Title of Invention

A VEHICLE AND A METHOD FOR DETERMINING THE REMAINING USEFUL LIFE OF A TRANSMISSION FILTER IN A VEHICLE

Abstract The invention relates to a vehicle (10) comprising a transmission (16) having an output member (24) with a detectable output speed (N); a filter (17) operable for filtering a supply of transmission fluid; at least one sensor (41) adapted for determining an operating event (X) of said transmission (16); and a controller (18,19,100) for predicting a remaining useful life of said filter (17); wherein said Controller (18) predicts said remaining useful life of said filter (17) in response to said operating event, and said operating event (X) is selected from a group consisting of a completed shift event (X) of said transmission (16) and a zero output speed event (N) of said transmission (16).
Full Text

APPARATUS AND METHOD FOR DETERMINING THE REMAINING USEFUL
LIFE OF A TRANSMISSION FILTER
CLAIM OF PRIORITY
[0001] This application claims priority to U.S. Provisional Patent Application
No. 60/895,012, filed on March 15, 2007, which is hereby incorporated by reference in its entirety.
TECHNICAL FIELD
[0002] The present invention relates to an apparatus and method for predicting
the remaining useful life of a fluid filter for a vehicle transmission.
BACKGROUND OF THE INVENTION
[0003] A vehicle transmission includes a fluid filter for preventing or minimizing
the si/.c and quantity of suspended particulates, debris, or other contaminants in a supply of transmission fluid that are ultimately brought into contact with the moving components of the transmission, where such debris could potentially affect the performance and operation of various moving valves, gears, or other critical components. Likewise, a transmission filter may prevent particulates that are generated within the transmission housing itself from exiting the transmission housing. Typical particulates or debris include metal chips, pieces, or shavings resulting from dynamic contact between the mating hard gears, fine friction material residue resulting from clutch plate wear at the friction interface, or other such debris from the various system components that make up the transmission or that conduct the transmission fluid.
[0004] A transmission filter typical is contained within an outer filter housing and
must be cleaned, replaced, or otherwise properly maintained on a regular basis. Proper filter maintenance is necessary to ensure the efficient flow of transmission fluid through the media within the transmission, unimpeded by any excessive accumulation of debris within the filter element, i.e. the portion of the filter through which the fluid supply flow and is filtered. Also, proper filter maintenance is needed to ensure that the filter element

itself docs not prematurely rupture due to a build up of differential pressure or fluid back pressure due to excessive debris accumulation.
10005] Periodic maintenance of the transmission filter is often performed on a
scheduled maintenance basis, with recommended filter replacement usually stated on mileage basis, for example every 30,000 miles of travel or annually. However, scheduled maintenance may be less than optimal for some operators. For instance, scheduled maintenance may require the manual logging and tracking of odometer readings, which may not always be performed reliably or consistently, potentially leading to a delayed or missed filter replacement. Also, scheduled-interval filter maintenance assumes common driving conditions and habits, when in fact variable terrain, shifting frequency, shift efficiency, traffic conditions, and other environmental and operating factors combine to make the actual useful life of a particular transmission filter unique to that vehicle and/or operator.
SUMMARY OF THE INVENTION
[0006] Accordingly, a vehicle is provided having a transmission, a filter for
filtering a supply of transmission fluid, at least one sensor for determining an operating
condition or event of the transmission, and a controller. The controller has an
algorithm for predicting a remaining useful life of the filter based on a detected
operating event of the transmission.
[0007] In one aspect of the invention, the operating event is a completed shift
event or a zero output speed event of the transmission.
[0008] In another aspect of the invention, the controller updates an accumulated
distance of the vehicle and an accumulated operating time of the transmission in
response to the detected operating event.
[0009] In another aspect of the invention, a shift sensor determines a shift signal
corresponding to the completed shift event, and a speed sensor detects an output speed
of the transmission.

