Title of Invention

AN ELECTROSTATIC PRECIPITATOR AND A METHOD FOR CONTROLLING ELECTROSTATIC PRECIPITATORS

Abstract The aim of the invention is to be able to adapt an item of visualization or optimization software with the least possible amount of effort made on any electrostatic filter configurations. To this end, the invention provides that the electrostatic filter, the high-voltage supply units (2), and the auxiliary functional units can be uses by the software modules in the server component (3) as objects with characteristic features and with characteristic methods, that are capable of being accessed as information, which only exists in the server component (3), for the client modules (5) via data interfaces.
Full Text PCTEP2005053557 / 2004P08349WOUS
1 Description
Control entity and control method for electrostatic precipitators including a configurable number of parallel and serial precipitator zones.
The invention relates to a control entity for electrostatic precipitators including a configurable number of parallel and serial precipitator zones, each of which is assigned a high-voltage supply unit and auxiliary functional units, wherein said control entity features a server component and client modules and wherein different server modules are implemented in said control entity, said server modules allowing access to data of the electrostatic precipitator, the high-voltage supply units and the auxiliary functional units in order that said data can be visually displayed, stored and/or used as a basis for optimizing the electrostatic precipitator operation, and to a corresponding control method for electrostatic precipitators.
In known control entities and/or control methods of this type for electrostatic precipitators, a server program communicates with the high-voltage supply units and auxiliary functional units and provides cyclical and event-driven communication for the client modules of the control entity. The corresponding data which is received in the client modules is assigned to the electrostatic precipitators, visually displayed or used for optimization there, i.e. in the client modules. Using this approach, the assignment or classification of the received data to the electrostatic precipitators must be managed by each client module itself. If there is a plurality of electrostatic precipitators, the complexity of these management tasks increases drastically. The checking effort

PCTEP2005053557 / 2004P08349WOUS
2
involved in verification of the functionality of the software increases significantly, since it is not possible using justifiable effort to check all conceivable configurations. The computing effort also increases since specific data, e.g. the total electrical power, has to be calculated in a plurality of client modules, e.g. in the client modules which are used for visual display and optimization. Furthermore, the quantity of data which must be transmitted over the connection between the server component and the client modules is comparatively high.
Taking as its point of departure the prior art described above, the invention addresses the problem of providing a control entity and a control method for electrostatic precipitators, which control entity and control method can be adapted to any configuration of electrostatic precipitators with comparatively little effort in terms of its visual display and optimization software, and in which control entity and control method the overall effort that must be expended for the control is reduced in comparison with the prior art.
This problem is solved by means of a control entity for electrostatic precipitators in which the electrostatic precipitator, the high-voltage supply units and the auxiliary functional units can be set up in the server component, by means of the software modules, as objects having characteristic properties and characteristic methods, wherein said objects can be accessed by the client modules via data interfaces as information which is present solely in the server component. It is common to the different software modules that the electrostatic precipitator can be considered as an object having properties, e.g. emission, and methods, e.g. power calculation. The electrostatic precipitator

PCTEP2005053557 / 2004P08349WOUS
3
consists of a number of similar objects, specifically high-voltage supply units and auxiliary functional units. The spatial arrangement of each precipitator zone in the electrostatic precipitator is significant for both the visual display and the optimization. The arrangement of each precipitator zone can therefore be represented in terms of a property of the electrostatic precipitator object. Physical properties of the electrostatic precipitator, the high-voltage supply units and/or the auxiliary functional units are reproduced in the software by means of the cited properties of the different software modules.
Auxiliary functional units of the electrostatic precipitators might include discharge wire rappers and/or insulator heaters and/or purge air fans and/or purge air heaters and/or high-voltage rectifiers and/or collecting plate rappers and/or gas distribution rappers and/or dust hopper heaters and/or dust hopper fill-level indicators and/or dust extractors.
Characteristic properties of the object "electrostatic precipitator" which is present on the server component might include the name or the identification of the electrostatic precipitator and/or the number of parallel and serial precipitator zones of the electrostatic precipitator and the position of these in the electrostatic precipitator and/or the assignment of the high-voltage supply units to the precipitator zones and/or planned and actual emission values of the electrostatic precipitator and/or the assignment of the planned and actual emission values to precipitator zones of the electrostatic precipitator and/or process values, e.g. temperature and flow volume, of the electrostatic precipitator and/or a current optimization mode of the electrostatic precipitator and/or the current operating mode, e.g. start-up

