Title of Invention

PARK INHIBIT ASSEMBLY FOR AN ELECTRIC TRANSMISSION RANGE SELECTION SYSTEM

Abstract An electronic transmission range selection (ETRS) system for shifting a transmission range of a transmission includes an electro-mechanical park inhibit assembly that operates to disallow the ETRS system from shifting from an Out-of-Park mode to a Park mode under certain circumstances. The park inhibit assembly includes a follower having a recess defined thereon and slidably disposed within a follower bore. In one embodiment a selectively energizable solenoid assembly is mounted substantially perpendicular to the follower and operates to bias a ball into the recess when energized thereby locking the ETRS system in the Out-of-Park mode. In another embodiment the park inhibit assembly includes a selectively energizable motor assembly mounted substantially perpendicular to the follower. The motor assembly operates to enforce the Park and Out-of-Park mode of the ETRS system.
Full Text 1
GP-306709
PARK INHIBIT ASSEMBLY FOR AN ELECTRIC TRANSMISSION RANGE SELECTION SYSTEM
TECHNICAL FIELD
[0001] The piesent invention relates to electronic transmission range selection
(ETRS) systems for automatically shiftable transmissions and more particularly to a park inhibit assembly contained therein.
BACKGROUND OF THE INVENTION
[0002] Motorized vehicles include a power plant, such as an internal combustion
engine or electric motor, which produces driving power The driving power is transferred through a transmission to a drivehne for driving a set of wheels at selected gear ratios. Typically, the vehicle operator selects a desired transmission operating mode or range The ranges provided by most automatic transmissions generally include Park, Reverse, Neutral, and Drive In Drive, the automatic transmission automatically shifts between thicc. lour, five six. or more forward gear ratios based on the vehicle operating conditions such as vehicle speed and engine torque.
[0003| Tiadilionaliy, a driver interface device is provided, which the vehicle
operatoi shifts to select the desired transmission range The driver interface device is linked lo the automatic transmission by a range shift mechanism, which typically includes a series of interconnected mechanical devices such as levers, push/pull rods, cables and the like
[0004] Moic icccnlly. "shift-by-wnc" range shift mechanisms have been
developed Conventional shift-by-wne range shift mechanisms are based on an external system having an clcclnc motor for controlling movement of the transmission's manual shaft to the desired tangc select position Switches associated with the driver interface device send a mode signal to a transmission conliollcr that is indicative of the selected
2
transmission range Thereafter, the controller actuates the electric motor to move the transmission manual shaft to the corresponding range select position. Alternately, the "shift by wire" range shift mechanism may be contained internally within the transmission One such system is described in U S. Pat. No. 6,880,419, which is hereby incorporated by reference in its entirety.
SUMMARY OF THE INVENTION
[0005] A transmission for a vehicle is provided having an electronic transmission "
range selection (EIRS) system operable to shift the transmission range, including shifting from a Park mode of operation to an Out-of-Park mode of operation and from the Out-of-Park mode of operation to the Park mode of operation. A selectively engageable park pawl mechanism is provided and operates to enforce the Park mode when engaged and to allow the Out-of-Park mode when disengaged. A park inhibit assembly is movable with the park pawl mechanism and operable to block the engagement of the park pawl mechanism when the vehicle is operating above a predetermined speed The park inhibit assembly includes an electro-mechanical device operable to cooperate with a movable follower member to block the engagement of the park pawl mechanism when the electro-mechanical device is energized The electro-mechanical device may be mounted in a substantially perpendicular relation to the follower member
[0006] In one embodiment, the electro-mechanical device is a selectively
encigizable solenoid and the follower member includes a recess. The solenoid is operable lo engage the recess of the follower member when the solenoid is energized such that the movement of the follower member within the park inhibit assembly is
prohibited
[0007] In anothei embodiment, the electro-mechanical device is a selectively
cncrgizable motoi The motor opeiatcs to drive a pinion gear that is in meshing contact with a rack portion piovidcd on the follower member
3
[0008] The park inhibit assembly may further include a Hall effect switch
operable to provide diagnostic and position signals for the follower member when the transmission is in the Park mode and the Out-of-Park mode. Additionally, the park inhibit assembly may further include a printed circuit board operable to modify the diagnostic and position signals A mechanical contact switch may also be provided and operates to provide diagnostic and position signals for the follower member when the transmission is in the Park mode and the Oul-of-Park mode.