[0010] In another aspect of the invention, the shift sensor includes an algorithm
that compares a detected speed ratio of the transmission to a stored threshold speed
ratio for determining the completed shift event.
fOOll] In another aspect of the invention, the controller includes a first lookup
table describing a distance limit of the filter and a second lookup table describing a time
limit of the filter, the controller being operable for accessing the lookup tables for
predicting the remaining useful life of the filter.
10012] In another aspect of the invention, a service indicator alerts an operator
of the vehicle when the predicted remaining useful life falls below a threshold.
[0013] In another aspect of the invention, a method is provided for determining
the remaining useful life of a transmission filter in a vehicle. The method includes
detecting the presence of a predetermined transmission operating event, incrementing a
stored value for one of an accumulated distance variable and an accumulated time
variable using the detected predetermined transmission operating event, and predicting
the remaining useful time of the transmission filter in response to the accumulated time
and accumulated distance variables.
10014] In another aspect of the invention, the predetermined transmission
operating event is a completed shift event or a zero output speed event of the
transmission.
(0015] In another aspect of the invention, predicting the remaining useful life of
the transmission filter includes comparing the accumulated distance to a threshold
distance, and determining the remaining useful time includes comparing the
accumulated time to a threshold time.
[0016] In another aspect of the invention, die method includes calculating the
accumulated distance in part by dividing a recorded accumulated distance value by a
ratio of an output speed of the transmission to an actual speed of the vehicle.
[0017] In another aspect of the invention, the method includes activating a
service indicator when one of the accumulated distance and accumulated time exceeds a
corresponding threshold.

|0018] In another aspect of the invention, a method for determining the
remaining useful life of a transmission filter in a vehicle includes detecting a completed
shift event of the transmission, updating a stored value for an accumulated distance and
an accumulated time in response to the completed shift event, and referencing a pair of
lookup tables to determine the remaining useful time and distance of the transmission
filter based on a respective one of the accumulated time and distance.
[0019] The above features and advantages and other features and advantages of
the present invention are readily apparent from the following detailed description of the best modes for carrying out the invention when taken in connection with the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
[0020] FIGURE 1 is a schematic representation of a vehicle having a
transmission filter, a controller, and algorithm for determining the remaining useful life
of the transmission filter; and
[00211 FIGURE 2 is a flow chart describing the method or algorithm of the
invention.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
[0022] Referring to the drawings wherein like reference numbers correspond to
like or similar components throughout the several figures, and beginning with Figure 1, a vehicle 10 has an engine 25 in driving connection with a transmission 16. The engine 25 is selectively connectable to transmission 16 through an automatically or manually shiftable gear set 14, which is suitable for shifting or selecting between the various available gear settings of the transmission 16. The transmission 16 includes a transmission filter 17 suitable for filtering a supply of transmission fluid (not shown). The filter 17 may be constructed at least partially of composite material, sintered metal and/or plastic, or other filter media suitable for efficiently filtering the supply of transmission fluid (not shown) across a range of operating temperatures of the transmission 16. Such filter media may be pleated to further increase the amount of

available surface area within the filter 17, thus potentially increasing the useful life of the filter 17.
[0023] The transmission 16 delivers a detectable transmission output speed (N)
to a rotatable output member 24, such as a driveshaft or transmission output shaft, with
the transmission output speed (N) being directly or indirectly detectable, measurable, or
otherwise determinable by one or more speed sensors 13 attached directly to or in
proximity to the output member 24. The output member 24 may be operatively
connected to a rear differential 31 configured to distribute rotational force or torque
from output member 24 to a rear drive axle 26 to thereby propel or drive a plurality of
wheels 28. Although not shown in Figure 1, the vehicle 10 may also or alternately
include a substantially similar front differential suitable for distributing torque to a front
drive axle 11 for powering or driving a plurality of wheels 28 as shown, such as in a
front-wheel, four-wheel, or all-wheel drive configuration. As will be understood by
those of ordinary skill in the art, the vehicle 10 has an actual vehicle speed (V) that may
differ from transmission output speed (N) depending on, for example, the particular
axlc ratio and/or the diameter of each of the wheels 28 of the vehicle 10.
[0024] The vehicle 10 includes an integrated control unit or controller 18 having
a sufficient amount of programmable memory 19. The controller 18 is configured or programmed to control various electrical and electro-mechanical operations within the vehicle 10, such as the shift cycles of the gear set 14, and further includes a control method or algorithm 100 for determining or predicting the remaining useful life of the filter 17, as will be discussed in detail later hereinbelow. A service indicator 42, abbreviated "i" in Figure 1, is electrically connected to the controller 18 and visibly and/or audibly displays or presents one or more service warnings or other service messages, as will be described later hereinbelow.
[0025] A shift sensor 41 is operable for detecting a shift signal, represented by
the arrow S, corresponding to a completed gear shift or shifting event within the gear set 14. Alternatively, and particularly when the transmission 16 is an automatic transmission, the shift sensor 41 may take the form of a control algorithm for the

