF DESCRIPTION OF THE DRAWING
Figure 1 is a graphical depiction of idealized micelle size distributions for
compositions of the present invention and compositions of the prior art.
DESCRIPTION OF PREFERRED EMBODIMENTS
All percentages listed in this specification are percentages by weight, unless
otherwise specifically mentioned.
As used herein the term "polymerized surfactant" refers to any polymer including
repeat units that are amphiphilic, i.e. the repeat units include at least one hydrophilic
moiety and at least one hydrophobic moiety.
A "repeat unit" is hereby defined as the smallest combination of chemical species
(e.g., ions or atoms) that repeat periodically to generate the polymer. Polymerized
surfactants can be visualized as a number of surfactant structures (i.e. amphiphiles) that are
linked by a polymer backbone (ref. Anton, P.; Koberle, P.; Laschewsky, A. Makromol.
Chem., 1993,194, 1-27).
As will be readily understood by those of skill in the art, the term "hydrophilic
moiety," is any anionic, cationic, zwitterionic, or nonionic group that is polar and generally
water-soluble. Nonlimiting examples include anionics such as suifate, sulfonate,
carboxylate, phosphate, phosphonates; cationics such as: ammonium, including mono-, di-
, and trialkylammonium species, pyridinium, imidazolinium, amidinium,
poly(ethyleneimmium); zwitterionies such as ammonioalkylsulfonate,
ammonioalkylcarboxylate, amphoacetate; and nonionics such as hydroxyl, sulfonyl,
poly(ethyleneoxy).
A "hydrophobic moiety" is hereby defined as any nonpolar, generally water-
insoluble group containing seven or more carbon atoms. Certain preferred hydrophobic
moieties include moieties comprising about eight or more carbon atoms, more preferably
about 10 or more carbon atoms. Certain particular preferred hydrophobic moieties include
those having from about 8 to about 12 carbon atoms. Nonlimiting examples of
hydrophobic groups include any saturated or unsaturated linear, branched, cyclic, or
aromatic hydrocarbon species containing more than five carbon atoms. Functionalities that
may be included in the hydrophobic group are, for example, ether, ester, ketone, amide,
carbonate, urethane, carbamate, or xanthate functionalities.
As defined herein, the term, "low-DP polymerized surfactant," refers to a
polymerized surfactant, as defined above, which further meets the following criteria (a)
and (b): (a) the polymerized surfactant has at least about 7 and less than about 2000
amphiphilic repeat units on a weight average basis; and (b) the amphiphilic repeat units
comprise at least about 10 mole % of the polymerized surfactant. Examples of certain
preferred low-DP polymerized surfactants included those having 7 to about 2000
amphiphilic repeat units, such as from 10 to about 1000 amphiphilic repeat units, and even
more preferably from about 20 to about 500 amphiphilic repeat units. In certain
embodiments, the low-DP polymerized surfactants of the present invention preferably '
comprise least about 25 mole % of amphiphilic repeat units.
As noted above, applicants have discovered unexpectedly that certain polymerized
surfactants are suitable for use in producing compositions having relatively low irritation
associated therewith. According to certain preferred embodiments, applicants have
discovered that low-DP polymerized surfactants having a PMOD% (measured in accord
with the procedure described herein below and shown in the Examples) of less than about
90%, more preferably less than about 80%, more preferably less than about 50%, and more
preferably less than about 40%, are useful in producing compositions having beneficially
low irritation properties associated therewith.
For example, applicants note that the "TEP value" associated with a particular
composition, which value is measured conventionally via the Trans-Epithelial Permeability
Test ('TEP Test") as set forth in the Invittox Protocol Number 86 (May 1994) incorporated
herein by reference and described in further detail in the Examples below, has a direct
correlation to the irritation to the skin and/or eyes associated with the composition. More
specifically, a higher TEP value of a composition tends to indicate less irritation to the skin
and eyes associated therewith as compared to a composition having a lower TEP value,
which composition tends to cause higher levels of irritation to the skin and/or eyes.
Applicants have recognized that the present compositions have surprisingly high TEP
values/lower irritation associated therewith. For example, in certain embodiments, the
present compositions have a TEP value of at least about 3 or greater, preferably at least
about 3.5 or greater. In certain more preferred embodiments, the compositions produced
according to the present methods exhibit a TEP value of at least about 4 or greater, more
preferably, at least about S or greater, even more preferably, at least about 6 or greater. In
certain particularly preferred embodiments, the compositions may, in fact, exhibit such an
unexpected and markedly reduced Level of irritation, that the TEP score exceeds the
measurement capability of the test, and is therefore recorded as "no leakage".
Applicants have further discovered that two parameters of a composition, the (1)
"average micelle hydrodynamic diameter dn," a measure of average micelle size and, in
particular (2), the "fraction of micelles with dn measurement of the degree of irritation mat may result from compositions that include
surfactants. That is, applicants have recognized that surfactant micelles are rarely
monodisperse in size and aggregation number (i.e., the average number of molecules of
surfactant in a particular micelle). Instead, surfactant micelles tend to exist as a population
with distributions of sizes and aggreation numbers that give rise to micelle size distribution
functions, as shown by the example in Figure 1. Figure 1 is a graph 10 showing a micelle
size distribution function for a typical conventional surfactant system, a composition
including sodium laureth sulfate and cocamidopropyl betaine (curve 11, generated by
fitting an idealized log normal distribution to actual data obtained by testing Comparative
Example 19). Applicants have discovered, by comparison, that low-DP polymerized
surfactants of the present invention are capable of providing a distribution of micelles that,
as shown in curve 15, is "shifted" to favor larger micelles (curve generated by fitting an
idealized log normal distribution to actual data obtained by testing Example 12).
Accordingly, applicants have measured the relative small micelle fraction and
average micelle size of the compositions of the present invention and comparative
compositions as the "CMID%" and "CMIDz", respectively (both measured in accord with
the procedures described herein below and shown in the Examples). As detailed below in
Tables 7, 11 and 14, applicants have noted that compositionv of the present invention tend
to exhibit a small micelle fraction, i.e., a fraction of micelles with dh referred to as "CMED%") that is surprisingly low. In one embodiment of the invention,
the CMID% of the composition is less than about 90%, more preferably less than about
80%, even more preferably less than about 50%, and most preferably less than about 30%.
[Note that for sake of clarity it is emphasized that CMID% relates to the relative irritation
associated with a property of a composition (including compositions comprising
polymerized surfactants), whereas PMOD% relates to the relative irritation/relative
suitability of a polymerized surfactant for use in a composition in accord with preferred
embodiments of the invention.]
Applicants have further recognized that the present invention allows for the
production of compositions that exhibit not only reduced irritation, but also desirable foam
properties. In particular, as detailed in Table 3, applicants have discovered that not only is
it possible to formulate compositions that are have low irritation, but said compositions
also have substantial foam. For example, in certain embodiments, compositions of the
present methods have a foam value of about 25mL or greater. Tn certain more preferred
embodiments, the compositions produced according to the present methods exhibit a foam
value of at least about 50m.L or greater, more preferably, at least about lOOmL.
Applicants have further recognized that the present invention allows for the
production of compositions that exhibit not only reduced irritation, but also desirable
rheology properties. In particular, applicants have discovered that while certain
ingredients such as hydrophobically modified polymers tend to increase the viscosity and
the yield point associated with a composition as more polymer is added, the polymerized
surfactants of the present invention tend to have relatively small effect on the rheology of
the compositions to which they are added. Accordingly, in certain embodiments, higher
amounts of the present polymers may be added to more significantly reduce irritation
without producing a composition that is too viscous for effective personal use.
In addition, applicants have further discovered unexpectedly that while certain
conventional surfactants become substantially more irritating as the concentration of
surfactant in a composition is increased beyond a certain point, the polymerized surfactants
of the present invention tend not to exhibit the same detrimental increasing irritancy at
high concentrations. As shown in Table 14, it can be seen that as concentration of the
polymerized surfactant increases from 4.8% to 10%, the CMID% value increases only a
small amount, and TEP value is fairly stable as well, indicating that the properties of these
compositions are surprisingly "dose independent."
Any of a variety of polymerized surfactants that meet the above criteria may be
suitable for the present invention. Although applicants do not wish to be bound by or to
any particular theory of operation, it is believed that the polymerized surfactants meeting
the above criteria act to reduce the irritation associated with personal care compositions, at
least in part, by preferentially forming larger micelles(which tend to be less irritating) than
traditional surfactants. Polymerized surfactants suitable for use in the present invention
include polymerized surfactants of various chemical classifications and obtained via a
variety of synthetic routes. Examples include polymers having a backbone that
substantially comprises a plurality of carbon-carbon bonds, preferably essentially consists
or consists only of carbon-carbon bonds and polymers having a backbone comprising a
plurality of carbon-heteroatom bonds (as will be recognized by those of skill in the art, the
backbone refers generally to the portion of repeat units in a polymer that is covalently
bonded to adjacent repeat units (vs. "pendant groups")). Examples of suitable polymers
having a backbone consisting essentially of carbon-carbon bonds and polymers comprising
carbon-heteroatom bonds include the following, as well as, combinations of two or more
thereof, and the like:
[I.] Polymers having a backbone that substantially comprises carbon-carbon bonds such as
may be (1) formed from ethylenically (or acetylenically) unsaturated monomers or (2)
polyketones (in all subclasses (A)-(D) hereunder, n=7 to 2,000 and m is up to 10,000):
Subclass (A): Homopolymerization of prefabricated reactive amphiphiles containing
ethylenically unsaturated functionalities (hereinafter "EUAHs").