[0009] The above features and advantages and other features and advantages of
the present invention arc readily apparent from the following detailed description of the best modes for carrying out the invention when taken in connection with the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
[0010] Figure 1 is a schematic diagrammatic illustration of a partial powertrain
for a vehicle having a transmission incorporating an electronic transmission range
selection (ETRS) system.
[0011] Figure 2 is a side view of the ETRS system, incorporating a park inhibit
assembly consistent with the present invention, in a Park mode;
[0012] Figutc 3 is a side view of the ETRS system, of Figure 2, in an Out-of-Park
mode:
[0013] Figuic 4 is a cross-sectional bottom view of the park inhibit assembly,
associated with the ETRS system of Figuies 2 and 3 shown in the Park position;
[0014] Figure 5 is a cross-sectional bottom view of the park inhibit assembly,
.shown in Figure 4. in the Out-of-Park position.
[00I5] I-iguie 6 is a partial cross sectional bottom view of an allctnatc
embodiment of the paik inhibit assembly shown in Figures 4 and 5. and
[0016] 1 iguie 7 illustrates the base schematic configuration of the clectiomc
components within ihe park inhibit assembly
4
DESCRIPTION OF THE PREFERRED EMBODIMENTS
(0017] Referring to the figures wherein like reference numbers represent like
characters, there is shown in Figure 1 a schematic illustration of a portion of a powertrain 10 The powcrtrain 10 includes an engine 12, such as an internal combustion engine, and an automatically shiftable transmission 14 The engine 12 produces driving torque that is transferred through the transmission 14 at varying gear ratios to drive at least one pair of wheels (not shown). A driver interface device 16 enables a vehicle operator to select various transmission range positions. The driver interface device 16 can include a lever, switches, dials, push buttons or any other type of input interface desired. The normal transmission range positions, including Park, Reverse, Neutral, and Drive (PRND) are selectable, as well as manual downshifts and tap-up, tap-down capabilities via actuation of the driver interface device 16. In operation, the driver interface device 16 sends a control signal to a transmission control module, or TCM, 18 based on the selected operating range of the transmission 14
[0018] The TCM 18 signals an electronic transmission range selection (ETRS)
system 20 to shift the transmission 14 to the corresponding range in response to the control signal For purposes of clarity, the ETRS system 20 is considered to be operating in a Park mode when the transmission 14 is in its Park mode of operation and to be opeialing in an Out-of-Park mode when the transmission 14 is in any other of the available ranges. An engine control module, or ECM, 21 is provided to receive inputs from and send conliol signals to the engine 12 Additionally, the ECM 21 interfaces with the ETRS system 20 and the TCM 18 to determine the operational range of the liansmission 14.
|00191 Refemng now to Figures 2 and 3. the ETRS system 20 is an integral part
ol the transmission 14 and opeiates to manipulate the How of ptcssuriAxi fluid to shift the tumsmission 14 between its various tiansmission tanges. fhc FTRS system 20 includes a ^ paik servo valve 22. a valve solenoid 24. a forward-reverse enable (FRI-) valve 26, a hydiauhc servo assembly 28, and a iwo-posilion park levei assembly 30. The ETRS
5
system 20 also includes a park inhibit assembly 32 that prevents the transmission 14 from shifting from the Oul-of-Park mode into the Park mode of operation in the event of a loss of pressurized fluid under specific circumstances
[0020] The components of the ETRS system 20 are shown supported within a
housing 34, shown in Figure 1, associated with the transmission 14, shown in Figure 1, which defines a valve body housing 35 having a series of fluid flow passages. Figure 2 illustrates the position of the various components when the ETRS system 20 is in a Park mode. In contrast, Figure 3 illustrates the same components moved to positions corresponding to the ETRS system 20 in an Out-of-Park mode. In particular, the park servo valve 22 is slidably supported within the valve body housing 35 for movement between a first position (Figure 2) and a second position (Figure 3). The park servo valve 22 is biased to its first position by a spring 36. The spring 36 is disposed between a fixed spring seat 38 and the park servo valve 22. In its first position, the park servo valve 22 prohibits the flow of pressurized fluid to the hydraulic servo assembly 28. As discussed in further detail below, the valve solenoid 24 can be selectively actuated to control the supply of pressurized fluid required for moving the park servo valve 22 between its first and second positions
|00211 With continued reference to Figures 2 and 3, the hydraulic servo assembly