transmission 16, i.e. as a "virtual" sensor that is programmed or stored in memory 19
of the eontroller 18, as discussed hereinabove, and not embodied by a physical sensing
device or mechanism. A shift sensor 41 of this type may, for example, take the ratio of
input speed (not shown) to output speed (N) of the transmission 16, and compare the
resultant speed ratio to known speed ratio values that arc indicative of a completed shift
event. The output of shift sensor 41, whatever its form, and of the speed sensor or
sensors 13 are preferably communicated with the controller 18 via data link, such as the
Society of Automotive Engineers (SAE) Standard J1850 and/or J1939, and/or via
direct/hard wiring or other suitable communication link or connection.
[0026] The method or algorithm 100 of the invention, which will be discussed
below with reference to Figure 2, determines or predicts the remaining useful life of the filter 17. The algorithm 100 uses the shift signal (arrow S) as measured, calculated, or detected by the shift sensor 41 or by the controller 18, as described above, and the transmission output speed (N) as measured or detected by the speed sensor 13, as a pair of input values into a series of calculations for determining the remaining useful life of the filter 17.
[0027] Referring to Figure 2, the algorithm 100 begins with step 102, in which
the controller 18 determines whether a predetermined transmission operating event, abbreviated "event X" has been newly completed. Event X is any suitable discrete, detectable, and predetermined transmission operating event marking a passage of operating time of the vehicle 10. In one embodiment, the event X may be a completed shift event of the gear set 14 (see Figure 1), as detected or measured by the shift sensor 41. Alternately, the event X may be a zero transmission output speed event, i.e. a transmission output speed (N)(see Figure 1) equaling approximately zero, as detected or measured by the speed sensor 13 (see Figure 1). Other discrete events may be used within the scope of the invention, provided the selected event sufficiently marks a passage of operating time of the vehicle 10. If the algorithm 100 detects a completed event X, it proceeds to step 104. Otherwise, the algorithm 100 proceeds directly to step 106.

[0028] At step 104, the algorithm 100 increments a variable "X Count", which
may be embodied as an integer counter stored or programmed within memory 19 of the
controller 18 (see Figure 1) or another suitable counter. Once the variable "X Count"
has been properly incremented, the algorithm 100 proceeds to step 106.
[0029J At step 106, the algorithm 100 performs a calculation that adjusts two
more recorded or stored variables corresponding to the accumulated distance of the vehicle 10 (see Figure 1) and the accumulated operating time of the vehicle 10. In Figure 2, the accumulated distance is abbreviated as "dA", and likewise, the accumulated time is abbreviated "tA". To adjust the variable "dA", the algorithm 100 performs a stored or programmed equation suitable for incrementing an "accumulated miles" value stored or recorded in memory 19. The accumulated distance (dA) may be programmed in miles, for example when the vehicle 10 is to be operated in the United States, but may also be programmed in kilometers or other suitable units of distance as required. In one embodiment, the equation performed at step 106 is dA(new) '— dA + [ N/3600'] *[dt/(N/V)], where (dt) equals the time increment, and die ratio (N/V) equals the ratio of the transmission output speed (N) in revolutions-per-minute to the actual vehicle speed (V) described previously hereinabove.
[0030] The ratio N/V may be estimated, or alternately may be predetermined
based on the known axle ratio and/or the diameter of the wheels 28 of the vehicle 10 (see Figure 1), and programmed into memory 19. Optionally, the controller 18 may be reprogrammed by an operator or maintainer of the vehicle 10, for example to allow for after-market tires having a different diameter than was originally specified by the manufacturer. Likewise, to adjust the accumulated time variable (U), the algorithm 100 performs a stored or programmed equation suitable for incrementing a stored value for (IA) value in memory 19. In one embodiment, the equation calculates "time" in hours, and the equation is tA = t 4- dt/3600. After performing the two calculations described hereinabove, the algorithm 100 proceeds to step 108.
[0031] At step 108, the algorithm 100 accesses a pair of lookup tables that are
stored or programmed in memory 19 of the controller 18, and retrieves the data stored