PCTEP2005053557 / 2004P08349WOUS
4 or optimization of energy consumption.
Characteristic methods of the object "electrostatic precipitator" which is present on the server component might include its total electrical power and/or partial electrical powers of its serial and parallel precipitator zones, said methods being calculated or determined in the object "electrostatic precipitator".
Characteristic properties of the objects "high-voltage supply units" which are present on the server component might include the name or the identification of the respective high-voltage supply unit and/or planned and actual values for voltage, current and power at the respective high-voltage supply unit and/or status reports of the respective high-voltage supply unit and/or error reports of the respective high-voltage supply unit and/or process signals and their scaling, e.g. into 0 to 20 mA signals, which are specified at the control entity, and/or the operating parameters which are set at the respective high-voltage supply unit.
Characteristic methods of the objects "high-voltage supply units" which are present on the server component might include average power values over defined time periods and/or switching actions, possibly with remote indication, and/or error acknowledgements and/or process values, e.g. temperature in degrees Celsius, and/or the setting of planned values and/or the selection of operating modes, e.g. optimization, oscilloscope start-up, or recording the U/I characteristic curve, said methods being calculated or determined in the respective object "high-voltage supply unit".
Individual objects which are derived from the objects of the

PCTEP2005053557 / 2004P08349WOUS
5
"electrostatic precipitator" and/or "high-voltage supply unit" and/or "auxiliary functional unit" class are advantageously created by means of the client modules.
For the purposes of the invention, classes can also be defined using optimization programs of the client modules, wherein one or more precipitator zones of the electrostatic precipitator can be represented by means of said classes. Using the above described control entity and/or the corresponding control method for electrostatic precipitators, it is possible to achieve a significant improvement in performance compared with the prior art by means of more effective data transmission between the individual parts of the control device. The standard class definitions which are present in the server component are available for all client modules of the control entity. This results in a significant reduction in resource requirements. Expansion of the class definitions is simplified because changes need only be made in the field of the server component, thereby achieving a significant reduction in development time. The server component functions as a virtual software platform, whereas the client modules contain the "intelligence". A lower susceptibility to software error is achieved by virtue of more rigorous data encapsulation, thereby resulting in higher software quality. According to the invention, it is particularly easy to realize the optimization of a plurality of electrostatic precipitators by means of one or more of the client modules used for optimization.
The invention is explained in greater detail below with reference to an embodiment and with reference to the drawing, in which:
Figure 1 shows an embodiment of a control entity for

PCTEP2005053557 / 2004P08349WOUS
6
electrostatic precipitators in accordance with the invention, and Figure 2 shows a schematic representation of a server
component and two client modules of the control entity for electrostatic precipitators as shown in Figure 1.
Figure 1 shows an embodiment of a control entity 1 for electrostatic precipitators including a configurable number of parallel and serial precipitator zones, each of which is assigned a high-voltage supply unit 2 and auxiliary functional units (not shown in the figure), said control entity having a server component 3 with a monitor 4 and - in the illustrated exemplary embodiment - four client modules 5.
The server component 3 is connected to the high-voltage supply units 2 via a Profibus network 6. For this, a bus coupler 7 is assigned in each case to a group of - in the illustrated exemplary embodiment - five high-voltage supply units 2 with controllers. The - in the illustrated exemplary embodiment -six bus couplers 7 are connected via an optical Profibus 8 to optical interface modules 9, which in turn are connected to the server component 3.
The server component 3 with the - in the illustrated exemplary embodiment - four client modules 5 forms a second network 10 which is designed as e.g. an Ethernet network using the TCP/IP protocol. Alternatively, customary standard networks can also be used as a second network 10.
Various software modules are implemented in the control entity 1. Using these software modules, it is possible to access data relating to the electrostatic precipitator as a whole, the