28 is shown to include a servo pin 40 having a servo piston 42 fixed thereto. The servo piston 42 is slidably disposed within a cylinder or bore 44 defined by the valve body housing 35 and includes a piston seal 46 disposed about the periphery of the servo piston 42 A port 47 defined by the valve body housing 35 provides a fluid communication path lo a pressure chamber 48 formed within the cylinder 44 The servo piston 42 and servo pin 40 arc biased lo a first position, as shown in Figure 2. by a spring 50 and a torsion spring 51 The spring 50 scats between the servo piston 42 and a servo cap 52, which is fixed to the valve body housing 35 by a retainer ring 54 An opposite end of the servo pm 40 abuts one end of the \-RE valve 26 and is fixed to a first end of an elongated servo link rod 56 The sctvo link rod 56 opcralivcly connects the servo pm 40 to the park lever assembly 30 As deseubed in lurihe. detail bclou. the How of picssun/.ed fluid through
6
the port 47 into the pressure chamber 48 induces movement of the servo piston 42 and
servo pin 40 to a second position, as shown in Figure 3, against the biasing force exerted
thereon by the spring 50 and the torsion spring 51 of the park lever assembly 30.
Movement of the servo pin 40 from its first position to its second position causes the
servo link rod 56 to move from a first position, as shown in Figure 2, to a second
position, as shown in Figure 3. Furthermore, such movement of the servo pin 40 to its
second position acts to release it from engagement with the FRE valve 26.
[0022] The FRE valve 26 is slidably disposed within a valve chamber formed in
the housing 34 for movement between a first position, shown in Figure 2, and a second position, shown in Figure 3 When the servo pin 40 of the hydraulic servo assembly 28 is in its first position, the spring 50 and the torsions spring 51 of the park lever assembly 30 hold the FRE valve 26 in its first position in opposition to the biasing force exerted thereon by a spring 58 The spring 38 is seated between the FRE valve 26 and a wall portion 59 of the housing 34 In its first position, the FRE valve 26 blocks the flow of pressurized fluid to the shifting components of the transmission 14. However, upon movement of the scivo pin 40 of the hydraulic servo assembly 28 to its second position, the biasing force of the spring 58 forcibly moves the FRE valve 26 to its second position With the FRE valve 26 in its second position, the flow of pressurized fluid from port 60 is permitted to the shifting components of transmission 14 through port 61 at a desired line pressure
|0023| The park icver assembly 30 includes a lever 62, a bushing 64 and a manual
shaft 66 1 he manual shaft 66 is roialably supported in one or more aligned apertures defined by the housing 34, shown in Figure 1, and extends through the bushing 64 The bushing 64 is retained in an aperture 68 formed in the lever 62. whereby the lever 62 is rotatably suppoilcd by the bushing 64
(0024] lhc manual shaft 66 includes a pluiality of flats 70 formed along a portion
theicof The manual shaft 66 is received through a keyed aperture 72 of the bushing 64 In pailiculai. Hals 70 of the manual shaft 66 engage the bushing 64, thereby fixing the manual shaft 66 7
free to rotate about the bushing 64. As a result, during normal operation, the manual shaft 66 does not rotate as the ETRS sysiem "20 is moved from the Park mode to the Out-of-Park mode, thereby minimizing drag associated with a manual release mechanism external to the transmission 14.
10025] The lever 62 further includes a slot 76 with a pin 77, fixed to an end of the
servo link rod 56, engaging the slot 76. As such, the servo link rod 56 connects lever 62
to the servo pin 40 of the hydraulic servo assembly 28. A pin 78 extends from the lever
62 and, as will be described in more detail, interfaces with moveable components of the
park inhibit assembly 32. An aperture 80, defined by the lever 62, facilitates attachment
of an end of an actuator rod 82 to the lever 62. The torsion spring 51 is disposed about
the bushing 64 and functions to bias the lever 62 to a Park position, as shown in Figure 2
|0026] The actuator rod 82 is coupled to, or engages, a park pawl mechanism or
assembly 84 that operates to selectively move a park pawl 86 into and out of engagement with a toothed wheel 88 that is rigidly mounted with respect to an output shaft 90 of the transmission 14. The park pawl mechanism 84 selectively locks the output shaft 90 of the transmission 14. With the park pawl 86 engaged with the toothed wheel 88, the ETRS sysiem 20 is in the Park mode, as shown in Figure 2. Alternately, with the park pawl 86 disengaged from the toothed wheel 88, the ETRS system 20 is in the Out-of-Park mode, as shown in Figure 3 As will be detailed, movement of servo pin 40 from its first position to its second position causes the servo link rod 56 to bias the lever 62 In response, the lever 62 is induced to rotate from the Park position to the Out-of-Park position against the biasing force of the torsion spring 51. Such rotary movement of the lever 62 causes the actuator rod 82 to move from a first position to a second position thereby moving the park pawl 86 to the Oul-of-Park position.
100271 Refciiing now to Figuics 4 and 5. the components associated with the park
inhibit assembly 32 will be discussed m grcatei detail. The paik inhibit assembly 32 includes a body 92 thai is attached to a portion of the vahc body housing 35 The paik inhibit assembly 32 also includes- an electro-mechanical device or solenoid assembly 94. 1 he solenoid assembly 94 includes a solenoid housing 96 Contained within the solenoid