at a corresponding position in each of tables. The first lookup table describes the filter
life distance limit of the filter 17 (see Figure 1), denoted in miles or kilometers, and
which is abbreviated in Figure 2 as "FLd". The second lookup table described the filter
life time limit of the filter 17 (see Figure 1), which is preferably denoted in hours, and
which is abbreviated in Figure 2 as "FLt". The algorithm 100 then selects or retrieves
the corresponding data values from each table for the predetermined event counter
variable "X Count" previously stored or recorded at step 104, and the value for
accumulated distance (dA) and accumulated time (tA), previously stored or recorded at
step 106. The lookup tables may be populated with the remaining distance data and
remaining time data corresponding to the quantity "X_Count/dA" and "X_Count/tA",
respectively. After setting the filter life distance and time limit values of the variables
FLd and FLt, respectively, the algorithm 100 proceeds to step 110.
[0032] At step 110, the algorithm 100 determines whether one of the stored
values for accumulated distance (dA) or accumulated time (tA) (see step 106) exceeds the respective stored filter life distance and time limits (FLd, FLt) (see step 108). If one of the stored accumulated values (dA, IA) exceeds the respective stored filter life distance and time limits (FLd, FLt), the algorithm 100 proceeds to step 112. Otherwise, algorithm 100 returns to step 102 and repeats that step, as described hereinabove. As will be apparent to those of ordinary skill in the art, steps 106-110 are performed in a continuous manner regardless of the results of step 102 in order to ensure that the accumulated distance (dA) and the accumulated time (U) values are continuously updated, thereby ensuring the accuracy of the accumulated distance and time values dA and IA.
[0033] At step 112, the algorithm 100 activates or illuminates die service
indicator 42 (see Figure 1) to alert an operator of the vehicle 10 (see Figure 1) that service of the transmission filter 17 (see Figure 1) is required. The service indicator 42 may be embodied as an indicator lamp, a light, a message, text, and/or another visual display presented on a gauge or display screen (not shown) within the vehicle 10 (see Figure 1), and may be coupled with an audible alarm. Preferably, an operator or

maintainor of the vehicle 10 may clear or reset the service indicator 42 if" desired, such as by using an accessible input device or a "clear/reset" button that is positioned in proximity to the service indicator 42, or by using a service tool for accessing memory 19. Similarly, because the determined or predicted remaining filter life data is stored in memory 19 by the algorithm 100, an operator or maintainer may easily monitor the stored data. For example, an operator may monitor the percentage and/or hours of remaining life of the filter 17 by viewing or accessing a J1939 parameter, described previously hereinabove, and/or by configuring the controller 18 to present or display the stored data when the "clear/reset" button (not shown) is depressed, or by using a service tool.
[0034] While the best modes for carrying out the invention have been described
in detail, those familiar with the art to which this invention relates will recognize various alternative designs and embodiments for practicing the invention within the scope of the appended claims.

We Claim;
1. A vehicle (10) comprising:
a transmission (16) having an output member* (24) with a detectable output speed (N);
a filter (17) operable for filtering a supply of transmission fluid; at least one sensor (41) adapted for determining an operating event (X) of said transmission (16); and
a controller (18,19,100) for predicting a remaining useful life of said filter (17); wherein said Controller (18) predicts said remaining useful life of said filter (17) in response to said operating event, and said operating event (X) is selected from a group consisting of a completed shift event (X) of said transmission (16) and a zero output speed event (N) of said transmission (16).
2. The vehicle as claimed in claim 1, wherein said controller (18) is operable for
updating an accumulated distance (dA) of the vehicle (10) and an accumulated
operating time (tA) of said transmission (16) in response to said operating event
(x).
3. The vehicle as claimed in claim 1, wherein said at least one sensor comprises a shift sensor (41) configured for determining a shift signal corresponding to said completed shift event, and a speed sensor (13) configured for detecting an output speed (N) of said transmission (16).

