Title of Invention

ELEVATOR

Abstract According to the invention there is provided an elevator, preferably an elevator without machine room, wherein the elevator car (1) is supported by a set of hoisting ropes (203) comprising one rope or a number of parallel ropes, and which elevator has a traction sheave (205) that moves the elevator car by means of the hoisting ropes, and which elevator has rope portions of hoisting ropes going upwards and downwards from the elevator car, and the rope portions going from the traction sheave in the direction of the rope portion above the elevator car are under a first rope tension (T1) and the rope portions going from the traction sheave in the direction of the rope portion below the elevator car are under a second rope tension (T2), and which elevator has a compensating device (224) for equalizing and/or compensating the rope tension and/or rope elongation and/or to render the ratio of the first and the second rope tensions (T1/T2) substantially constant, characterized in that the motion of the elevator is prevented and/or stopped by increasing the ratio of the first rope tension (T1) to the second rope tension (T2). There is also provided a method for preventing/stopping the motion of the elevator.
Full Text

The present invention relates to an elevator prefer-
ably an elevator without machine room and to a
method for preventing/stopping the motion of an elevator.
One of the objectives in elevator development work is
to achieve an efficient and economical utilization of
building space. In recent years, this development work
has produced various elevator solutions without ma-
chine room and without counterweight, among other
things. Good examples of elevators without machine
room and without counterweight are disclosed in spe-
cifications FI 20021959 and FI 20030153. The elevators
described in these specifications are fairly efficient
in respect of space utilization as they have made it
possible to eliminate the space required by the elev-
ator machine room in the building and the space re-
quired by the counterweight in the elevator shaft
without a need to enlarge the elevator shaft.
In these basically good elevator solutions, the space
required by the hoisting machine limits the freedom of
choice in elevator lay-out solutions. Some space is
needed to provide for the passage of the hoisting
ropes. Stopping the motion of the elevator car at a
desired point especially in situations where the ele-
vator is driven onto the buffers fitted in the eleva-
tor shaft space below or above the elevator car or
when the car is to be prevented from going too far up.
In modernization of elevators, the space available in
the elevator shaft has often limited the sphere of ap-
plication of the concept of elevator without machine
room. Especially when hydraulic elevators are to be
modernized or replaced, it is not practical to apply
an elevator solution without machine room due to a

lack of space in the elevator shaft especially in a
situation where the hydraulic elevator to be modern-
ized or replaced has no counterweight. Ensuring a
safety space in the shaft is also a problematic task
in connection with elevator solutions without counter-
weight, especially ensuring a safety space above the
elevator car and stopping an upward motion of the ele-
vator.
The aim of the invention is to achieve at least one
the following objectives. On the one hand, it is an
objective of the invention to develop the elevator
without machine room so as to achieve more efficient
space utilization in the building and in the elevator
shaft than before. This means that the elevator should
permit of being installed in a relatively narrow ele-
vator shaft if necessary. On the other hand, it is an
objective of the invention to achieve an elevator,
preferably an elevator without counterweight, wherein
it is possible to prevent and stop the motion of the
elevator at a desired point in order to form the re-
quired safety space in the elevator shaft, especially
in situations where a serviceman wants to go onto the
top of the car. It is an objective to ensure a safety
space in the elevator and to prevent it from being
driven too far up.
The elevator of the invention is characterized by what
is disclosed in the characterization part of claim 1,
the method of the invention is characterized by what
is disclosed in the characterization part of claim 10,
and the use of the invention is characterized by what
is disclosed in claim 11. Other embodiments of the in-
vention are characterized by what is disclosed in the
other claims. Inventive embodiments are also presented
in the description part of the present application. The
inventive content disclosed in the application can also