8
housing 96 is a solenoid coil 98 having a solenoid plunger 100 coaxially and shdably disposed therein A solenoid plunger spring 102 operates to provide a bias force to the solenoid plunger 100. As is well known, when electrical current is provided to the solenoid coil 98, an electro-magnetic force will develop biasing the solenoid plunger 100. A follower 104 is slidably disposed within a bore 106 defined by the body 92. Preferably, the follower 104 is formed from a ferrous material. A slot 108 is defined by one end of the follower 104, and is sufficiently configured to receive the pin 78 thereby creating a mechanical link between the lever 62, shown in Figures 2 and 3, and the park inhibit assembly 32. The follower 104 has recesses 109 and 110 defined thereon, which operate to receive a ball 112 that is selectively biased into position by the solenoid plunger 100. A pin 107 is fixedly attached to the follower 104 for translation therewith The pin 107 is reciprocally movable within a slot 113 defined by the body 92 and functions as an anti-rotation feature for the follower 104. Additionally, the pin 107 operates to limit the movement of the follower 104 within the bore 106 and also to prevent removal of the follower 104 from the bore 106.
|0028| The park inhibit assembly 32 further includes a contact-less back-biased
Hall effect switch 114. a mechanical contact switch 116, and a printed circuit board 118. Additionally, a wire harness 120 operates to communicate electrical signals between the park inhibit assembly 32 and the TCM 18, shown in Figure 1, and the ECM 21, shown in Figuic 1 The wire harness 120 may also communicate electrical signals from other devices such as, for example, a hydraulic piessurc switch 121, shown in Figure 7 The Hall effect switch 1 14 is powered by the TCM 18 and operates to provide a*signal to the TCM 18 when the ETRS system 20 is in the Park mode The Hall effect switch 114 also operates to provide fault diagnostic signals to the TCM 18, such as short-to-ground, short-lo-voltage. and open circuit conditions When the follower 104 is in close pioximily to the Hall effect switch 114 as shown in Figure 4, a low constant nominal cuiicnt is pioduccd resulting in a low voltage signal at the TCM 18 Alternately, when the follower 104 moves out of proximH\ with the Hall effect switch 114. as shown in
9
Figure 5, a high constant nominal current is produced resulting in a high voltage signal at theTCM 18.
[0029] If the Hall effect switch 114 is non-functional or a signal line is broken or
shorted to ground, the minimum voltage, i e. zero volts, is signaled to the TCM 18. Alternately, if the Hall effect signal line is shorted to voltage, the maximum voltage signal is provided to the TCM 18. The Hall effect switch 114 is programmable, such that the switching points may be optimized to accurately indicate if the ETRS system 20 is in a Park mode or Out-of-Park mode. The mechanical contact switch 116 operates to provide a Park position signal to the ECM 21 should the TCM 18 lose power, at which point, the mechanical contact switch 116 will provide the ECM 21 with the necessary signal information to enable the starting of engine 12. The printed circuit board 118 includes a voltage modifier, thereby enabling the use of the park inhibit assembly 32 within other transmissions that may require voltage signals from the Hall effect switch 114 at different voltage levels.
[0030] When the ETRS system 20 is in the Out-of-Park mode, shown in Figure 2,
the follower 104 is m an extended position, as shown in Figure 5. Under certain
circumstances, for example when the vehicle is traveling above a threshold speed, the
TCM 18 energizes the solenoid assembly 94 of the park inhibit assembly 32 to prevent
movement of the follower 104 by locking it in the Out-of-Park position, shown in Figure
5 More specifically, the spring 102 will bias the solenoid plunger 100 that in turn will
urge the ball 112 into engagement with the recess 109. Subsequently the solenoid coil 98
is energized, thereby locking the solenoid plunger 100 in place The interface between
the ball 112 and the recess 109 prohibits the follower 104 from retracting from the
extended position As such, the lcvci 62. shown in Figures 2 and 3, is prohibited from
rotating as a icsult of the contact between the pin 78 and the follower 104.
[0031 j When the vehicle is operating at or below the threshold speed, the solenoid
assembly 94 wilhm the park inhibit assembly 32 is de-cnergized to enable the ETRS system 20 to shift to the Park mode if desired More specifically, to enable rotation of the lever 62, shown in l-ij-urcs 2 and 3. to the Park position, as shown in Figure 4. the
10
solenoid assembly 94 is de-energized to enable the follower 104 to urge the solenoid
plunger 100 to the retracted position against the biasing force of spring 102, thereby
disengaging the ball 112 from the recess 109. As the follower 104 is pushed into the bore
106 by the lever 62. the solenoid plunger 100 retracts thereby enabling rotation of the
lever 62 to its Park position. The recess 110 is provided to aid the installation of the park