• where R1 = R2 = H, R3 = H or CH3, and R4 comprises Amphiphilic (Amphil) group, or
• where R1 = R2 = H, R3 comprises a hydrophilic group (Hphil), and R4 comprises
hydrophobic group (Hphob), or
• where R1, R3 are independently H or CH3, R2 comprises Hphil, and R4 comprises
Hphob group, or
• where R1, R4 are independently H or CH3, R3 comprises Hphil, and R4 comprises
Hphob group, or
• where R2, R3 are independently H or CH3, R1 comprises Hphil, and R4 comprises
Hphob group
to yield a polymerized surfactant with an amphiphilic repeat unit shown in brackets
immediately below, and having a number of amphiphilic repeat units, n:

Examples of monomers useful for making this class of polymerized surfactants include:
Anionic:
• co-alkeneoates: e.g. sodium 11-undecenoate

where R1 = any linear or branched carbon chain containing more than 5 carbon atoms and M =
H+, NH/, or any Group IA alkali metal cation.
(Meth)acrylamidoalkylcarboxylates and (meth)acryloyloxyalkylcarboxylates: e.g. sodium 11-
acrylamidoundecanoate, sodium 1I-methacryloyloxyundecanoate

where R2 = H or CH3, X = O or NH, Rj = any linear or branched carbon chain containing more
than 5 carbon atoms and M ~ H4, NH4+, or any Group IA alkali metal cation,
{Meth)acrylamidoalkylsulfonic acids: e.g. 2-acrylamidododecylsulfonic acid

where R4 = H or CH3, X = O or NH, Rs = any linear or branched carbon chain containing more
than 5 carbon atoms and M = H+, NH4+, or any Group IA alkali metal cation.
AUylalkylsulfosuccinates: e.g. sodium allyldodecylsulfosuccinate (TREM LF-40, Cognis)
where R« ¦=• any linear or branched carbon chain containing more than. 5 carbon atoms and M =
H+, NHU\ or any Group IA alkali metal cation.
Cationic:
Quaternized aminoalkyl(meth)acrylamides and aminoalky](meth)acrylates: e.g. (3-
methacrylamidopropyl)dodecyldimethylammonium chloride, (2-methacryloyloxyethyl)dodecyl
dimethylammonium chloride

where R7 = H or CH3, X = O or NH, R8 = any linear or branched carbon chain containing 5 or
less carbon atoms, R9 = H, CH3, CH2CH3 or CH2CH2OH, R10 = any linear or branched carbon
chain containing more than 5 carbon atoms and Z = any Group VII-A halide anion, OR where
R7 = H or CH3, X = O or NH, R8 = any linear or branched carbon chain containing more than 5
carbon atoms, R9, R10 are independenly H, CH3, CH2CH3 or CH2CH2OH, and Z = any Group
VII-A halide anion
• Quaternized vinylpyridines: e.g. (4-vinyl)dodecylpyridinium bromide

where R11 = any linear or branched carbon chain containing more than 5 carbon atoms and Z =
any Group VII-A halide anion.
• Alkyldiallylmethylammonium halides: e.g. diallyldodecylmethylammonium chloride

where R12 = H, CH3 or R11, R13 = any linear or branched carbon chain containing more than 5
carbon atoms and Z = any Group VII-A halide anion.
Zwitterionic:
• Ammonioalkanecarboxylates: e.g.
methylacrvlamidvnundecvl)dimethvlammoniolacetate

where R14 = H or CH3, X = O or N, R15 - H, CH3, CH2CH3 or CH2CH2OH, Rl6 = any linear or
branched carbon chain more than 5 carbon atoms, R!7 = any linear or branched carbon chain
containing 5 or less carbon atoms, and R18 = H, CH3, or nothing.
• Ammonioalkanesulfonates: e.g. 3-[(ll-
methacryl oyloxyu ndecy])d imethylammon i o]propanesul fona te

where R19 = H or CH3, X = O or N, R20 = H, CH3, CH2CH3 or CH2CH2OH, R2, = any linear or
branched carbon chain more than 5 carbon atoms, R22 = any linear or branched carbon chain
containing 5 or less carbon atoms, and Rzi = H, CH3, or nothing.
Nonionic:
• co-methoxypoly(ethyleneoxy)alkyl-a-(meth)acrylates: e.g. co-
methoxypoly(ethyleneoxy)undecyl-a-methacrylate

where R24 = H or CH3, X = O, R25 = any linear or branched carbon chain more than 5 carbon
atoms, n is an integer from about 4 to about 800, and R26 = any linear or branched carbon chain
containing 5 or less carbon atoms
• w-alkoxypoly(ethyleneoxy)-a-(meth)acrylates and w-alkoxvpoly(ethyleneoxy)-a-itaconates:
e.g. steareth-20 methacrylate, ceteth-20 itaconate

where R27 = H, CH3, or CH2COOH, X = O, R28 = any linear or branched carbon chain more
than 5 carbon atoms, and n is an integer from about 4 to about 800
Sublclass (B): Copolymerization of one or more prefabricated reactive amphiphiles
containing ethylenically unsaturated functionalities from above with another reactive
amphiphilie from subclass (A) above and/or with one or more ethylenically unsaturated
hydrophilic comonomers of the formula (hereinafter "EUACs"):