PCTEP2005053557 / 2004P08349WOUS
7
high-voltage supply units 2 and the auxiliary functional units. This accessible data can be visually displayed, stored and used as a basis for optimizing the operation of the electrostatic precipitator.
For this, the electrostatic precipitator, or electrostatic precipitators if the control entity 1 is to supply a plurality of electrostatic precipitators, the high-voltage supply units
I and the auxiliary functional units are set up as objects 11,
12 in the server component 3 by means of the software modules,
as shown in Figure 2 for the object "high-voltage supply unit"
II and the object "electrostatic precipitator" 12.
The objects 11, 12, which are present solely m the server component 3 of the control entity 1, can be accessed by the client modules 5, of which one client module 5a that is used for visual display and one client module 5b that is used for optimization purposes are shown in Figure 2, via data interfaces having suitable access and protection mechanisms.
The object "high-voltage supply unit" 11 is organized into a first area 13 and a second area 14, wherein the characteristic properties of the respective high-voltage supply unit 2 are represented in the first area 13 of the object "high-voltage supply unit" 11. Characteristic properties include the name or the identification of the respective high-voltage supply unit 2, the planned and actual values for voltage, current and power at the respective high-voltage supply unit 2, the status reports of the respective high-voltage supply unit 2, error reports of the respective high-voltage supply unit 2, process signals and their scaling, e.g. into 0 to 20 mA signals which are specified at the control entity 1, and/or all operating parameters which are set at the respective high-voltage supply

PCTEP2005053557 / 2004P08349WOUS
8 unit 2.
The second area 14 of the object "high-voltage supply unit" 11 which is present in the server component 3 is used to represent characteristic methods which are calculated or determined in the object 11 itself, such as average power values over defined time periods, switching actions, possibly with remote indication, error acknowledgements, process values, e.g. temperature in degrees Celsius, the setting of planned values and/or the selection of operating modes, e.g. optimization, oscilloscope start-up, or recording the U/I characteristic curve.
Correspondingly, the object "electrostatic precipitator" 12, which is present solely in the server component 3, is organized into a first area 15 and a second area 16, wherein the first area 15 of the object "electrostatic precipitator" 12 can include characteristic properties of the electrostatic precipitator such as name or identification, number of parallel and serial precipitator zones of the electrostatic precipitator and position of these in the electrostatic precipitator, assignment of the high-voltage supply units 2 to the precipitator zones, planned and actual emission values of the electrostatic precipitator, assignment of planned and actual emission values to precipitator zones of the electrostatic precipitator, process values, e.g. temperature and flow volume, a current optimization mode of the electrostatic precipitator and/or the current operating mode, e.g. start-up or optimization of energy consumption.
In the second area 16 of the object "electrostatic precipitator" 12, the total power of the electrostatic precipitator and/or partial powers of its serial and parallel

PCTEP2005053557 / 2004P08349WOUS
9
precipitator zones are represented as characteristic methods which are calculated or determined in the object "electrostatic precipitator" 12.
Since the objects 11, 12 are set up solely in the server component 3 and are available to all client modules 5, the latter do not require any storage facilities for the objects 11, 12; instead the client modules 5 merely have data interfaces for accessing the objects 11, 12 or information, said objects or information being present solely in the server component 3.
The client modules 5 can also create further individual objects, wherein these can be derived from the classes of the objects "high-voltage supply units" 11 or the objects "electrostatic precipitators" 12; alternatively the client modules 5 can access the specified objects 11, 12 or data relating to the same. Optimization programs, for example, can therefore define individual classes which then represent partial areas of the electrostatic precipitator, said partial areas comprising a plurality of precipitator zones of the electrostatic precipitator.
In addition to the above specified objects 11, 12 for high-voltage supply units 2 and electrostatic precipitators respectively, objects - not illustrated in the figures -corresponding to the auxiliary functional units of the electrostatic precipitator can be set up in the server component 3, e.g. objects for discharge wire rappers, insulator heaters, purge air fans, purge air heaters, high-voltage rectifiers, collecting plate rappers, gas distribution rappers, dust hopper heaters, dust hopper fill-level indicators and/or dust extractors of the electrostatic