inhibit assembly 32 within the transmission 14. Additionally the slot 108 may include a
lead-in 111, shown in Figures 2 and 3, to facilitate insertion the pin 78 into the slot 108.
[0032] Figure 6 illustrates an alternate embodiment of the park inhibit assembly,
indicated generally as 32'. The park inhibit assembly 32' includes an electromechanical device or electrically operated motor assembly 122 in place of the solenoid assembly 94, shown in Figures 4 and 5. The motor assembly 122 includes an electric motor 124 operable to drive a pinion gear 126 A follower 104' is slidably disposed within the body 92 and has a plurality of teeth 128 formed thereon to form a rack portion 130. The pinion gear 126 is in meshing relation with the rack portion 130. When the ETRS system 20 is in the Out-of-Park mode, shown in Figure 2, the follower 104' is in an extended position. Under certain circumstances, for example when the vehicle is traveling above a threshold speed, the TCM 18 energizes the motor assembly 122 of the park inhibit assembly 32' to prevent movement of the follower 104* thereby locking it in the Out-of-Park position, shown in Figure 6 When the vehicle is operating at or below the threshold speed, the motor assembly 122 of the park inhibit assembly 32' is de-energized to enable the ETRS system 20 to move to the Park mode if desired by the operator More specifically, to enable rotation of the lever 62, shown in Figures 2 and 3, to the Park position, the motor assembly 122 is dc-encrgized to enable the pinion gear 126 to freewheel against the rack portion 130 of the follower 104*. By de-energizing the motor assembly 122, the follower 104' can be pushed into the bore 106 by the lever 62. thereby enabling rotation of the level 62 to its Paik position The motor assembly 122 also piovidcs a method of -pulling" the i: IRS system 20 into an Oul-of-Park mode in the absence of fluid pressure In this capacity, the motor assembly 122 is energized, theicby allowing the pinion gcai 126 to cooperate with the rack poition 130 lo move the follower 104" into an Out-of-Park
11
position, as shown in Figure 6. The follower 104' will engage the pin 78 to urge the lever
62 into rotation, such that the ETRS system 20 is placed in the Out-of-Park mode.
[0033] Referring back to Figures 1, 2, and 3, the vehicle operator selects a desired
transmission range through manipulation of the driver interface device 16. The driver interface device 16 sends an electronic signal to the TCM 18. The TCM 18 then commands a transmission range shift by sending an appropriate signal to the ETRS system 20 The transmission range shi ft includes shifting the transmission range from the Park mode to the Out-of-Park mode of operation, and enabling the flow of pressurized fluid at a desired transmission line pressure to shift components (not shown) of the transmission 14.
[0034] The signal sent from the TCM 18 to the ETRS system 20 actuates the
valve solenoid 24 to enable flow of pressurized fluid to the park servo valve 22 through a port 132. This flow of pressurized fluid urges the park servo valve 22 from its first position to its second position. With the park servo valve 22 located in its second position, as shown in Figure 2, pressurized fluid is supplied from the park servo valve 22 to the hydraulic servo assembly 28. More specifically, the pressurized fluid flows into an inlet port 134 of the park servo valve 22 and through an outlet port 136 and the port 47 into the pressure chamber 48 of the hydraulic servo assembly 28. This flow of pressunzed fluid into the pressure chamber 48 causes movement of the servo pin 40 from its fust position to its second position, in opposition to the bias force of the spring 50 Such sliding movement of servo pin 40 produces movement of the servo link rod 56 from its first position to its second position, which, in turn, initiates rotation of the Lever 62 from its Park position to its Out-of-Park position Such rotation of the lever 62 induces a pulling force on the actualoi rod 82. thcicby shifting the transmission to the Out-of-Park mode by disengaging the paik pawl assembly 84
10035| Concuircntly. movement of the servo pin 40 of the hydraulic servo
assembly 28 to its second position enables movement of the FRE valve 26 from its first position to its second poMlion in .espouse to the bias force or the spring 58 Movement of the FRE valve 26 to lib second position peimils flow of piessun/xd fluid from port 60
12
to port 61. This flow of pressurized fluid is provided to the shifting components of the transmission 14 at the desired line pressure, enabling the transmission 14 to shift to the desired range.
[0036] Following actuation of the ETRS system 20 to the Out-of-Park mode, as
shown in Figure 2, the park inhibit assembly 32 is actuated In particular, the follower 104 biases the pin 78. thereby prohibiting the lever 62 from rotating to its Park position The park inhibit assembly 32 maintains the follower 104 in its extended position while the vehicle is traveling above the threshold speed In the event of a loss of fluid pressure, the park pawl assembly 84 is prevented from shifting the transmission 14 into the Park mode of operation while the vehicle is moving Once the vehicle is operating below the threshold speed, and assuming there is no fluid pressure holding the ETRS system 20 in the Out-of-Park mode, the park inhibit assembly 32 is de-energized to allow the follower 104 to be retracted and permit the torsion spring 51 to rotate the lever 62 to shift the transmission to the Park mode.