be defined in other ways than is done in the claims be-
low. The inventive content may also consist of several
separate inventions, especially if the invention is
considered in the light of explicit or implicit sub-
tasks or in respect of advantages or sets of advantages
achieved. In this case, some of the attributes con-
tained in the claims below may be superfluous from the
point of view of separate inventive concepts.
By applying the invention, one or more of the follow-
ing advantages, among others, can be achieved:
- the motion of the elevator of the invention can be
stopped at a desired point in a simple and easy man-
ner
- the upper safety space of the elevator can be easily
ensured by applying the invention
- the safety and reliability of the elevator of the
invention are improved
- the elevator and method of the invention are cheap
solutions to implement
- as the motion of the elevator is prevented/stopped
by means of a gripping element at a point as close
to the hoisting machine as possible, the delay
caused by the elongation of the rope is as small as
possible and the elevator car stops within a short
distance
- in addition, as the motion is stopped by a point as
close to the hoisting machine as possible, the rope
force required to keep the elevator car immovable is
as small as possible
- when the elevator and method of the invention are
used, savings in material and installation costs are
achieved as compared to prior-art heavy and expen-
sive structures in which a buffer is used, upward
motion of the elevator car is easy to stop and when
downward travel of the elevator is again started,
the gripping element can be released automatically,

allowing the elevator to move normally and the com-
pensating gear to function in the normal way.
The primary area of application of the invention is
elevators designed for transporting people and/or
goods. A normal area of application of the invention
is in elevators whose speed range is about or below
1.0 m/s but may also be higher. For example, an eleva-
tor traveling at a speed of 0.6 m/s is easy to imple-
ment according to the invention.
In both passenger and freight elevators, many advan-
tages provided by the invention are pronouncedly ap-
parent even in elevators for only 2-4 persons, and em-
phatically apparent already in elevators for 6-8 per-
sons (500-630 kg).
In the elevator of the invention, normal elevator
ropes, such as generally used steel wire ropes, are
applicable. The elevator may use ropes of synthetic
material and rope structures with a synthetic-fiber
load-bearing part, such as e.g. so-called "aramid" or
kevlar ropes, which have recently been proposed for
use in elevators. Applicable solutions are also steel-
reinforced flat belts, especially because of the small
deflection radius they permit. Particularly advanta-
geously applicable for use in the elevator of the in-
vention are elevator hoisting ropes twisted from e.g.
round and strong wires. Using round wires, the rope
can be twisted in many ways using wires of the same or
different thicknesses. In ropes well applicable with
the invention, the wire thickness is below 0.4 mm on
an average. Well-suited ropes made from strong wires
are those in which the average wire thickness is under
0.3 mm or even under 0.2 mm. For example, thin-wired
and strong 4-mm ropes can be twisted relatively advan-
tageously from wires such that the average wire thick-

ness in the finished ropes is between 0.15 ...0.25 mm,
the thinnest wires having a thickness even as small as
0.1 mm. Thin rope wires can easily be made quite
strong. In the invention it is possible to use rope
wires having a strength e.g. as high as about 2 00 0
N/mm2. Appropriate rope wire strengths are 2100-2700
N/mm2. In principle, it is possible to use rope wires
of a strength of about 3000 N/mm2 or even more.
The elevator of the invention, in which the elevator
car is supported by a set of hoisting ropes comprising
one rope or a number of parallel ropes, and which has
a traction sheave that moves the elevator car by means
of the hoisting ropes, comprises hoisting rope por-
tions going upwards and downwards from the elevator
car, and the rope portions starting from the elevator
car in the direction of the upper rope portion are un-
der a first rope tension (T1) and the rope portions
starting from the elevator car in the direction of the
lower rope portion are under a second rope tension
(T2). In addition, the elevator comprises a compensat-
ing device acting on the hoisting ropes to equalize
and/or compensate the rope tension and/or rope elonga-
tion and/or to render the ratio of the first and the
second rope tensions (T1/T2) substantially constant.
The motion of the elevator is prevented and/or stopped
by increasing the ratio of the first rope tension (T1)
to the second rope tension (T2) .
In the method of the invention for preventing/stopping
the motion of an elevator, in which elevator the ele-
vator car is at least partially supported by a set of
hoisting ropes comprising one rope or a number of par-
allel ropes. The elevator has a traction sheave which
moves the elevator car by means of the hoisting ropes,
and which elevator has hoisting rope portions going
upwards and downwards from the elevator car. The rope