PCTEP2005053557 / 2004P08349WOUS
10
precipitator. These objects can also be divided into areas having characteristic properties and characteristic methods

PCTEP2005053557 / 2004P08349WOUS
11 Claims
1. A control entity for electrostatic precipitators including
a configurable number of parallel and serial precipitator
zones, each of which is assigned a high-voltage supply unit
(2) and auxiliary functional units, wherein said control
entity (1) features a server component (3) and client modules
(5) and wherein different software modules are implemented in
said control entity (1), said software modules allowing access
to data of the electrostatic precipitator, the high-voltage
supply units (2) and the auxiliary functional units in order
that said data can be visually displayed, stored and/or used
as a basis for optimizing the electrostatic precipitator
operation,
characterized in that
the electrostatic precipitator, the high-voltage supply units (2) and the auxiliary functional units can be set up in the server component (3), by means of the software modules, as objects having characteristic properties and characteristic methods, wherein said objects can be accessed by the client modules (5) via data interfaces as information which is present solely in the server component (3) .
2. The control entity as claimed in claim 1, in which
provision is made for discharge wire rappers and/or insulator
heaters and/or purge air fans and/or purge air heaters and/or
high-voltage rectifiers and/or collecting plate rappers and/or
dust hopper heaters and/or dust hopper fill-level indicators
and/or dust extractors of the electrostatic precipitators as
auxiliary functional units.
3. The control entity as claimed in claim 1 or 2, in which
characteristic properties of the object "electrostatic

PCTEP2005053557 / 2004P08349WOUS
12
precipitator" (12) which is present on the server component (3) comprise the name or the identification of the electrostatic precipitator and/or the number of parallel and serial precipitator zones of the electrostatic precipitator and the position of these in the electrostatic precipitator and/or the assignment of the high-voltage supply units (2) to the precipitator zones and/or planned and actual emission values of the electrostatic precipitator and/or the assignment of the planned and actual emission values to precipitator zones of the electrostatic precipitator and/or process values, e.g. temperature and flow volume, of the electrostatic precipitator and/or a current optimization mode of the electrostatic precipitator and/or the current operating mode, e.g. start-up or optimization of energy consumption.
4. The control entity as claimed in one of the claims 1 to 3,
in which characteristic methods of the object "electrostatic
precipitator" (12) which is present on the server component
(3) comprise its total electrical power and/or partial electrical powers of its serial and parallel precipitator zones, said methods being calculated or determined in the object "electrostatic precipitator" (12).
5. The control entity as claimed in one of the claims 1 to 4,
in which characteristic properties of the objects "high-
voltage supply units" (11) which are present on the server
component (3) comprise the name or the identification of the
respective high-voltage supply unit (2) and/or planned and
actual values for voltage, current and power at the respective
high-voltage supply unit (2) and/or status reports of the
respective high-voltage supply unit (2) and/or error reports
of the respective high-voltage supply unit (2) and/or process
signals and their scaling, e.g. into 0 to 20 mA signals, which