4. The vehicle as claimed in claim 3, wherein said at least one shift sensor (41) is a portion of said controller (18) that is operable for comparing a detected speed ratio of said transmission (16) to a stored threshold speed ratio for determining said completed shift event (x).
5. The vehicle as claimed in claim 1, wherein said controller comprises a pair of lookup tables (FLd/FLT), comprising a first lookup table describing a distance limit of said filter and a second lookup table describing a time limit of said filter (17), said controller (18) being operable for accessing said pair of lookup tables (FI_d,FLE) for predicting said remaining useful life of said filter (17).
6. The vehicle as claimed in claim 1, comprising a service indicator (42) that is configured for alerting an operator of the vehicle (10) when said remaining useful life drops below a threshold value.
7. A method for determining the remaining useful life of a transmission, filter in a vehicle, the method comprising:
detecting the presence of an operating event of a transmission; incrementing a stored value for one of an accumulated distance variable and an accumulated time variable in response to a detected presence of said operating event; and

predicting the remaining useful time of the transmission filter in response to said
accumulated time variable and said accumulated distance variable.
wherein said operating event is selected from a group consisting of a completed
shift event of the transmission and a zero output speed event of the
transmission.
8. The method as claimed in claim 7, wherein said predicting the remaining useful life of the transmission filter comprises comparing a value of said accumulated distance variable to a threshold distance, and wherein said determining the remaining useful time includes comparing a value of said accumulated time variable to a threshold time.
9. The method as claimed in claim 7, comprising calculating said accumulated distance in part by dividing a recorded accumulated distance value by a ratio of an output speed of the transmission to an actual vehicle speed.
10. The method as claimed in claim 8, wherein said threshold distance and said
threshold time are selected from a pair of lookup tables.

11. The method as claimed in claim 7, comprising activating a service indicator when a value of one of said accumulated distance variable and said accumulated time variable exceeds a corresponding one of said threshold distance and threshold time.



ABSTRACT


TITLE: " A vehicle and a method for determining the remaining useful life of a transmission filter in a vehicle"
The invention relates to a vehicle (10) comprising a transmission (16) having an output member (24) with a detectable output speed (N); a filter (17) operable for filtering a supply of transmission fluid; at least one sensor (41) adapted for determining an operating event (X) of said transmission (16); and a controller (18,19,100) for predicting a remaining useful life of said filter (17); wherein said Controller (18) predicts said remaining useful life of said filter (17) in response to said operating event, and said operating event (X) is selected from a group consisting of a completed shift event (X) of said transmission (16) and a zero output speed event (N) of said transmission (16).

Documents:

00317-kol-2008-abstract.pdf

00317-kol-2008-claims.pdf

00317-kol-2008-correspondence others.pdf

00317-kol-2008-description complete.pdf

00317-kol-2008-drawings.pdf

00317-kol-2008-form 1.pdf

00317-kol-2008-form 2.pdf

00317-kol-2008-form 3.pdf

00317-kol-2008-form 5.pdf

00317-kol-2008-priority document.pdf

317-KOL-2008-(03-12-2014)-CORRESPONDENCE.pdf

317-KOL-2008-(03-12-2014)-OTHERS.pdf

317-KOL-2008-(12-06-2013)-ABSTRACT.pdf

317-KOL-2008-(12-06-2013)-ANNEXURE TO FORM 3.pdf

317-KOL-2008-(12-06-2013)-CLAIMS.pdf

317-KOL-2008-(12-06-2013)-CORRESPONDENCE.pdf

317-KOL-2008-(12-06-2013)-DESCRIPTION (COMPLETE).pdf

317-KOL-2008-(12-06-2013)-DRAWINGS.pdf

317-KOL-2008-(12-06-2013)-FORM-1.pdf

317-KOL-2008-(12-06-2013)-FORM-2.pdf

317-KOL-2008-(12-06-2013)-FORM-3.pdf

317-KOL-2008-(12-06-2013)-FORM-5.pdf

317-KOL-2008-(12-06-2013)-OTHERS.pdf

317-KOL-2008-(12-06-2013)-PETITION UNDER RULE 137.pdf

317-KOL-2008-(13-03-2014)-ABSTRACT.pdf

317-KOL-2008-(13-03-2014)-CLAIMS.pdf

317-KOL-2008-(13-03-2014)-CORRESPONDENCE.pdf

317-KOL-2008-(13-03-2014)-DESCRIPTION (COMPLETE).pdf

317-KOL-2008-(13-03-2014)-DRAWINGS.pdf

317-KOL-2008-(13-03-2014)-FORM-1.pdf

317-KOL-2008-(13-03-2014)-FORM-2.pdf

317-KOL-2008-(13-03-2014)-OTHERS.pdf

317-KOL-2008-ABSTRACT.pdf

317-KOL-2008-ASSIGNMENT-1.1.pdf

317-kol-2008-ASSIGNMENT-1.2.pdf

317-KOL-2008-ASSIGNMENT.pdf

317-kol-2008-CANCELLED PAGES-1.1..pdf

317-KOL-2008-CANCELLED PAGES.pdf

317-KOL-2008-CLAIMS.pdf

317-kol-2008-CORRESPONDENCE-1.1.pdf

317-KOL-2008-CORRESPONDENCE.pdf

317-KOL-2008-DESCRIPTION (COMPLETE).pdf

317-KOL-2008-DRAWINGS.pdf

317-kol-2008-EXAMINATION REPORT-1.1.pdf

317-KOL-2008-EXAMINATION REPORT.pdf

317-KOL-2008-FORM 1.pdf

317-KOL-2008-FORM 18-1.1.pdf

317-kol-2008-FORM 18-1.2.pdf

317-kol-2008-form 18.pdf

317-KOL-2008-FORM 2.pdf

317-KOL-2008-FORM 3.pdf

317-KOL-2008-FORM 5.pdf

317-KOL-2008-FORM 6-1.1.pdf

317-kol-2008-FORM 6-1.2.pdf

317-KOL-2008-FORM 6.pdf

317-kol-2008-GPA-1.1.pdf

317-KOL-2008-GPA.pdf

317-kol-2008-GRANTED-ABSTRACT.pdf

317-kol-2008-GRANTED-CLAIMS.pdf

317-kol-2008-GRANTED-DESCRIPTION (COMPLETE).pdf

317-kol-2008-GRANTED-DRAWINGS.pdf

317-kol-2008-GRANTED-FORM 1.pdf

317-kol-2008-GRANTED-FORM 2.pdf

317-kol-2008-GRANTED-FORM 3.pdf

317-kol-2008-GRANTED-FORM 5.pdf

317-kol-2008-GRANTED-SPECIFICATION-COMPLETE.pdf

317-KOL-2008-OTHERS 1.1.pdf

317-kol-2008-OTHERS-1.1.pdf

317-KOL-2008-OTHERS.pdf

317-KOL-2008-PA.pdf

317-kol-2008-PETITION UNDER RULE 137-1.1.pdf

317-KOL-2008-PETITION UNDER RULE 137.pdf

317-kol-2008-REPLY TO EXAMINATION REPORT-1.1.pdf

317-KOL-2008-REPLY TO EXAMINATION REPORT.pdf

317-KOL-2008-SPECIFICATION-COMPLETE.pdf

317-kol-2008-TRANSLATED COPY OF PRIORITY DOCUMENT-1.1.pdf

317-KOL-2008-TRANSLATED COPY OF PRIORITY DOCUMENT.pdf

abstract-00317-kol-2008.jpg


Patent Number 265159
Indian Patent Application Number 317/KOL/2008
PG Journal Number 07/2015
Publication Date 13-Feb-2015
Grant Date 11-Feb-2015
Date of Filing 21-Feb-2008
Name of Patentee GM GLOBAL TECHNOLOGY OPERATIONS ,INC
Applicant Address 300 RENAISSANCE CENTER, DETROIT, MICHIGAN 48265-3000, USA,
Inventors:
# Inventor's Name Inventor's Address
1 MARK A. RAINS 2522 GADWALL CIRCLE INDIANAPOLIS, INDIANA 46234
2 BRETT R. CALDWELL 6239 W. MORGAN COURT NEW PALESTINE, INDIANA 46163
PCT International Classification Number F16H61/00; F16H57/00; F16H59/00;
PCT International Application Number N/A
PCT International Filing date
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 60/895,012 2007-03-15 U.S.A.