Title of Invention

"PREHEATING OF FUEL AND OXIDANT FOR OXY-BURNERS, USING COMBUSTION AIR PREHEATING INSTALLATIONS"

Abstract The invention relates to a combustion method which is performed in a furnace that is equipped with energy recovery means and burners, whereby the heat from the combustion fumes is recovered by energy recovery means and said recovered heat is used in order to heat the air. According to the invention, at least part of the burners performs the combustion of an oxygen-rich comburent and a fuel and at least part of the air heated by the energy recovery means is used to heat the oxygen-rich comburent and/or fuel for the burners.
Full Text Preheating of fuel and oxidant for oxy-burners, using combustion air preheating installations
The present invention relates to the installation of an oxy-combustion method with oxygen and/or fuel preheating in a furnace equipped with means for employing aero-combustion with air preheating.
Regenerator furnaces are furnaces equipped with stacks of refractories on their sidewalls. These refractories are heat exchangers enabling heat to be recovered from combustion flue gases leaving the sidewalls of the furnace and of transferring this heat to cold air provided to the furnace. The refractories of regenerators are heated to very high temperatures (of the order of 1300 to 1500°C) by the combustion flue gases. In practice, the combustion flue gases leaving through a sidewall of the furnace are brought into contact with the refractories from their upper part to their lower part over a cycle generally of approximately 20 minutes. During the following cycle, cold combustion air intended to feed the burners of the furnace is brought into contact with the refractories from their lower part to their upper part so as to extract the heat therefrom. The combustion air is then heated to a temperature generally of the order of 1100 to 1300° before being introduced into the combustion chamber of the furnace. The streams of combustion flue gases and combustion air are reversed at each cycle so that each regenerator face can be heated alternately and used for preheating the combustion air. Preheating combustion air makes combustion with air possible with a high energy yield. For furnaces with recuperators, the combustion air is heated continuously by metal exchangers fed with combustion flue gases.

Many furnaces now operate with oxy-combust ion, which means that combustion is no longer carried out between the fuel and air (aero-combustion) but between fuel and an oxidant having an oxygen concentration higher than air. It generally consists of air enriched with oxygen or of pure oxygen. Preheating oxygen and fuel with flue gases from combustion products makes it possible to recover part of the energy contained therein and to improve the energy efficiency of this type of combustion. The energy contained in the flue gases from combustion products leaving a glass melting furnace equipped with oxy-fuel flames is of the order of 30% of the power consumed.
Oxy-combustion is easily implemented when new furnaces are constructed. On the other hand, it is more difficult, for economic reasons, to use only oxy-combustion in regenerator furnaces initially provided for combustion with air. One of the reasons is that it is necessary to remove regenerators, modify the dimensions of the furnace and reconstruct the evacuation of combustion flue gases. Indeed, in oxy-combustion, the volume of combustion flue gases is 4 to 5 times lower than that of combustion with air.
The object of the present invention is to provide a combustion method enabling oxy-combustion to be at least partially employed in a furnace equipped with regenerators or recuperators recovering heat from combustion flue gases.
Another object is to employ this oxy-combustion method starting with the installation of an already existing aero-combustion furnace.
Another object is to provide an oxy-combustion method that can be adapted to a furnace with regenerators or recuperators designed for combustion with air.

With this objective, the invention relates to a combustion method in a furnace equipped with means for recovering energy from combustion flue gases and burners, wherein heat from combustion flue gases is recovered by energy recovery means and this heat recovered by energy recovery means is used to heat air, and wherein:
at least part of the burners employ the combustion of a fuel and an oxygen-rich oxidant, and
- at least part of the air heated by energy recovery means is used to preheat the fuel and/or the oxygen-rich oxidant of the burners.
The invention therefore relates to the application of a combustion method in a furnace equipped with energy recovery means, such as regenerators or recuperators, designed for recovering energy contained in combustion flue gases. The combustion employed in the furnace is, at least partially, oxy-combustion, namely combustion of a fuel and an oxygen-rich oxidant. Preferably, at least 10%, and even more preferably 20%, of the combustion power is produced by burners employing combustion of a fuel and an oxygen-rich oxidant. "Oxygen-rich oxidant" is understood to mean a oxidant having an oxygen concentration greater than 90% by volume. Oxygen produced by a VSA (Vacuum Swing Adsorption) method is particularly suitable. According to the method of the invention, the energy recovery means are used to heat cold air, namely ambient air, by bringing thereto energy recovered from all the combustion flue gases, derived both from oxy-combustion and aero-combustion, if aero-burners are used (aero-burners are understood to mean burners in which the oxidant is air) . In the prior art, this energy recovered from flue gases was only intended for preheating combustion air, namely air mixed directly with fuel in the burner. On the contrary, in -the present invention, at least part of the energy