portions going from the traction sheave in the direc-
tion of the rope portion above the elevator car are
under a first rope tension (T1) and the rope portions
going from the traction sheave in the direction of the
rope portion below the elevator car are under a second
rope tension (T2) - The elevator has a compensating de-
vice acting on the hoisting ropes to equalize and/or
compensate the rope tension and/or rope elongation
and/or to render the ratio of the first and the second
rope tensions (T1/T2) substantially constant. In the
method, the motion of the elevator is prevented and/or
stopped by increasing the ratio of the first rope ten-
sion (T1) to the second rope tension (T2) .
By increasing the contact angle using a rope pulley
that functions as a diverting pulley, the grip between
the traction sheave and the hoisting ropes can be im-
proved. This makes it possible to reduce the weight of
the car and also to increase its size, thereby in-
creasing the space saving potential of the elevator. A
contact angle of over 180° between the traction sheave
and the hoisting rope is achieved by using a diverting
pulley or diverting pulleys. The compensating device,
which compensates the rope elongation, maintains a
suitable T1/T2 ratio to ensure a grip between the
hoisting rope and the traction sheave that is suffi-
cient for the operation and safety of the elevator. On
the other hand, it is essential for the operation and
safety of the elevator that the rope below the eleva-
tor car in an elevator solution without counterweight
be kept at a sufficient tension. In addition, the in-
vention makes it possible to limit the use of the ele-
vator in its normal operating area, which is the area
within which the elevator can be safely operated. It
is possible to ensure especially the overhead safety
space required for the elevator car and, if necessary,
the invention can also be used to define and delimit

other functional areas for the elevator. For example,
it is possible to define for the elevator a maximum
operating area in the direction of the upper part of
the elevator shaft so that the elevator can not be
driven upwards beyond this area, which area is larger
than the overhead safety space required when work is
being carried out from the top of the elevator car. In
addition to this, it is possible to define a second
area, which is an area where a larger overhead safety
space is defined, in which case the elevator can not
be driven as far up as in the maximum operating area,
and which safety space meets the requirements stipu-
lated e.g. when work is being carried out from the top
of the elevator car.
In the following, the invention will be described in
detail with reference to a few embodiment examples and
the attached drawings, wherein
Fig. 1 presents a diagrammatic view of a traction
sheave elevator without counterweight accord-
ing to the invention,
Fig. 2 presents a diagrammatic view of a second
traction sheave elevator without counter-
weight according to the invention,
Fig. 3 presents a diagrammatic view of a third trac-
tion sheave elevator without counterweight
according to the invention.
Fig. 1 is a diagrammatic representation of the struc-
ture of an elevator according to the invention. The
elevator is preferably an elevator without machine
room and with a drive machine 4 placed in the elevator
shaft. The elevator presented in the figure is a trac-
tion sheave elevator with machine above and without
counterweight. The hoisting ropes 3 of the elevator

run as follows: One end of the hoisting ropes 3 is
fastened to a fixing point 16 on a lever 15 immovably
fitted fast on the elevator car 1, said point 16 being
at a distance from the pivot 17 connecting the lever
to the elevator car 1. Thus, in the situation illus-
trated in Fig. 1, the lever 15 used as a compensating
device is pivoted on the elevator car 1 at fastening
point 17. From the fixing point 16, the hoisting ropes
3 go upwards and meet a diverting pulley 14 mounted
above the elevator car 1 in the elevator shaft, pref-
erably in the upper part of the elevator shaft, from
which diverting pulley the ropes 3 go further down-
wards to a diverting pulley 13 on the elevator car,
and from which diverting pulley 13 the ropes go again
upwards to a diverting pulley 12 fitted in the upper
part of the elevator shaft above the elevator car.
From diverting pulley 12, the ropes go further down-
wards to a diverting pulley 11 mounted on the elevator
car, and having passed around this diverting pulley
the ropes go further upwards to a diverting pulley 10
fitted in the upper part of the of the elevator shaft,
and having passed around it the ropes go back down-
wards to diverting pulley 9 fitted on the elevator
car. Having passed around diverting pulley 9, the
hoisting ropes 3 go further upwards to the traction
sheave 5 of the drive machine 4 placed in the upper
part of the of the elevator shaft, having first passed
via a diverting pulley 7 in "tangential contact" with
it. This means that the ropes 3 going from the trac-
tion sheave 5 to the elevator car 1 pass via the rope
grooves of diverting pulley 7 and the deflection of
the rope 3 caused by the diverting pulley 7 is very
small. It could be stated that the ropes going from
the traction sheave 5 only run in "tangential contact"
with the diverting pulley 7. Such "tangential contact"
functions as a solution damping vibrations of the out-