[0037] The ETRS system 20 can be manually actuated in the event of a loss of
electrical power and fluid pressure within the vehicle. An accessible handle or cable (not shown) is connected for rotation with the manual shaft 66. A vehicle operator or maintenance personnel can manually rotate the manual shaft 66 using the handle or cable to induce rotation of the lever 62 from its Park position to its Out-of-Park position. As described above, rotation of the lever 62 enables shifting of the transmission 14 to the Out-of-Park mode. In this manner, the vehicle is free to roll without the transmission prohibiting rolling motion
[00381 Figure 7 illustrates the basic schematic configuration of the electronic
components within the park inhibit assembly 32 As stated hcreinabove, the wire harness 120 is in electrical communication with the TCM 18 and the ECM 21 Additionally, the PCM 18 and ECM 21 may be in cleclncal communication with one another A plurality of cleclncal conductor, or leads. A-F constitute the wire harness 120 Lead A communicates a supply voltage to the paik inhibit assembly 32 Lead E operates to communicate a voltage value from the hydiaulic switch 121 to the TCM 18 Should the
13
transmission 14, shown in Figure 1, lose hydraulic pressure, the hydraulic switch 121 will
open thereby interrupting the voltage signal to the TCM 18 over lead E.
[0039] To insure that the solenoid assembly 94 will provide the necessary force to
provide the capability to inhibit the Park mode under extreme conditions, such as system voltage and transmission temperature, without excessive current draw from the solenoid driver circuitry within the TCM 18, the solenoid coil 98 is designed with a relatively low resistance value The current to the solenoid coil 98 is preferably controlled by pulse width modulating voltage across the solenoid coil 98. The TCM 18 monitors inputs, such as transmission fluid temperature and voltage, and then produces a pulse width modulated signal with the appropriate percent duty cycle to provide the desired average current to the solenoid coil 98. Those skilled in the art will appreciate that there are multiple methods to energize the solenoid coil 98 of the solenoid assembly 94, such as voltage and current manipulation, to provide the required force over a range of operating temperature and voltage
[0040] The TCM 18 selectively communicates this pulse width modulated voltage
to the solenoid coil 98 of the solenoid assembly 94 over the lead B, while lead C is
eventually grounded By selectively energizing the solenoid coil 98 over lead B, the park
inhibit assembly 32 can lock the ETRS system 20. shown in Figures 2 and 3 in the Out-
of-Park mode The Hall effect switch 114 is in electrical communication with the supply
voltage in lead A and selectively communicates a voltage over lead D to the TCM 18
Additionally, the output voltage from the Mall effect switch 114 and the supply voltage of
lead A may be communicated to the punted circuit board 118, which, as slated earlier.
includes a voltage modifier such that the diagnostic and position signals of the park
inhibit assembly 32 is compatible with othci TCMs. The voltage modifier may be an
opeiational amplifici or op-amp such as. for example, an inverting amplifier
10041] The park inhibit assembly 32 may also include a jumper circuit 138. The
lumper circuit 138 selectively and alternately connects the output of the printed circuit boaid 118 and the mechanical contact switch 116 with the lead F With the jumper ciicuit 138 in a fnM position, as shown in Figure 7. lead F communicates with the
14
mechanical contact switch 116 As described earlier, the mechanical contact switch
provides the necessary signal voltage to the ECM 21 should the TCM 18 lose power.
The voltage signal over lead F will indicate to the ECM 21 whether the transmission 14 is
in the Park mode of operation, and if so, will allow the engine 12 to start. Alternately, if
the mechanical contact switch 116 is open, the voltage signal over lead F is interrupted
indicating that the transmission 14 is in the Out-of-Park mode of operation and the ECM
21 will prohibit the engine 12 from starting. With the jumper circuit 138 in a second
position the output of the printed circuit board 118 is communicated via lead F.
[0042] While the best modes for carrying out the invention have been described
in detail, those familiar with the art to which this invention relates will recognize various alternative designs and embodiments for practicing the invention within the scope of the appended claims
15 CLAIMS
1 A transmission for a vehicle comprising:
an electronic transmission range selection system operable to shift the transmission range, including shifting from a Park mode to an Out-of-Park mode and from said Out-of-Park mode to said Paik mode;