contained in this air heated by means for recovering energy from combustion flue gases is directed towards the means feeding fuel and oxygen-rich oxidant of oxy-burners so as to preheat this fuel and this oxidant (oxy-burners are understood to mean burners for which the oxidant is oxygen-rich). Preheating may be carried out by any means for exchanging heat between hot air and fuel or oxidant.
It has been noted that the energy of flue gases coming from oxy-combust ion can only be recovered by heating air intended for combustion in air-fuel burners if such burners are present with oxy-fuel burners. Indeed, the air flow is controlled and limited by the power and air/fuel combustion ratio of the aero-combustion installed. Similarly, the preheating temperature of combustion air is limited by the strength of refractories or other materials of the system for recovering energy from the flue gases. Thus, oxy-combustion produces an excess of energy in the flue gases and this supplementary energy contained in the oxy-combustion flue gases and evacuated by the energy recovery means of the furnace, may be recovered after preheating air of which part (or even all in the case of a furnace heated solely by oxy-burners) will be directed towards the means for preheating the fuel and oxygen-rich oxidant of oxy-burners.
When cold air is heated, air is brought to a maximum preheating temperature for a volume suited to the requirements of aero-combustion and for preheating oxygen and/or fuel of oxy-combustion. At least part of the air heated by the energy recovery means is directed towards installations for preheating the fuel and/or oxygen-rich oxidant of burners by means of a direct or indirect heat exchanger. "Indirect heat exchanger" is understood to mean a heat .exchanger using an inert gas to.transfer heat from hot air to the fuel and/or to the

oxygen-rich oxidant. The heat of the hot air is first of all transferred to the inert gas, which then transfers its heat to the fuel and/or to the oxygen-rich oxidant. As inert gas, use may be made of nitrogen or argon for example.
The invention may be implemented when all the burners employ the combustion of a fuel and an oxygen-rich oxidant. In this case, all the air preheated by the energy recovery means is intended for exchanging heat with the fuel and/or the oxygen-rich oxidant. The invention is particularly suitable for combustion employed in a glass melting furnace.
The invention also relates to a method for converting a furnace equipped with:
. burners employing the combustion of a fuel and air;
energy recovery means wherein the heat of combustion flue gases is recovered in order to heat the air; and
. means for feeding the burners with heated air, in a furnace employing oxy-combustion, in which: - the air supply of at least part of the burners is replaced by a supply of oxygen-rich oxidant; and
- at least part of the air heated by the energy recovery means is used to preheat the fuel and/or the oxidant for the burners.
This conversion method has the advantage of enabling a furnace functioning with aero-combustion to be changed over to partial or total functioning in oxy-combustion while preserving the structures of the existing furnace and by using systems for recovering energy from the flue gases in order to preheat oxygen and/or fuel for oxy-combustion in order to increase the energy efficiency of the installation. It is thus possible to employ the oxy-combustion method and to profit from its

advantages (higher combustion temperature and lower energy loss in the flue gases, reduction in NOX and dust) without having to fundamentally redesign the furnace, particularly as regards the evacuation of flue gases, and consequently without making a large investment.
By only partially converting the oxy-combustion furnace and by using existing regenerators for preheating the oxygen and/or fuel, part of the structures of the furnace is preserved and modifications are limited to providing a system for evacuating flue gases.
Figure 1 illustrates the method of the invention. The furnace 9 is fitted:
- upstream, with oxy-burners fed with fuel 4 and
oxygen-rich oxidant 3;
- downstream, with burners fed with fuel 6 and
heated air 51; and
- regenerators 1 that are either fed with hot flue
gases 2 from the furnace (regenerators 1) , or that
return hot air 5, 51 (regenerators 11) . Hot air 5
delivered by the regenerators 11 is either used as
combustion air 51 in air burners or is used for
preheating the fuel 4 and the oxygen-rich oxidant 3 of
oxy-burners by means of heat exchangers 6, 7. In this
configuration, hot air 5 coming from the recuperators
11 placed on the same side as the furnace 9 enable only
air-fuel and oxy-fuel burners respectively to be
supplied and preheated that are placed on their same
side of the furnace, burners placed on the other side
of the furnace not functioning.
Figure 2 illustrates the preheating of reactants: the hot air 5 coming from the regenerators 11 is introduced successively into a heat exchanger 7 in order to heat the oxygen-rich oxidant 3, "and then into the heat exchanger 6 in order to heat the fuel 4. The preheated

oxidant 31 and the preheated fuel 41 are then brought into contact for oxy-combustion.
Figure 3 illustrates a variant of the method of figure 1 in which the regenerators 11 are in the process of heating the air, enabling hot air to be delivered as combustion air for aero-combustion burners and to deliver hot air in order to preheat the reactants of oxy-fuel burners placed either side of the furnace. By this application, it is then possible to make oxy-fuel burners on each side of the furnace operate continuously, independently of the cycles of the regenerators.