going ropes and it can also be applied in other roping f
solutions. The ropes pass around the traction sheave 5 l
of the drive machine 4 along the rope grooves of the
traction sheave 5. From the traction sheave 5, the
ropes go further downwards to diverting pulley 7, pass
around it along the rope grooves of the diverting pul-
ley 7 and return back up to the traction sheave 5,
passing around it along the rope grooves of the trac-
tion sheave. From the traction sheave 5, the ropes 3
go further downwards in "tangential contact" with di-
verting pulley 7 past the elevator car to a diverting
pulley 8 placed in the lower part of the elevator
shaft, passing around it along rope grooves provided
on it. From the diverting pulley 8 in the lower part
of the elevator shaft, the ropes go further upwards to
a diverting pulley 18 on the elevator car, from which
pulley the ropes 3 go further to a diverting pulley 19
in the lower part of the elevator shaft and further
back upwards to a diverting pulley 2 0 on the elevator
car, from which pulley the ropes go further to a di-
verting pulley 22 on the elevator car, from which pul-
ley the ropes 3 go further to a diverting pulley 23 in
the lower part of the elevator shaft. From diverting
pulley 23, the ropes 3 go further to the lever 15,
which is fixedly pivoted on the elevator car 1 at
point 17 and to which lever 15 the second end of the
ropes 3 is immovably fixed at point 24 at a distance b
from the pivot 17. In the case illustrated in Fig. 1,
the hoisting machine and diverting pulleys are pref-
erably all placed on one and the same side of the ele-
vator car, but they may also be located on different
sides of the elevator car. This solution is particu-
larly advantageous in the case of a rucksack-type ele-
vator solution, wherein the components in question are
located behind the elevator car in the space between
the elevator car and the back wall of the shaft. The

roping between diverting pulley 7 and the traction
sheave 5 is referred to as Double Wrap roping, in
which roping the hoisting ropes are passed around the
traction sheave twice and/or more than twice. In this
way the contact angle can be increased in two and/or
more stages. For example, the contact angle between
the traction sheave 5 and the hoisting ropes 3
achieved in the embodiment presented in Fig. 1 is 180°
+ 180°, i.e. 360°. The Double Wrap roping presented the
figure can also be arranged in another way, such as
e.g. by placing diverting pulley 7 on the side of the
traction sheave 5, so that as the hoisting ropes run
twice around the traction sheave, the contact angle
will be 180° + 90°, i.e. 270°, or by placing the di-
verting pulley at some other suitable point. An advan-
tageous solution is to place the traction sheave 5 and
diverting pulley 7 in such manner that the diverting
pulley 7 simultaneously functions as a guide of the
hoisting ropes 3 and as a damping pulley. Diverting
pulleys 14,13,12,11,10,9,7 together with the traction
sheave 5 of the hoisting machine 4 form the suspension
above the elevator car, which has the same suspension
ratio as the suspension below the elevator car, which
suspension ratio in Fig. 1 is 7:1. The rope portions
going from the traction sheave 5 in the direction of
the rope portion above the elevator car 1 are under a
first rope tension (T2). Diverting pulleys
8,18,19,2 0,21,22,23 form the suspension and rope por-
tion below the elevator car. The rope portions going
from the traction sheave in the direction of the rope
portion below the elevator car are under a second rope
tension (T2) . The hoisting machine 4 and traction
sheave 5 of the elevator and/or the diverting pulleys
7,10,12,14 in the upper part of the elevator shaft may
be mounted in place on a frame structure formed by the
guide rails 2 or on a beam structure at the upper end