a selectively engageable park pawl mechanism operable to enforce said Park mode when engaged and Lo allow said Out-of-Park mode when disengaged,
a park inhibit assembly movable with said park pawl mechanism
and operable to block the engagement of said park pawl mechanism when the vehicle is operating above a predetermined speed; and
wherein said park inhibit assembly includes an electro-mechanical device operable to cooperate with a movable follower member to block the engagement of said park pawl mechanism when said electro-mechanical device is energized.
2. The transmission of claim 1, wherein said electro-mechanical device is mounted substantially perpendicular to said follower member.
3 The transmission of claim 1, wherein said electronic transmission
range selection system and said park inhibit assembly are mounted internally with respect
lo the transmission
4 The transmission of claim 1, wherein said electro-mechanical
device is a selectively encrgizable solenoid and said follower member includes a recess,
said solenoid being operable to engage said recess of said follower member when said
solenoid is eneigi/.ed such that the movement of said follower member within said park
inhibit absembly is prohibited
5 I he transmission of claim 1, wherein said electro-mechanical
device is a selectively energi/ablc motor, said motor being opeiable to drive a pinion gcai
that is in meshing contact with a rack portion provided on said follower mcmboi
16
6 The transmission of claim 5, wherein said motor is operable to
selectively move the transmission from said Park mode to said Out-of-Park mode
7. The transmission of claim 1. wherein said park inhibit assembly
further comprises a Hail effect switch operable to provide diagnostic and position signals
for said follower member when the transmission is in said Park mode and said Out-of-
mode
8. The transmission of claim 7, wherein said park inhibit assembly
further comprises a printed circuit board, said printed circuit board being operable to
modify said signals.
9. The transmission of claim 1, wherein said park inhibit assembly
further comprises a mechanical contact switch operable to provide diagnostic and
position signals for said follower member when the transmission is in said Park mode and
said Out-of-Park mode.
10. A park inhibit assembly for a transmission shiftable between a
Park mode and an Out-of-Park mode, the park inhibit assembly comprising-
a body structure;
a follower member at least partially shdably disposed within said body structure and having at least one recess provided thereon, and
a selectively energlzablc solenoid disposed in a generally
perpendleuiar iclalion to said follower member, said solenoid having a plunger operable to engage said recess when said solenoid is energized, theieby locking the transmission in the Out-of-Park mode and subsequently allowing the transmission to move to the Park mode when said solenoid is de-encrgized
17
11 The park inhibit assembly of claim 10. further comprising:
a ball; and
wherein said plunger urges said ball into engagement with said recess
12 The park inhibit assembly of claim 10, wherein the park inhibit
assembly further comprises a Hall effeel switch operable to provide diagnostic and
position signals for said follower member when the transmission is in the Park mode and
the Out-of-Park mode.
13. The transmission of claim 12, wherein the park inhibit assembly
further comprises a printed circuit board., said printed circuit board being operable to
modify said signals.
14. The park inhibit assembly of claim 10, wherein the park inhibit
assembly further comprises a mechanical contact switch operable to provide diagnostic
and position signals for said follower member when the transmission is in said Park mode
and said Oul-of-Park mode.
15 A park inhibit assembly for a transmission shiftable between a Park mode and an Out-of-Park mode, the park inhibit assembly comprising: a body structure, a follower member at least partially slidably disposed within said
body sliuclurc, and
a selectively energizable motor disposed in a generally
perpendiculai relation to said follower member, said motor being operable to drive a pinion geai in meshing relation with a rack portion of said follower member, said motor being opeiablc to lock the transmission m the Out-of-Park mode when energized and subsequently allowing the transmission to move to the Park mode when said motoi is dc-eneigized
18
16. The park inhibit assembly of claim 15, wherein said motor is
operable to selectively shift the transmission from the Park mode to the Out-of-Park
mode
17. The park inhibit assembly of claim 15, wherein the park inhibit
assembly further comprises a Hall effect switch operable to provide diagnostic and
position signals for said follower member when the transmission is in the Park mode and
the Out-of-Park mode.
18. The transmission of claim 17, wherein the park inhibit assembly
further comprises a printed circuit board, said printed circuit board being operable to
modify said signals.
19. The park inhibit assembly of claim 15, wherein the park inhibit
assembly further comprises a mechanical contact switch operable to provide diagnostic
and position signals for said follower member when the transmission is in said Park mode
and said Out-of-Park mode