PCTEP2005053557 / 2004P08349WOUS
13
are specified at the control entity (1), and/or the operating parameters which are set at the respective high-voltage supply unit (2).
6. The control entity as claimed in one of the claims 1 to 5,
in which characteristic methods of the objects "high-voltage
supply units" (11) which are present on the server component
(3) comprise average power values over defined time periods
and/or switching actions, possibly with remote indication,
and/or error acknowledgements and/or process values, e.g.
temperature in degrees Celsius, and/or the setting of planned
values and/or the selection of operating modes, e.g.
optimization, oscilloscope start-up, or recording the U/I
characteristic curve, said methods being calculated or
determined in the respective object "high-voltage supply unit"
(11) .
7. The control entity as claimed in one of the claims 1 to 6,
in which individual objects which are derived from the objects
of the "electrostatic precipitator" (12) and/or "high-voltage
supply unit" (11) and/or "auxiliary functional unit" class can
be created by means of the client modules (5).
8. The control entity as claimed in one of the claims 1 to 7,
in which classes can be defined by means of optimization
programs of the client modules (5, 5b), wherein one or more
precipitator zones of the electrostatic precipitator can be
represented by means of said classes.
9. A control method for electrostatic precipitators including
a configurable number of parallel and serial precipitator
zones, each of which has a high-voltage supply unit (2) and
auxiliary functional units, wherein data of the electrostatic

PCTEP2005053557 / 2004P08349WOUS
14
precipitator, the high-voltage supply units (2) and the
auxiliary functional units is accessed by means of different
software modules in order that said data can be visually
displayed, stored and/or used as a basis for optimizing the
electrostatic precipitator operation,
characterized in that
the electrostatic precipitator, the high-voltage supply units
(2) and the auxiliary functional units are set up solely in
one server component (3) of a control entity (1), by means of
the software modules, as objects having characteristic
properties and characteristic methods, and that client modules
(5) of the control entity (1) access the objects, which have
been set up solely in the server component (3), via data interfaces.
10. The control method as claimed in claim 9, in which use is
made of discharge wire rappers and/or insulator heaters and/or
purge air fans and/or purge air heaters and/or high-voltage
rectifiers and/or collecting plate rappers and/or gas
distribution hoppers and/or dust hopper heaters and/or dust
hopper fill-level indicators and/or dust extractors of the
electrostatic precipitators as auxiliary functional units.
11. The control method as claimed in claim 9 or 10, in which
characteristic properties of the object "electrostatic
precipitator" (12) which is present on the server component
(3) comprise the name or the identification of the
electrostatic precipitator and/or the number of parallel and
serial precipitator zones of the electrostatic precipitator
and the position of these in the electrostatic precipitator
and/or the assignment of the high-voltage supply units (2) to
the precipitator zones and/or planned and actual emission
values of the electrostatic precipitator and/or the assignment

PCTEP2005053557 / 2004P08349WOUS
15
of the planned and actual emission values to the precipitator zone of the electrostatic precipitator and/or process values, e.g. temperature and flow volume, of the electrostatic precipitator and/or a current optimization mode of the electrostatic precipitator and/or the current operating mode, e.g. start-up or optimization of energy consumption.
12. The control method as claimed in one of the claims 9 to
11, in which characteristic methods of the object
"electrostatic precipitator" (12) which is present on the
server component (3) comprise its total electrical power
and/or partial electrical powers of its serial and parallel
precipitator zones, said methods being calculated or
determined in the object "electrostatic precipitator" (12).
13. The control method as claimed in one of the claims 9 to
12, in which characteristic properties of the objects "high-
voltage supply units" (11) which are present on the server
component (3) comprise the name or the identification of the
respective high-voltage supply unit (2) and/or planned and
actual values for voltage, current and power at the respective
high-voltage supply unit (2) and/or status reports of the
respective high-voltage supply unit (2) and/or error reports
of the respective high-voltage supply unit (2) and/or process
signals and their scaling, e.g. into 0 to 20 mA signals, which
are specified at the control entity (1), and/or the operating
parameters which are set at the respective high-voltage supply
unit (2).
14. The control method as claimed in one of the claims 9 to
13, in which characteristic methods of the objects "high-
voltage supply units" (11) which are present on the server
component (3) comprise average power values over defined time

PCTEP2005053557 / 2004P08349WOUS
16
periods and/or switching actions, possibly with remote indication, and/or error acknowledgements and/or process values, e.g. temperature in degrees Celsius, and/or the setting of planned values and/or the selection of operating modes, e.g. optimization, oscilloscope start-up, or recording the U/I characteristic curve, said methods being calculated or determined in the respective object "high-voltage supply unit" (11) •
15. The control method as claimed in one of the claims 9 to
14, in which individual objects which are derived from the
objects of the "electrostatic precipitator" (12) and/or "high-
voltage supply unit" (11) and/or "auxiliary functional unit"
class can be created by means of the client modules (5).
16. The control method as claimed in one of the claims 9 to
15, in which classes can be defined by means of optimization
programs of the client modules (5, 5b), wherein one or more
precipitator zones of the electrostatic precipitator can be
represented by means of said classes.