of the elevator shaft or separately in the elevator
shaft or on some other appropriate mounting arrange-
ment. The diverting pulleys in the lower part of the
elevator shaft may be mounted in place on a frame
structure formed by the guide rails 2 or to a beam
structure placed at the lower end of the elevator
shaft or separately in the lower part of the elevator
shaft or on some other appropriate mounting arrange-
ment. The diverting pulleys on the elevator car may be
mounted in place on the frame structure of the eleva-
tor car 1, e.g. on the car frame, or to a beam struc-
ture or beam structures in the elevator car or sepa-
rately on the elevator car or some other appropriate
mounting arrangement. The diverting pulleys may also
be of a modular construction, e.g. such that they are
separate modular structures, such as e.g. cassette-
type structures, which are fitted in place on the
shaft structure of the elevator, on the structures of
the elevator car and/or car frame or in some other ap-
propriate place in the elevator shaft or in its vicin-
ity or in conjunction with the elevator car. The di-
verting pulleys placed in the elevator shaft and the
hoisting machine equipment and/or the diverting pul-
leys fitted in place in conjunction with the elevator
car may be placed either all on one side of the eleva-
tor car in the space between the elevator car and the
elevator shaft or in a desired manner on different
sides of the elevator car. The roping between the
traction sheave 4 and diverting pulley 7 may also be
implemented in other ways than as Double Wrap roping,
e.g. as Single Wrap roping, in which case diverting
pulley 7 is not necessarily needed at all, as ESW rop-
ing (Extended Single Wrap) or by using some other cor-
responding roping solution appropriate for the pur-
pose .

The drive machine 4 placed in the elevator shaft is
preferably of a flat construction, in other words, the
machine has a small thickness dimension as compared to
its width and/or height, or at least the machine is
slim enough to be accommodated between the elevator
car and a wall of the elevator shaft. The machine may
also be placed differently, e.g. by disposing the slim
machine partly or completely between an imaginary ex-
tension of the elevator car and a shaft wall. In the
elevator of the invention, it is possible to use a
drive machine 4 of almost any type and design that
fits into the space intended for it. For example, it
is possible to use a geared or a gearless machine. The
machine may be of a compact and/or flat size. In the
suspension solutions according to the invention, the
rope speed is often high as compared to the speed of
the elevator, so it is possible to use even unsophis-
ticated machine types as the basic machine solution.
The elevator shaft is advantageously provided with
equipment required for the supply of power to the mo-
tor driving the traction sheave 5 as well as equipment
needed for elevator control, both of which can be
placed in a common instrument panel 6 or mounted sepa-
rately from each other or integrated partly or wholly
with the drive machine 4. A preferable solution is a
gearless machine comprising a permanent magnet motor.
The drive machine may be fixed to a wall of the eleva-
tor shaft, to the ceiling, to a guide rail or to some
other structure, such as a beam or frame. In the case
of an elevator with machine below, a further possibil-
ity is to mount the machine on the bottom of the ele-
vator shaft. Fig. 1 illustrates a preferred suspension
solution in which the suspension ratio of the divert-
ing pulleys above the elevator car and the diverting
pulleys below the elevator car is the same 7:1 suspen-
sion in both cases. To visualize this ratio in prac-