An electronic transmission range selection (ETRS) system for shifting a transmission range of a transmission includes an electro-mechanical park inhibit assembly that operates to disallow the ETRS system from shifting from an Out-of-Park mode to a Park mode under certain circumstances. The park inhibit assembly includes a follower having a recess defined thereon and slidably disposed within a follower bore. In one embodiment a selectively energizable solenoid assembly is mounted substantially perpendicular to the follower and operates to bias a ball into the recess when energized thereby locking the ETRS system in the Out-of-Park mode. In another embodiment the park inhibit assembly includes a selectively energizable motor assembly mounted substantially perpendicular to the follower. The motor assembly operates to enforce the Park and Out-of-Park mode of the ETRS system.

Documents:

01332-kol-2006 correspondence-1.2.pdf

01332-kol-2006 correspondence-1.3.pdf

01332-kol-2006 others.pdf

01332-kol-2006 priority document.pdf

01332-kol-2006-abstract.pdf

01332-kol-2006-assignment.pdf

01332-kol-2006-claims.pdf

01332-kol-2006-correspondence others.pdf

01332-kol-2006-correspondence-1.1.pdf

01332-kol-2006-description(complete).pdf

01332-kol-2006-drawings.pdf

01332-kol-2006-form-1.pdf

01332-kol-2006-form-2.pdf

01332-kol-2006-form-3.pdf

01332-kol-2006-form-5.pdf

1332-KOL-2006-(26-11-2013)-ABSTRACT.pdf

1332-KOL-2006-(26-11-2013)-ANNEXURE TO FORM 3.pdf

1332-KOL-2006-(26-11-2013)-CLAIMS.pdf

1332-KOL-2006-(26-11-2013)-CORRESPONDENCE.pdf

1332-KOL-2006-(26-11-2013)-DESCRIPTION (COMPLETE).pdf

1332-KOL-2006-(26-11-2013)-DRAWINGS.pdf

1332-KOL-2006-(26-11-2013)-FORM-1.pdf

1332-KOL-2006-(26-11-2013)-FORM-2.pdf

1332-KOL-2006-(26-11-2013)-FORM-3.pdf

1332-KOL-2006-(26-11-2013)-FORM-5.pdf

1332-KOL-2006-(26-11-2013)-OTHERS.pdf

1332-KOL-2006-(26-11-2013)-PA.pdf

1332-KOL-2006-(26-11-2013)-PETITION UNDER RULE 137.pdf

1332-KOL-2006-CORRESPONDENCE 1.1.pdf

1332-kol-2006-form 18.pdf

abstract-01332-kol-2006.jpg


Patent Number 264074
Indian Patent Application Number 1332/KOL/2006
PG Journal Number 49/2014
Publication Date 05-Dec-2014
Grant Date 03-Dec-2014
Date of Filing 11-Dec-2006
Name of Patentee GM GLOBAL TECHNOLOGY OPERATIONS, INC
Applicant Address 300 GM Renaissance Center Detroit,Michigan 48265-3000
Inventors:
# Inventor's Name Inventor's Address
1 JACK P.KOSKI 9145 RAVINEWOOD LANE SOUTH LYON,MICHIGAN 48178
2 STEPHEN W.POWELL 11584 RIDGE ROAD SOUTH LYON MICHIGAN 48178
3 MARK A.VERNACCHIA 965 NOVI STREET NORTHVILLE,MICHIGAN 48167
4 RYAN M.JENNESS 4073 RUBY STREET YPSILANTI,MICHIGAN 48197
PCT International Classification Number G06F17/00
PCT International Application Number N/A
PCT International Filing date
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 11/352,869 2006-02-13 U.S.A.