The aim of the invention is to be able to adapt an item of visualization or optimization software with the least possible amount of effort made on any electrostatic filter configurations. To this end, the invention provides that the electrostatic filter, the high-voltage supply units (2), and the auxiliary functional units can be uses by the software modules in the server component (3) as objects with characteristic features and with characteristic methods, that are capable of being accessed as information, which only exists in the server component (3), for the client modules (5) via data interfaces.

Documents:

0255-kolnp-2007 abstract.pdf

0255-kolnp-2007 assignment.pdf

0255-kolnp-2007 claims.pdf

0255-kolnp-2007 corresponcdence others.pdf

0255-kolnp-2007 description(complete).pdf

0255-kolnp-2007 drawings.pdf

0255-kolnp-2007 form-1.pdf

0255-kolnp-2007 form-2.pdf

0255-kolnp-2007 form-3.pdf

0255-kolnp-2007 form-5.pdf

0255-kolnp-2007 international publication.pdf

0255-kolnp-2007 international search authority report.pdf

0255-kolnp-2007 pct form.pdf

255-KOLNP-2007-(10-02-2014)-ABSTRACT.pdf

255-KOLNP-2007-(10-02-2014)-CLAIMS.pdf

255-KOLNP-2007-(10-02-2014)-CORRESPONDENCE.pdf

255-KOLNP-2007-(19-12-2012)-ABSTRACT.pdf

255-KOLNP-2007-(19-12-2012)-AMANDED PAGES OF SPECIFICATION.PDF

255-KOLNP-2007-(19-12-2012)-CLAIMS.pdf

255-KOLNP-2007-(19-12-2012)-CORRESPONDENCE.pdf

255-KOLNP-2007-(19-12-2012)-DESCRIPTION (COMPLETE).pdf

255-KOLNP-2007-(19-12-2012)-DRAWINGS.pdf

255-KOLNP-2007-(19-12-2012)-FORM-1.pdf

255-KOLNP-2007-(19-12-2012)-FORM-2.pdf

255-KOLNP-2007-(19-12-2012)-FORM-3.pdf

255-KOLNP-2007-(19-12-2012)-FORM-5.pdf

255-KOLNP-2007-(19-12-2012)-OTHERS.pdf

255-KOLNP-2007-(19-12-2012)-PA.pdf

255-KOLNP-2007-(19-12-2012)-PETITION UNDER RULE 137.pdf

255-KOLNP-2007-AMANDED PAGES OF SPECIFICATION.PDF

255-kolnp-2007-form 18.pdf

255-KOLNP-2007-GRANTED-FORM 1.pdf

255-KOLNP-2007-GRANTED-SPECIFICATION-COMPLETE.pdf

abstract-00255-kolnp-2007.jpg


Patent Number 265088
Indian Patent Application Number 255/KOLNP/2007
PG Journal Number 07/2015
Publication Date 13-Feb-2015
Grant Date 05-Feb-2015
Date of Filing 22-Jan-2007
Name of Patentee SIEMENS AKTIENGESELLSCHAFT
Applicant Address WITTELSBACHERPLATZ 2, 80333 MUNCHEN
Inventors:
# Inventor's Name Inventor's Address
1 GRASS, NORBERT BERGSTR.37 B, 91074 HERZOGENAURACH
PCT International Classification Number G06F17/60; B03C3/68; G06F17/30
PCT International Application Number PCT/EP2005/053557
PCT International Filing date 2005-07-21
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 10 2004 036 210.6 2004-07-26 Germany