• where R5 = R6 = H, R7 — H or CH3, and R8 comprises HPhil group, or
• where R5, R6 are independently H or CH3, R7 comprises HPhil group, and R8 comprises
HPhil group
• where R5, R7 are independently H or CH3, R6 comprises HPhil group, and R8 comprises
HPhil group
• . where R6, R7 are independently H or CH3, R5 comprises HPhil group, and R8 comprises
HPhil group
to yield a polymerized surfactant with an amphiphilie repeat unit shown in brackets
immediately below, and having a number of amphiphilie repeat units, n and a number of
non-amphiphilic repeat units, m:
Examples of prefabricated reactive arnphiphiles containing ethylenically unsaturated
functionalities are described above with reference to (A). Examples of hydrophilic
comomomers that may reacted therewith include:
i) Nonionic: acrylamide, N,N-dimethylacrylamide, N-vinylformamide,
hydroxyethyl(meth)acrylate, glyceryl rnethacrylate, sucrose
mono(meth)acrylate, oo-methoxypoly(ethyleneoxy)-a-(meth)acrylate
ii) Anionic: acrylic acid, 2-acrylamido-2-methylpropanesulfonic acid, 3-
acrylamido-3-methylbutanoic acid
iii) Cationic: N,N-dimethylaminoethyl methacrylate, N,N-dimethyIpropyl
(meth)acrylamide, (3-(meth)acrylamidopropyl)trimethylammonium chloride,
diallyldimethylammonium chloride
iv) Zwitterionic: 3-[(3-
(meth)acrylarnidopropyl)dimethylammonio]propanesulfonate, 3-(3-
(meth)acrylamidopropyldimethylammonio)propionate, 3-(3-
(meth)acrylamidopropyldimethylammonio)acetate
Subclass (C): Polymerization of multifunctional amphiphilic molecules with
multifunctional linking agents (for example, the step-growth polymerization of
alkyl(poly)glucosides with difunctional linkers such as dicarboxylic acids, bis(acyl
halide)s, diisocyanates, bis(epoxide)s, or epichlorihydrin) yielding a polymerized
surfactant with an amphiphilic repeat unit shown in brackets below, and having a number
of amphiphilic repeat units, n (hereinafter "step-growth arnphiphiles" or "SGAs")-'
v) Via post-polymerization modification to render repeat units amphiphilic:
(a) Hydrolysis of 1 ;I alternating copolymers of maleic anhydride and long
chain a-olefins or alkyl vinyl ethers
(b) Ring-opening of 1:1 alternating copolymers of maleic anhydride and long
chain a-olefins or alkyl vinyl ethers with, aminoalkylsulfonic acids,
aminoalkylcarboxyiic acids or dialkylaminoalkylamines
vi) Via post-polymerization modification to incorporate amphiphilic repeat
units:
(a) Reaction of polymer with repeat units comprising hydroxyi functionalities,
such as polyvinylalcohol, hydroxyethylcellulose, or dextran, with 3-chloro-
2-hydroxypropylalkyldimethyIammonium chlorides, such as qUAB 342,
360, and 426 commercially available from Degussa AG of Parsippany, NJ
(b) Partial quaternization of poly(4-vinylpyridtne) with alkylbromides
Examples of suitable polymerized surfactants having a backbone comprised of
carbon-heretoatom bonds include SGAs and PPDAs having such a backbone, such as,
polyethers, including polysaccharides, polyesters, polycarbonates, polyanhydrides,
polyamides, polyurethanes, polyureas, polyimides, polysufones, polysulfid.es,
combinations of two or more thereof, and the like.
According to certain preferred embodiments, the polymerized surfactant for use in
fee present invention comprise EUAHs, such as Poly (sodium allyldodecylsutfosuccinate),
and the like, EUACs, such as Poly(acrylic acid co-2-acrylamideododecylsulfonic acid),
Poly (sodium allyldodecyl sulfosuccinate-co-acrylic acid), and the like, carbon-carbon
backbone PPDA polymers such as octadecene/maleic anhydride copolymers,
tetradecene/maleic anhydride copolymers, derivatives thereof (including, for example,
hydrolyzed derivatives, amidated derivatives, and the like), combinations of two or more
thereof, and the like.
In certain other preferred embodiments, the polymerized surfactants for use in the
invention comprise carbon-heteroatom backbone polymers, such as, polysaccharides,
polyesters, polycarbonates, polyanhydrides, polyamides, polyurethaaes, polyureas,
polyimides, polysufones, polysulfides, combinations of two or more thereof. Certain
preferred carbon-heteroatom backbone polymers include polysaccharides.
The molecular weight of the polymerized surfactant is not critical. In one
embodiment of the invention, the polymerized surfactant has a molecular weight from
about 3500 to about 500,000. In a preferred embodiment, the polymerized surfactant has a
molecular weight from about 5000 to about 200,000, more preferably from about 7500 to
about 100,000, and most preferably from about 10,000 to about 50,000.
Any amounts of polymerized surfactants suitable to produce micelle size distributions
of the present invention may be combined according to the present methods. According to
certain embodiments, polymerized surfactant is used in a concentration from greater than
about 0.1 % to about 30% by weight of active polymerized surfactant in the composition.
Preferably, polymerized surfactant is in a concentration from about 0.5 to about 20%, more
preferably from about 1 to about 15%, even more preferably from about 2 to about 10% of
active polymerized surfactant in the composition. In certain other preferred embodiments, the
compositions of the present invention comprise from about 0.5 to about 15%, more preferably
from about 1.5 to about 10%, even more preferably from about 2 to about 7%, even more
preferably from about 3 to about 7% of active polymerized surfactant in the composition.
Compositions useful in the present invention may also include any of a variety of
monomeric surfactants. By "monomeric surfactants" it is meant any surface active agents
that do not meet the definition of "polymerized surfactant" as defined above. The
monomeric surfactants may be anionic, nonionic, amphoteric or cationic, examples of
which are detailed below.
According to certain embodiments, suitable anionic surfactants include those selected
from the following classes of surfactants: alkyl sulfates, alkyl ether sulfates, alkyl
monoglyceryl ether sulfates, alkyl sulfonates, alkylaryl sulfonates, alkyl sulfosuccinates,
alkyl ether sulfosuccinates, alkyl sulfosuccinamates, alkyl amidosulfosuccinates, alkyl
carboxylates, alkyl amidoethercarboxylates, alkyl succinates, fatty acyl sarcosinates, fatty
acyl amino acids, fatty acyl taurates, fatty alkyl sulfoacetates, alkyl phosphates, and
mixtures of two or more thereof. Examples of certain preferred anionic surfactants
include:

R1 is an alkyl group having from about 1 to about 18, and preferably from
about 8 to about 14 carbon atoms,
R2 is a substituent of a natural or synthetic I-amino acid,
X1 is selected from the group consisting of alkali metal ions, alkaline earth
metal ions, ammonium, ions, and ammonium ions substituted with from about
1 to about 3 substituents, each of the substituents may be the same or different
and are selected from the group consisting of alkyl groups having from 1 to 4
carbon atoms and hydroxyalkyl groups having from about 2 to about 4 carbon
atoms and
v is an integer from 1 to 6;
w is an integer from 0 to 20;
and mixtures thereof.
Any of a variety of nonionic surfactants are suitable for use in the present
invention. Examples of suitable nonionic surfactants include, but are not limited to, fatty
alcohol acid or amide ethoxylates, monoglyceride ethoxylates, sorbitan ester ethoxylates
alkyl polyglycosides, mixtures thereof, and the like. Certain preferred nonionic surfactants
include polyoxyethylene derivatives of polyol esters, wherein the polyoxyethylene derivative
of polyol ester (1) is derived from (a) a fatty acid containing from about 8 to about 22, and
preferably from about 10 to about 14 carbon atoms, and (b) a polyol selected from sorbitol,
sorbitan, glucose, cx-methyl glucoside, polyglucose having an average of about 1 to about 3
glucose residues per molecule, glycerine, pentaerythritol and mixtures thereof, (2) contains
an average of from about 10 to about 120, and preferably about 20 to about 80 oxyethylene
units; and (3) has an average of about 1 to about 3 tatty acid residues per mole of
polyoxyethylene derivative of polyol ester. Examples of such preferred polyoxyethylene
derivatives of potyol esters include, but are not limited to PEG-80 sorbitan laurate and
Polysorbate 20. PEG-80 sorbitan laurate, which is a sorbitan monoester of lauric acid
ethoxylated with an average of about 80 moles of ethylene oxide, is available commercially
from Uniqema of Chicago, Illinois under the tradename, "Atlas G-4280." Polysorbate 20,
which is the laurate monoester of a mixture of sorbitol and sorbitol anhydrides condensed
with approximately 20 moles of ethylene oxide, is available commercially from 1CI
Surfactants of Wilmington, Delaware under the tradename "Tween 20."
Another class of suitable nonionic surfactants includes long chain alkyl glucosides or
polyglucosides, which are the condensation products of (a) a long chain alcohol containing
from about 6 to about 22, and preferably from about 8 to about 14 carbon atoms, with (b)
glucose or a glucose-containing polymer. Preferred alkyl gluocosides comprise from about 1
to about 6 glucose residues per molecule of alkyl glucoside. A preferred glucoside is decyl
glucoside, which is the condensation product of decyl alcohol with a glucose polymer and is
available commercially from Cognis Corporation of Ambler, Pennsylvania under the
tradename, "Plantaren 2000."
Any of a variety of amphoteric surfactants are suitable for use in the present
invention. As used herein, the term "amphoteric" shall mean: 1) molecules that contain both
acidic and basic sites such as, for example, an amino acid containing both amino (basic) and
acid (e.g., carboxylic acid, acidic) functional groups; or 2) zwitterionic molecules which
possess both positive and negative charges within the same molecule. The charges of the
latter may be either dependent on or independent of the pH of the composition. Examples of
zwitterionic materials include, but are not limited to, alkyl betaines and amidoalkyl betaines.
The amphoteric surfactants are disclosed herein without a counter ion. One skilled in the art
would readily recognize that under the pH conditions of the compositions of the present
invention, the amphoteric surfactants are either electrically neutral by virtue of having
balancing positive and negative charges, or they have counter ions such as alkali metal,
alkaline earth, or ammonium counter ions.
Examples of amphoteric surfactants suitable for use in the present invention
include, but are not limited to, amphocarboxylates such as alkylamphoacetates (mono or
di); alkyl betaines; amidoalkyl betaines; amidoalkyl sultaines; amphophosphates;
phosphorylated imidazolines such as phosphobetaines and pyrophosphobetaines;
carboxyalkyl alkyl polyamines; alkylimino-dipropionates; alkylamphoglycinates (mono or
di); alkylamphoproprionates (mono or di),); N-alkyl j3-aminopropriomc acids;
alkylpolyamino carboxylates; and mixtures thereof.
Examples of suitable amphocarboxylate compounds include those of the formula:

wherein
A is an alkyl or alkenyl group having from about 7 to about 21, e.g. from
about 10 to about 16 carbon atoms;
x is an integer of from about 2 to about 6;
R5 is hydrogen or a carboxyalkyl group containing from about 2 to about 3
carbon atoms;
R6 is a hydroxyalkyl group containing from about 2 to about 3 carbon atoms
or is a group of the formula:

wherein
R8 is an alkylene group having from about 2 to about 3 carbon
atoms and n is 1 or 2; and
R7 is a carboxyalkyl group containing from about 2 to about 3 carbon atoms;
Examples of suitable alkyl betaines include those compounds of the formula:

wherein
B is an alkyl or alkenyl group having from about 8 to about 22,
e.g., from about 8 to about 16 carbon atoms;
R9 and R10 are each independently an alkyl or hydroxyalkyl
group having from about 1 to about 4 carbon atoms; and

A preferred betaine for use in the present invention is lauryl betaine, available commercially
from Albright & Wilson, Ltd. of West Midlands, United Kingdom as "Empigen BB/J."
Examples of suitable amidoalkyl betaines include those compounds of the formula:

wherein
D is an atkyi or alkenyl group having from about 7 to
about 21, e.g. from about 7 to about 15 carbon atoms;
Ri [ and R12 are each independently an aikyl or
Hydroxyalkyl group having from about I to about 4
carbon atoms;
q is an integer from about 2 to about 6; and m is 1 or
2.
One amidoalkyl betaine is cocamidopropyl betaine, available commercially from Degussa
Goldschmidt Chemical Corporation of Hopewell, Virginia under the tradename, "Tegobetaine
L7."
Examples of suitable amidoalkyl sultaines include those compounds of the formula

wherein
E is an alkyl or alkenyl group having from about 7 to about 21, e.g.
from about 7 to about 15 carbon atoms;
R14 and R15 are each independently an alkyl, or hydroxyalkyl group
having from about 1 to about 4 carbon atoms;
r is an integer from about 2 to about 6; and
R13 is an alkylene or hydroxyalkylene group having from
about 2 to about 3 carbon atoms;
In one embodiment, the amidoalkyl sultaine is cocamidopropyl hydroxysultaine,
available commercially from Rhodia Inc. of Cranbury, New Jersey under the tradename,
"Mirataine CBS."
Examples of suitable amphophosphate compounds include those of the formula:

wherein
G is an alkyl or alkenyl group having about 7 to about 21, e.g. from
about 7 to about 15 carbon atoms;
s is an integer from about 2 to about 6;
Rigis hydrogen or a carboxyalkyl group containing from about
2 to about 3 carbon atoms;
R17 is a hydroxyalkyl group containing from about 2 to about 3
carbon atoms or a group of the formula:

wherein
Rj9 is an alkylene or hydroxyalkylene group
having from about 2 to about 3 carbon atoms
and

R18 is an alkylene or hydroxyalkylene group having from about 2 to
about 3 carbon atoms.
In one embodiment, the amphophosphate compounds are sodium lauroampho PG-
acetate phosphate, available commercially from Uniqema of Chicago, Illinois under the
tradename, "Monateric 1023," and those disclosed in U.S. Patent 4,380,637, which is
incorporated herein by reference.
Examples of suitable phosphobetaines include those compounds of the formula:

wherein E, r, R1, R2 and R3, are as defined above. In one embodiment, the phosphobetaine
compounds are those disclosed in U.S. Patent Nos. 4,215,064,4,617,414, and 4,233,192,
which are all incorporated herein by reference.
Examples of suitable pyrophosphobetaines include those compounds of the formula:

wherein E, r, R1, R2 and R3, are as defined above. In one embodiment, the
pyrophosphobetaine compounds are those disclosed in U.S. Patent Nos. 4,382,036,
4,372,869, and 4,617,414, which are all incorporated herein by reference.
Examples of suitable carboxyalkyl alkylpolyamines include those of the formula:
i-J U
wherein
I is an alkyl or alkenyl group containing from about 8 to about 22, e.g.
from about 8 to about 16 carbon atoms;
R22 is a carboxyalkyl group having from about 2 to about 3 carbon
atoms;
R21 is an alkylene group having from about 2 to about 3 carbon atoms
and
u is an integer from about 1 to about 4.
Classes of cationic surfactants that are suitable for use in this invention include
alkyl quaternaries (mono, di, or tri), benzyl quaternaries, ester quaternaries, ethoxylated
quaternaries, alkyl amines, and mixtures thereof, wherein the alkyl group has from about 6
carbon atoms to about 30 carbon atoms, with about 8 to about 22 carbon atoms being
preferred.
Any amounts of monomeric surfactant suitable to produce low small micelle fraction
composition may be combined according to the present methods. For example, the amount of
monomeric surfactants used in the present invention may be from about 0.1 to about 30%,
more preferably from about 0.5 to about 20%, even more preferably from about 1 to about
15% of total active monomeric surfactant in the composition, and even more preferably from
about 2% to about 10%.
Any relative amounts of polymerized surfactants and monomeric surfactant suitable to
produce low small micelle fraction composition may be combined according to the present
methods. According to certain embodiments, the compositions comprise a ratio of
polymerized surfactant to sum total of all monomeric surfactants of from about 0.1:1 to about
5:1, and preferably from about 0.25:1 to about 3:1.
In addition to monomeric surfactants, the compositions of the present invention may
comprise any of a variety of additional other ingredients used conventionally in personal care
compositions ("personal care components")- These other ingredients nonexclusively include
one or more, pearlescent or opacifying agents, thickening agents, emollients, secondary
conditioners, humectants, chelating agents, actives, exfoliants, and additives which ,
enhance the appearance, feel and fragrance of the compositions, such as colorants,
fragrances, preservatives, pH adjusting agents, and the like.
Any of a variety of commercially available pearlescent or opacifying agents which
are capable of suspending water insoluble additives such as silicones and/or which tend to
indicate to consumers that the resultant product is a conditioning shampoo are suitable for
use in this invention. The pearlescent or opacifying agent may be present in an amount,
based upon the total weight of the composition, of from about 1 percent to about 30
percent, e.g. from about 1.5 percent to about 7 percent or from about 2 percent to about 5
percent. Examples of suitable pearlescent or opacifying agents include, but are not limited
to mono or diesters of (a) fatty acids having from about 16 to about 22 carbon atoms and
(b) erther ethylene or propylene glycol; mono or diesters of (a) fatty acids having from
about 16 to about 22 carbon atoms (b) a polyalkylene glycol of the formula: HO-(JO)a-H,
wherein J is an alkylene group having from about 2 to about 3 carbon atoms; and a is 2 or
3;fatty alcohols containing from about 16 to about 22 carbon atoms; fatty esters of the
formula: KCOOCH2L, wherein K and L independently contain from about 15 to about 21
carbon atoms; inorganic solids insoluble in the shampoo composition, and mixtures thereof
The pearlescent or opacifying agent may be introduced to the mild cleansing
composition as a pre-formed, stabilized aqueous dispersion, such as that commercially
available from Cognis Corporation of Ambler, Pennsylvania under the tradename, "Euperlan
PK-3000." This material is a combination of glycol distearate (the diester of ethylene glycol
and stearic acid), Laureth-4 (CH3(CH2)10CH2(OCH2CH2)4OH) and cocamidopropyl betaine
and may be in a weight percent ratio of from about 25 to about 30: about 3 to about 15: about
20 to about 25, respectively.
Any of a variety of commercially available thickening agents, which are capable of
imparting the appropriate viscosity to the persona] cleansing compositions are suitable for use
in this invention. If used, the thickener may, for example, be present in an amount sufficient
to raise the Brookfield viscosity of the composition to a value of between about 500 to about
10,000 centipoise. Examples of suitable thickening agents nonexchisively include: mono or
diesters of 1) polyethylene glycol of formula: HO-(CH2CH2O)2H, wherein z is an integer
from about 3 to about 200; and 2) fatty acids containing from about 16 to about 22 carbon
atoms; fatty acid esters of ethoxylated polyols; ethoxylated derivatives of mono and diesters
of fatty acids and glycerine; hydroxyalkyl cellulose; alkyl cellulose; hydroxyalkyi alkyl
cellulose; hydrophobically-modifled alkali swellable emulsions (HASEs); hydrophobically-
modified ethoxylated urethanes (HEURs); xanthamand guar gums; and mixtures thereof.
Preferred thickeners include polyethylene glycol ester, and more preferably PEG-150
distearate which is available from the Stepan Company of Northfield, Illinois or from Comiel,
S.p.A. of Bologna, Italy under the tradename, "PEG 6000 DS".
Any of a variety of commercially available secondary conditioners, such as volatile
silicones, which impart additional attributes, such as gloss to the hair are suitable for use in
this invention. The volatile silicone conditioning agent has an atmospheric pressure boiling
point less than about 220°C. The volatile silicone conditioner may be present in an amount of
from about 0 percent to about 3 percent, e.g. from about 0.25 percent to about 2.5 percent or
from about 0.5 percent to about 1.0 percent, based on the overall weight of the composition.
Examples of suitable volatile silicones nonexclusively include polydimethylsiloxane,
polydimethylcyclosiloxane, hexamethyldisiloxane, cyclomethicone fluids such as
polydimethylcyclosiloxane available commercially from Dow Corning Corporation of
Midland, Michigan under the tradename, "DC-345" and mixtures thereof, and preferably
include cyclomethicone fluids. Other suitable secondary conditioners include cationic
polymers, including polyquartemiums, cationic guar, and the like.
Any of a variety of commercially available humectants, which are capable of
providing moisturization and conditioning properties to the personal cleansing composition,
are suitable for use in the present invention. The humectant may be present in an amount of
from about 0 percent to about 10 percent, e.g. from about 0.5 percent to about 5 percent or
from about 0.5 percent to about 3 percent, based on the overall weight of the composition.
Examples of suitable humectants nonexclusively include: 1) water soluble liquid polyols
selected from the group comprising glycerine, propylene glycol, hexylene glycol, butylene
glycol, dipropylene glycol, polyglycerols, and mixtures thereof; 2)polyalkylene glycol of the
formula: HO-(R"O)b-H, wherein R" is an alkylene group having from about 2 to about 3
carbon atoms and b is an integer of from about 2 to about 10; 3) polyethylene glycol ether of
methyl glucose of formula CH3-C6H10O5-(OCH2CH2)c-OH, wherein c is an integer from
about 5 to about 25; 4) urea; and 5) mixtures thereof, with glycerine being the preferred
humectant
Examples of suitable chelating agents include those which are capable of protecting
and preserving the compositions of this invention. Preferably, the chelating agent is
ethylenediamine tetracetic acid ("EDTA"), and more preferably is tetrasodium EDTA,
available commercially from Dow Chemical Company of Midland, Michigan under the
tradename, "Versene 100XL" and is present in an amount, based upon the total weight of the
composition, from about 0 to about 0.5 percent or from about 0.05 percent to about 0.25
percent.
Suitable preservatives include, for example, parabens, quaternary ammonium species,
phenoxyethanol, benzoates, DMDM hydantoin, and are present in the composition in an
amount, based upon the total weight of the composition, from about 0 to about 1 percent or
from about 0.05 percent to about 0.5 percent.
The polymerized surfactant, optional monomeric surfactants and optional
other components of the composition may be combined according to the present invention via
any conventional methods of combining two or more fluids or solids. For example, one or
more compositions comprising, consisting essentially of, or consisting of at least one
polymerized surfactant and one or more compositions comprising, consisting essentially of, or
consisting of water, monomeric surfactants or suitable ingredients may be combined by
pouring, mixing, adding dropwise, pipetting, pumping, and the like, one of the compositions
comprising the polymerized surfactant into or with the other in any order using any
conventional equipment such as a mechanically stirred propeller, paddle, and the like.
The methods of the present invention may further comprise any of a variety of steps
for mixing or introducing one or more of the optional components described hereinabove with
or into a composition comprising a polymerized surfactant either before, after, or
simultaneously with the combining step described above. While in certain embodiments, the
order of mixing is not critical, it is preferable, in other embodiments, to pre-b'lend certain
components, such as the fragrance and the nonionic surfactant before adding such
components into a composition comprising the polymerized surfactant.
The pH of the present compositions is not critical, but may be in a range that does
not facilitate irritation to the skin, such as from about 5 to about 7. The viscosity of the
personal care composition is not critical, although may be a spreadable cream or lotion or
gel.
The present compositions may be of varying phase compositions, but are preferably
aqueous solutions or otherwise include an exterior aqueous phase (e.g., aqueous phase is
the most exterior phase of the composition). As such, compositions of the present
invention may be formulated to be oil-in-water emulsions that are shelf-stable in that the
emulsion does not lose phase stability or "break" when kept at standard conditions (22
degrees Celsius, 50% relative humidity) for a week or more after it is made.
In certain embodiments, the compositions produced via the present invention are
preferably used as or in personal care products for treating or cleansing at least a portion of
the human body. Examples of certain preferred personal care products include various
products suitable for application to the skin, hair, and/or vaginal region of the body, such
as shampoos, hand, face, and/or body washes, bath additives, gels, lotions, creams, and the
like. As discussed above, applicants have discovered unexpectedly that the instant
methods provide personal care products having reduced irritation to the skin and/or eyes
and, in certain embodiments one or more of desirable properties such as foaming
characteristics, rheology, and functionality, even at high surfactant concentrations.
The present invention provides methods of treating and/or cleansing the human
body comprising contacting at least a portion of the body with a composition of the present
invention. Certain preferred methods comprising contacting mammalian skin, hair and/or
vaginal region with a composition of the present invention to cleanse such region and/or
treat such region for any of a variety of conditions including, but not limited to, acne,
wrinkles, dermatitis, dryness, muscle pain, itch, and the like. In certain preferred
embodiments, the contacting step comprises applying a composition of the present
invention to human skin, hair or vaginal region.
The cleansing methods of the present invention may further comprise any of a
variety of additional, optional steps associated conventionally with cleansing hair and skin
including, for example, lathering, rinsing steps, and the like.
EXAMPLES
The following Trans-Epithelial Permeability ("TEP"), Dynamic Light Scattering,
and Foam tests are used in the instant methods and in the following Examples. In
particular, as described above, the TEP test is used to determine when a composition is a •
reduced irritation composition according to the present invention; the Dynamic Light
Scattering test may be used to determine the suitability of a particular polymerized
surfactant (e.g., PMOD%) or composition (e.g., CMID%); and the Foam test may be used
to determine the propensity of compositions to provide the high levels of foam, often
desirable for cleansing compositions.
Unless otherwise indicated, the amounts of ingredients in the Example and
Comparative compositions listed in the tables are expressed in w/w% of ingredient based
on the total composition.
Trans-Epithelial Permeability Test ("TEP Test"):
Irritation to the eyes and/or skin expected for a given formulation is measured in
accordance with the Invittox Protocol Number 86, the "Trans-epithelial Permeability (TEP)
Assay" as set forth in Invittox Protocol Number 86 (May 1994), incorporated herein by
reference. In general, the ocular and/or skin irritation potential of a product can be
evaluated by determining its effect on the permeability of a cell layer, as assessed by the
leakage of fluorescein through the layer. Monolayers of Madin-Darby canine kidney
(MDCK) cells are grown to confluence on microporous inserts in a 24-weIl plate