CLAIMS
1. A combustion method in a furnace equipped with energy recovery means (1, 11) and burners, wherein heat from combustion flue gases (2) is recovered by the energy recovery means (1, 11) and this heat recovered by the energy recovery means (1, 11) is used to heat air, characterized in that:
at least part of the burners employ the combustion of a fuel (4) and an oxygen-rich oxidant (3); and
- at least part of the air (5) heated by the energy recovery means (1, 11) is used to preheat the fuel (4) and/or the oxygen-rich oxidant (3) of the burners.
2. The method as claimed in claim 1, characterized
in that the oxygen-rich oxidant has an oxygen
concentration greater than 90% by volume.
3. The method as claimed in claim 1 or 2,
characterized in that at least 10% of the burners
employ combustion of a fuel and an oxygen-rich oxidant.
4. The method as claimed in one of claims 1 to 3,
characterized in that the air (5) heated by the heat
recovery means (1) preheats the fuel (4) and/or oxidant
(3) of burners by means of a heat exchanger (6, 7) .
5. The method as claimed in one of the preceding
claims, characterized in that all the burners employ
combustion of a fuel and an oxygen-rich oxidant.
6. The method as claimed in one of the preceding
claims, characterized in that the furnace is a glass
melting furnace.

7. The method as claimed in one of the preceding
claims, characterized in that the burners employing the
combustion of a fuel and an oxygen-rich oxidant are
placed either side of the furnace and in that air
heated by the energy recovery means is used to preheat
the fuel and/or oxidant of all the burners employing
combustion of a fuel and an oxygen-rich oxidant.
8. A method for converting a furnace equipped
with:
. burners employing the combustion of a fuel and air;
energy recovery means wherein the heat of combustion flue gases is recovered in order to heat the air; and
. means for supplying the burners with heated air, in a furnace employing oxy-combustion, characterized in that:
- the air supply of at least part of the burners is replaced by a supply of oxygen-rich oxidant; and
- at least part of the air heated by the energy recovery means is used to preheat the fuel and/or the oxidant for the burners.

Documents:

1049-delnp-2008-1-Abstract-(07-08-2014).pdf

1049-delnp-2008-1-Correspondence Others-(07-08-2014).pdf

1049-delnp-2008-1-Form-2-(07-08-2014).pdf

1049-delnp-2008-2-Correspondence Others-(07-08-2014).pdf

1049-delnp-2008-abstract.pdf

1049-delnp-2008-Claims-(07-08-2014).pdf

1049-delnp-2008-claims.pdf

1049-delnp-2008-Correspondence Others-(07-08-2014).pdf

1049-delnp-2008-Correspondence Others-(08-08-2014).pdf

1049-delnp-2008-Correspondence Others-(27-01-2014).pdf

1049-delnp-2008-correspondence-others.pdf

1049-delnp-2008-description (complete).pdf

1049-delnp-2008-drawings.pdf

1049-delnp-2008-form-1.pdf

1049-DELNP-2008-Form-18.pdf

1049-delnp-2008-form-2.pdf

1049-delnp-2008-Form-3-(27-01-2014).pdf

1049-delnp-2008-form-3.pdf

1049-delnp-2008-form-5.pdf

1049-delnp-2008-GPA-(07-08-2014).pdf

1049-delnp-2008-pct-210.pdf

1049-delnp-2008-pct-304.pdf

Petition under Rule 137.pdf


Patent Number 265103
Indian Patent Application Number 1049/DELNP/2008
PG Journal Number 07/2015
Publication Date 13-Feb-2015
Grant Date 06-Feb-2015
Date of Filing 06-Feb-2008
Name of Patentee L'AIR LIQUIDE SOCIETE ANONYME POUR L'ETUDE L'EXPLOITATION DES PROCEDES GEORGES CLAUDE
Applicant Address 75 QUAI D'ORSAY, F-75007 PARIS FRANCE
Inventors:
# Inventor's Name Inventor's Address
1 JARRY LUC 23 BOULEVARD DES NATIONS UNIES, 92190 MEUDON FRANCE
2 LEROUX BERTRAND 143, RUE DE LA DIVISION LECLERC, 91310 LINAS FRANCE
PCT International Classification Number F23L 15/00
PCT International Application Number PCT/FR2006/050803
PCT International Filing date 2006-08-17
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 0552561 2005-08-25 France