containing medium or assay buffer in the lower wells. The irritation potential of a product
is evaluated by measuring the damage to the permeability barrier in the cell monolayer
following a 15 minute exposure to dilutions of the product. Barrier damage is assessed by
the amount of sodium fluorescein that has leaked through to the lower well after 30
minutes, as determined spectrophotometrically. The fluorescein leakage is plotted against
the concentration of test material to determine the EC50 (the concentration of test material
that causes 50% of maximum dye leakage, i.e., 50% damage to the permeability barrier).
Higher scores are indicative of milder formulas.
Exposure of a layer of MDCK cells grown on a microporous membrane to a test
sample is a model for the first event that occurs when an irritant comes in contact with the
eye. In vivo, the outermost layers of the corneal epithelium form a selectively permeable
barrier due to the presence of tight junctions between cells. On exposure to an irritant, the
tight junctions separate, thereby removing the permeability barrier. Fluid is imbibed to the
underlying layers of epithelium and to the stroma, causing the collagen lamellae to
separate, resulting in opacity. The TEP assay measures the effect of an irritant on the
breakdown of tight junctions between cells in a layer of MDCK cells grown on a
microporous insert. Damage is evaluated spectrophotometrically, by measuring the
amount of marker dye (sodium fluorescein) that leaks through the cell layer and
microporous membrane to the lower well.
TVynamic T AftM Scattering Tesr ("PLS Test"):
Dynamic light scattering (DLS, also known as Photon Correlation Spectroscopy or
PCS) is a well-known method for determination of average micelle size (measured as
hydrodynamic diameter, dH) and micelle size distribution (A comprehensive explanation of
the technique can be found in the ISO test method ISO 13321:1996(E). The hydrodynamic
size measured by DLS is defined as the size of a hypothetical hard sphere that diffuses in
the same fashion as that of the particle being measured. In practice, micellar species are
dynamic (tumbling), solvated species that maybe isotropic (spherical) or anisotropic (e.g.
ellipsoidal or cylindrical) in shape. Because of this, the diameter calculated from the
difrusional properties of the micelle will be indicative of the apparent size of the dynamic
hydrated/solvated particle; hence the terminology, "hydrodynamic diameter." Micellar
solutions for determination of micelle d^ are prepared by diluting the compositions to 3.0%
of their original concentration with 0.1 |xm-filtered deionized water, obtained from a
Millipore-Q filtration system. (The target dilution of 3.0% is chosen because it is within
the typical concentration range of 1.0% - 10% dilution that is encountered during the use
of rinse-off personal care compositions. The target dilution is also within the range of
dilutions employed in the TEP test.) The samples are agitated on a vortex mixer at 1000
rpm for a minimum of five minutes and then allowed to stand overnight prior to analysis.
Samples are passed through a 0.2 jam Anatop-Plus syringe filter into dust-free disposable
acrylic sizing cuvettes and sealed.
The samples are analyzed using a Zetasizer Nano ZS DLS instrument (Malvern
Instruments, Inc., Southborough, MA) operating at 25.0 "C. Samples must yield a
minimum count rate of 100,000 counts per second (cps) for accurate determination of
micelle dH and micelle size distribution. For samples with count rates below this
minimum, the sample concentration maybe be gradually increased (i.e. diluted less) until
the minimum count rate is achieved, or in some cases, the sample may be run in neat form.
Values of micelle d» and the micelle size distribution are calculated using the Dispersion
Technology Software (DTS) v4.10 package (Malvern Instruments Inc., Southborough,
MA), which calculates the Z-average micelle d» according to the ISO 13321 test method.
Values of average micelle dn are reported herein as the Z-average micelle d». The
reported values of micelle d\\ are the average of three individual measurement runs. The
intensity distribution of micelle size calculated by the DTS software is used to calculate the
" fraction of micelles having values of dn under a given size limit.
Additives exhibiting relatively large values of d» (i.e. greater than about 200 nm)
compared to micellar species, for example, high MW polymeric rheology modifiers,
polymeric conditioners, particulate opacifiers, (micro)emulsions of hydrophobic
emollients, silicone (micro)emulsions, etc., are routinely added to personal care
compositions comprising micellar species. To those skilled in the art of DLS, it is apparent
that such nonmicellar materials will exhibit light scattering intensities orders of magnitude
greater than the relatively smaller micellar species in the diluted sample. The scattering
intensity of such materials will overwhelm the scattering signal of the micellar species,
thus interfering in the accurate determination of micelle dH. Typically, this type of
interference will lead to an erronously large measured value of micelle dH. To avoid such
interference, it is most preferable to measure the micelle dH of the composition in the
absence of additives exhibiting values of dH greater than about 200 nm. Those skilled in
the art of DLS will recognize that additives exhibiting large values of dH should be
separated from the sample via filtration or ultracentrifugation prior to determination of the
micelle dH of the sample. Alternatively, higher order analysis of the DLS data using the
Dispersion Technology Software v4.10 package may also be employed to obtain enhanced
resolution and properly characterize micelle dH in the presence of nonmicellar scattering
species.
In accord with the above description and as shown hereafter in the Examples, the
"PMOD%" and "PMODz-average" associated with a polymerized surfactant are calculated
by preparing a model composition comprising about 4.8 active weight % of the
polymerized surfactant, 0.3 weight percent of a combination of sodium methyl- (and)
sodium propyl- (and) sodium ethyl paraben, (such as the product commercially available as
Nipasept Sodium), 0.25 weight percent of tetrasodium EDTA (such as Versene 100 XL),
with q.s. water, and using the DLS test to measure the fraction of micelles having a dH of
less than 9nm in the resulting model composition (PMOD%), and the z-average micelle dH
associated therewith (PMODz-average). Applicants have recognized that in certain
embodiments, the polymerized surfactant to be tested may be incompatible with the above
model composition. Thus, if, and only if, the formulation of the above model composition
results in two separate liquid phases and/or precipitation of the polymer surfactant, then the
PMOD% and PMODz-average procedure comprises making a composition comprising
about 4.8 active weight % of the polymerized surfactant, 0.5 weight percent of sodium
benzoate, 0.25 weight percent of tetrasodium EDTA (such as Versene 100 XL), with q.s.
citric acid to a pH of 4.8 ± 0.2, with q.s. water, and using the DLS test to measure the
fraction of micelles having a dH of less than 9nm in the resulting model composition
(PMOD%), and the z-average micelle dH associated therewith (PMODz-average).
For any other composition (including non-model compositions), the fraction of
micelles having a dH of less than 9nm (CMTD%) and the z-average micelle dH (CMIDz-
average) associated therewith are measured using the DLS test for such composition.
Foam Volume Evaluation ("Foam Test"):
The following Foam Test was performed on various personal care compositions to
determine the Maximum Foam Volume upon agitation according to the present invention.
The procedure was accomplished by adding 5.0 grams of the model solution that included
a particular polymerized surfactant to be tested, to 995 grams of deionized water and
mixing until homogenous. The mixture was then added to a sample tank of a Sita R-2000
foam tester (commercially available from Future Digital Scientific, Co.; Bethpage, NY).
The test parameters were set to repeat three runs (series count=3) of 250 ml sample size
(fill volume—250 ml) with twelve stir cycles (stir count=12) for a 15 second stir time per
cycle (stir time=l5 seconds) with the rotor spinning at 1000 RPM (revolution=1000) at a
temperature setting of 30°C ±2°C. Foam Volume data was collected at each stir cycle and
the average and standard deviation of the three runs was determined. Maximum Foam
Volume was reported for each Example as the value after the twelfth stir cycle.
Examples El- E8: Preparation of Model Compositions
The model compositions of Examples El through E8 were prepared by blending a
particular surfactant with other ingredients according to the materials and amounts listed in
Table 1:
The low-DP polymerized surfactants noted in Table 1 were prepared as follows:
PA-18, hydrolyzed, of Example El was obtained by performing a reaction of a 1:1
alternating copolymer of 1-octadecene and maleic anhydride (PA-18 Low Viscosity Low
Color grade, commercially available from Chevron Phillips Chemical, LLC) with sodium
hydroxide in aqueous solution to yield a octadecene/MA copolymer having an average of
approximately 25-75 amphiphilic repeat units on a weight average basis, a mole fraction of
amphiphilic repeat units of about 100%, and a hydrophobic group of C16 within the
amphiphilic repeat unit.
PA-14, hydrolyzed, of Example E2 was obtained by performing a reaction of a 1:1
alternating copolymer of 1-tetradecene and maleic anhydride (PA-14) with sodium
hydroxide in aqueous solution to yield a tetradecene/MA copolymer having a weight
average of approximately 25-75 amphiphilic repeat units, a mole fraction of amphiphilic
repeat units of about 100%, and a hydrophobic group of C12 within the amphiphilic repeat
unit.
PAT-18, taurine derivative, of Example E3 was obtained via the base-catalyzed
reaction of a 1:1 alternating copolymer of 1-octadecene and maleic anhydride (PA-18 Low
Viscosity Low Color grade, Chevron Phillips Chemical, LLC of The Woodlands, TX) with
the aminoalkylsulfonic acid taurine in aqueous solution according to the procedure of
Grief, N., et al. (ref. WO9716464A1) to yield a taurate amide of octadecene/MA
copolymer having a weight average of approximately 25-75 amphiphilic repeat units, a
mole fraction of amphiphilic repeat units of about 100%, and a hydrophobic group of C16
within the amphiphilic repeat unit.
PAT-14, taurine derivative, of Example E4 was obtained via the base-catalyzed
reaction of a 1:1 alternating copolymer of 1-tetradecene and maleic anhydride (PA-14)
with the aminoalkylsulfonic acid taurine in aqueous solution according to the procedure of
Grief, N., et al. (ref. WO9716464A1) to yield a taurate amide of tetradecene/MA
copolymer having a weight average of approximately 25-75 amphiphilic repeat units, a
mole fraction of amphiphilic repeat units of about 100%, and a hydrophobic group of C12
within the amphiphilic repeat unit.
Poly(acrylic acid co-2-acrylamidododecylsulfonic acid) of Example E5 was
prepared via the free-radical copolymerization of acrylic acid and acryloyldecyltaurine in
aqueous solution. AcryloyldecyJtaurine is prepared according to the procedure of
Harrison, K. S. (ref. US 3,544,597). The resulting copolymer had a weight average of
approximately 10-500 amphiphilic repeat units, a mole fraction of amphiphilic repeat units
of about 50%, and a hydrophobic group of C12 within the amphiphilic repeat unit.
Poly (sodium allyldodecyl sulfosuccinate-co-acrylic acid) of Example E6 was
prepared via the free-radical copolymerization of acrylic acid and sodium
allyldodecylsulfosuccinate (TREM LF-40, commercially available from Cognis
Corporation of Ambler, Pennsylvania) in aqueous media. The resulting copolymer had a
weight average of approximately 50-100 amphiphilic repeat units, a mole fraction of
amphiphilic repeat units of about .50%, and a hydrophobic group of C12 within the
amphiphilic repeat unit.
Poly (sodium allyldodecylsulfosuccinate) of Example E7 was prepared via the free-
radical polymerization of sodium allyldodecylsulfosuccinate (TREM LF-40, commercially
avaialbe from Cognis Corporation) in aqueous media. The resulting copolymer had a
weight average of approximately 10-20 amphiphilic repeat units, a mole fraction of
amphiphilic repeat units of about 100%, and a hydrophobic group of Cl 2 within the
amphiphilic repeat unit.
PolySuga®Nate 100P of Example E8 was obtained from Colonial Chemical of
South Pittsburg, TN under the tradename PolySuga®Nate 100P. Product literature refers to
this as a sulfonated poly(alkyl polyglucoside).
The model compositions of Table 1 were prepared as follows: water (about 50.0
parts) was added to a beaker fitted with a mechanical stirrer. Nipasept Sodium powder was
added until dissolved. The appropriate surfactant was added also at low stir speed to avoid
aeration. Versene was added and mixing was continued. Heat was provided (no greater
than 60 C) if necessary to obtain a uniform solution. Batch was allowed to cool to 25 C if
necessary, while mixing was continued at medium speed. pH was adusted to 7,0 +/- 0.2
using citric acid or sodium hydroxide solution. Water was added to q.s. to 100%.
Comparative Examples C9- C11; Preparation of Model Compositions
Model compositions of Examples C9 through C11 were prepared by mixing a
particular surfactant to be evaluated with other ingredients -in a manner similar to the
model compositions described above (see Examples E1-E8) — and according to the
materials and amounts listed in Table 4:

The compositions of Table 4 were prepared as follows: water (50.0 parts) was added
to a beaker fitted with a mechanical stirrer. Nipasept Sodium powder was added until
dissolved. Monomeric surfactant was slowly added at low stir speed to avoid aeration.
Versene was added and mixing was continued. Heat was provided (no greater than 60 C)
if necessary to obtain a uniform solution. Batch was allowed to cool to 25 C if necessary,
while mixing was continued at medium speed. pH was adusted to 7.0 +/- 0.2 using citric
acid or sodium hydroxide solution. Water was added to q.s. to 100%.
Comparison of Model Compositions: The compositions prepared in accordance
with Examples C9-C11 were tested for mildness in accordance with the above TEP Test.
The samples were also tested according to the DLS test. The results of these tests are
listed below in Table 5:

As seen in Tables 2 and Table 5 for model compositions tested, it can be see that
compositions including low-DP polymerized surfactants that have a PMOD% less than
about 90% surprisingly, were generally milder, and often significantly milder when
compared with conventional monomeric surfactants that have a PMOD% greater than or
equal to about 90%. Also, as shown in Table 3, the model compositions that include
polymerized surfactants in most cases are also capable of providing a high level of foam,
despite the absence of monomeric surfactant.

The compositions of Table 6 were prepared as follows: water (about 50.0 parts)
was added to a beaker fitted with a mechanical stirrer. Nipasept Sodium powder was
added until dissolved. Tegobetaine was added also at low stir speed to avoid aeration. The
appropriate polymeri2ed surfactant was then added also at low stir speed to avoid aeration.
Versene was added and mixing was continued. Heat was provided (no greater than 60 C)
if necessary to obtain a uniform solution. Batch was allowed to cool to 25 C if necessary,
while mixing was continued at medium speed. pH was adusted to 7.0 +/- 0.2 using citric
acid or sodium hydroxide solution. Water was added to q.s. to 100%.
Comparison of Cleansing Compositions: The compositions prepared in accordance
with Examples E12 - El 8 were tested for mildness in accordance with the above TEP
Test. The samples were also tested according to the DLS test. The results of these tests
are listed below in Table 7:

The compositions of Table 8 were prepared as follows: water (about 50.0 parts)
was added to a beaker fitted with a mechanical stirrer. Nipasept Sodium powder was
added until dissolved. Tegobetaine was added also at low stir speed to avoid aeration. The
appropriate monomeric surfactant (Rhodapex or Cedepal) to be considered was then added
also at low stir speed to avoid aeration. Versene was added and mixing was continued.
Heat was provided (no greater than 60 C) if necessary to obtain a uniform solution. Batch
was allowed to cool to 25 C if necessary, while mixing was continued at medium speed.
pH was adusted to 7.0 +/- 0.2 using citric acid or sodium hydroxide solution. Water was
added to q.s. to 100%.
Comparison of Cleansing Compositions: The compositions prepared in accordance with
Examples C19 - C20 were tested for mildness in accordance with the above TEP Test. The
samples were also tested according to the DLS test. The results of these tests are listed
below in Table 9:

As seen in Tables 7 and Table 9, for compositions tested, it can be see that a variety
of polymerized surfactants can be formulated into cleansing compositions that have a
surprisingly low small micelle fractions as indicated by CMID% (less than about 90%)
when compared to convetional fnonomeric surfactants. Furthermore, TEP values were
surprisingly high for the inventive compositions.
Examples E21- E24: Preparation of Cleansing Compositions
The model compositions of Examples E21 through E24 were prepared according to the
materials and amounts listed in Table 10.

The cleansing compositions of Table 10 were prepared in a manner similar to those
described for E1-E9 shown in Table 1. The concentration of PA-18, hydrolyzed was held
constant.
Comparison of Cleansing Compositions: The compositions prepared in accordance with
Examples E21 — E24 were tested for mildness in accordance with the above TEP Test. The
samples were also tested according to the DLS test. The results of these tests are listed
below in Table 11 (Examples El and E12 are also shown for comparison):

For comparative purposes, compositions with no polymerized surfactant (C9 -
formula shown in Table 4) or with a monomeric surfactant (SLES) replacing the
polymerized surfactant (C19-formula shown in Table 8) are shown below in Table 12:
Table 12

As seen in Table 11, for compositions tested, it can be see the polymerized surfactant,
PA-18, hydrolyzed can be formulated into cleansing compositions with a variety of relative
concentration of monomeric surfactant to polymerized surfactant. In each of the examples,
the compositions have a surprisingly low small micelle fractions as indicated by CMID%
(less than about 90%), especially when compared with similar compositions with
conventional surfactants, shown in Table 12.
Examples E2S— E27; Preparation of Cleansing Compositions
The cleansing compositions of Examples E25 through E27 were prepared
according to the materials and amounts listed in Table 13:

The cleansing compositions of Table 13 were prepared in a manner similar to those
described forEl-E9 shown in Table 1. The ratio of betaine to PA-18, hydrolyzed was held
constant.
Comparison of Cleansing Compositions: The compositions prepared in accordance with
Examples E25 - E27 were tested for mildness in accordance with the above TEP Test. The
samples were also tested according to the DLS test. The results of these tests are listed
below in Table 14 (Example E12 is also shown for comparison):

As seen in Table 14, for compositions tested, it can be see the polymerized
surfactant, PA-18, hydrolyzed can be formulated into cleansing compositions with a
variety of total surfactant concentrations (polymerized + monomeric). In each of the
examples, the compositions has a surprisingly low small micelle fractions as indicated by
CMID% (less than about 90%).
We claim:
1. A low-irritation personal care composition for treating the human
body comprising a low-DP polymerized surfactant, said
composition having a CMID% of less than about 90%.
2. The composition as claimed in claim 1, wherein said composition
has a CMID% of less than about 50%.
3. The composition as claimed in claim 1, wherein said composition
has a TEP value of about 3.5 or greater.
4. The composition as claimed in claim 1, wherein said composition
has a TEP value of at least about of 5 or greater.
5. The composition as claimed in claim 1, wherein said low-DP
polymerized surfactant has a PMOD% of about 90% or less.
6. The composition as claimed in claim 1 wherein said low-DP
polymerized surfactant has a PMOD% of about 80% or less.
7. The composition as claimed in claim 1 wherein said low-DP
polymerized surfactant has a PMOD% of about 50% or less.
8. The composition as claimed in claim 1 wherein said low-DP
polymerized surfactant comprises from about 7 to about 2000
amphiphilic repeat units on a weight average basis.
9. The composition as claimed in claim 1 wherein said low-DP
polymerized surfactant comprises from about 10 to about 1000
amphiphilic repeat units on a weight average basis.
10. The composition as claimed in claim 1 wherein said low-DP
polymerized surfactant comprises a polymer having a backbone
that substantially comprises a plurality of carbon-carbon bonds,
wherein said polymer is selected from the group consisting of
EUACs, EUAHs, SGAs, and PPDAs.
11. The composition as claimed in claim 1 wherein said low-DP
polymerized surfactant comprises a polymer having a backbone
that substantially comprises a plurality of carbon-heteroatom
bonds.
12. The composition as claimed in claim 11 wherein said low-DP
polymerized surfactant is a polysaccharide.
13. The composition as claimed in claim 1, wherein said composition
further comprises at least one surfactant selected from the group
consisting of anionic surfactants, amphoteric surfactants, and
combinations of two or more thereof.
14. The composition as claimed in claim 1, wherein said at least one
surfactant comprises a betaine.
15. The composition as claimed in claim 1, wherein said composition is
applied to treat a condition selected from the group consisting of
acne, wrinkles, dermatitis, dryness, muscle pain, itch.
16. The composition as claimed in claim 1 is a cleanser.
17. A low-irritation personal care composition comprising combining a
low-DP polymerized surfactant with at least one additional
personal care component to produce a personal care composition
having a CMID% of less than about 90%.
18. The composition as claimed in claim 17 wherein said personal care
composition has a CMID% of less than about 50%.
19. The composition as claimed in claim 17 wherein said personal care
composition has a TEP value of about 3 or greater.
20. The composition as claimed in claim 17 wherein said low-DP
polymerized surfactant has a PMOD% of less than about 90%.
21. The composition as claimed in claim 17 wherein said low-DP
polymerized surfactant has a PMOD% of less than about 80%.
22. The composition as claimed in claim 17 wherein said low-DP
polymerized surfactant comprises a polymer having a backbone
that substantially comprises a plurality of carbon-carbon bonds,
wherein said polymer is selected from the group consisting of
EUACs, EUAHs, SGAs, and PPDAs.
23. The composition as claimed in claim 1 wherein said low-DP
polymerized surfactant comprises a polymer having a backbone
that substantially comprises a plurality of carbon-heteroatom
bonds.
24. The composition as claimed in claim 17 wherein said at least one
additional personal care component comprises a monomeric
surfactant selected from the group consisting of anionic surfactants,
amphoteric surfactants, and combinations of two or more thereof.
Provided are low-irritation personal care compositions comprising a low-DP polymerized
surfactants. Also provided are methods of making and using such compositions.

Documents:

4954-kolnp-2008-abstract.pdf

4954-KOLNP-2008-ASSIGNMENT.pdf

4954-kolnp-2008-claims.pdf

4954-KOLNP-2008-CORRESPONDENCE-1.1.pdf

4954-kolnp-2008-correspondence.pdf

4954-kolnp-2008-description (complete).pdf

4954-kolnp-2008-drawings.pdf

4954-kolnp-2008-form 1.pdf

4954-KOLNP-2008-FORM 18.pdf

4954-kolnp-2008-form 2.pdf

4954-kolnp-2008-form 3.pdf

4954-kolnp-2008-form 5.pdf

4954-kolnp-2008-gfa.pdf

4954-kolnp-2008-international publication.pdf

4954-kolnp-2008-international search report.pdf

4954-kolnp-2008-pct request form.pdf

4954-KOLNP-2008-SCHEDULE.pdf

4954-kolnp-2008-specification.pdf

abstract-4954-kolnp-2008.jpg


Patent Number 263518
Indian Patent Application Number 4954/KOLNP/2008
PG Journal Number 44/2014
Publication Date 31-Oct-2014
Grant Date 31-Oct-2014
Date of Filing 05-Dec-2008
Name of Patentee JOHNSON & JOHNSON CONSUMER COMPANIES, INC.
Applicant Address GRANDVIEW ROAD, SKILLMAN, NEW JERSEY
Inventors:
# Inventor's Name Inventor's Address
1 JOSEPH J. LIBRIZZI 19 NORZ DRIVE, HILLSBOROUGH, NJ 08844
2 MICHAEL J. FEVOLA 409 TOWNSHIP ROAD, BELLE MEADE, NJ 08502
3 RUSSEL M. WALTERS 142 N. BREAD STREET, UNIT 1, PHILADELPHIA, PA 19106
PCT International Classification Number C11D 1/90,A61K 8/73
PCT International Application Number PCT/US2007/007771
PCT International Filing date 2007-03-28
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 11/429,493 2006-05-05 U.S.A.