tice, it means the ratio of the distance traveled by
the hoisting rope to the distance traveled by the ele-
vator car. The suspension arrangement above the eleva-
tor car 1 is implemented by means of diverting pulleys
14,13,12,11,10,9 and the suspension arrangement below
the elevator car 1 is implemented by means of divert-
ing pulleys 23,22,21,20,19,18,8. Other suspension so-
lutions can also be used to implement the invention.
The elevator of the invention can also be implemented
as a solution comprising a machine room, or the ma-
chine may be mounted so as to be movable together with
the elevator.
The function of the lever 15 pivoted on the elevator
car 1 at point 17 in Fig. 1 and serving as a compen-
sating device is to equalize and/or compensate rope
tension and/or rope elongation and/or to render the
ratio between the first and second rope tensions
(T1/T2) substantially constant. It is essential to the
operation and safety of the elevator that a suffi-
cient tension be maintained in the lower rope por-
tion, which refers to that part of the hoisting rope
which is below the elevator car. By means of the
lever arrangement 15 illustrated in Fig. 1, the ten-
sioning of the hoisting rope can be implemented in
such manner that the ratio T1/T2 between the rope
forces Tx and T2 acting in different directions on the
traction sheave 5 can be kept at a desired constant
value, which may be e.g. 2. This ratio to be kept
constant can be varied by varying the distances a and
b, because Tx/T2 = b/a. When odd suspension ratios are
used in the suspension of the elevator car, the lever
15 is pivoted on the elevator car, and when even sus-
pension ratios are used, the lever 15 used as an
equalizing device is pivoted on the elevator shaft.

Fig. 1 presents a device according to the invention
that stops / prevents an elevator from moving too far
up. From the reduction or disappearance of rope ten-
sion T2 it follows that the friction between the trac-
tion sheave and the hoisting ropes is lost, so that it
becomes impossible to hoist the elevator car 1. In
Fig. 1 a stopper element 2 5 arranged to meet the lever
15 used as a compensating device has been fitted in
the elevator shaft at a point 2 6 such that by means of
the stopper element a desired overhead space is en-
sured between the between the elevator car and the
ceiling of the elevator shaft and the elevator car can
be prevented from moving upwards beyond the desired
point in the elevator shaft. When the elevator car 1
is moving upwards and reaches the point beyond which
the motion of the elevator car is to be prevented, the
lever 15 used as the compensating device of the eleva-
tor meets the stopper element 25, which turns the
lever 15 downwards, thereby slackening the rope por-
tion below the elevator car 1, as a result of which
rope tension T2 disappears and the ratio T1/T2 between
the first and the second rope tensions increases. Con-
sequently, the motion of the elevator car 1 is
stopped. In addition to stopper element 25, the eleva-
tor of the invention can also be provided with a sec-
ond stopper element, which can be so fitted in the
elevator shaft that it can be used to guarantee a suf-
ficient safety space above the elevator car e.g. dur-
ing maintenance work. The second stopper element can
be arranged to be set into the safety position, i.e.
the position in which it will meet the compensating
device 15, either manually or electrically, e.g. upon
being activated via a service box provided on the car
top. When the serviceman leaves the car top and main-
tenance operation is terminated, the stopper is re-
turned either manually or electrically to the final

position in which it no longer meets the compensating
device 15. The second stopper element may be provided
with a safety switch that prevents normal operation of
the elevator when the stopper is in the safety posi-
tion.
Fig. 2 presents a general illustration of a traction
sheave elevator without counterweight according to the
invention, wherein the elevator car is prevented from
moving too far up in the elevator shaft. The elevator
presented the figure is an elevator according to Fig.
1, with the difference that the elevator in Fig. 2 has
a suspension ratio of 8:1 and is provided with a dif-
ferent compensating device 224. The elevator is a
traction sheave elevator without counterweight, with
an elevator car 1 moving along guide rails 202. In
elevators with a large hoisting height, the elongation
of the hoisting rope involves a need to compensate the
rope elongation, which has to be done reliably within
certain allowed limit values. It is essential in re-
spect of elevator operation and safety that the rope
portion below the elevator car be kept sufficiently
tight. In the rope force compensating device 224 pre-
sented in Fig. 2, a very long movement is achieved for
the compensation of rope elongation. This permits the
compensation of even large elongations. The compensat-
ing device 224 according to the invention presented in
Fig. 2 produces a constant ratio T3./T2 between the rope
forces Ti and T2 acting on the traction sheave. In the
case illustrated in Fig. 2, the ratio T1(/T2 is about
2/1. With even suspension ratios above and below the
elevator car, the compensating device 224 is fitted in
the elevator shaft or in some other corresponding ap-
propriate place not in conjunction with the elevator
car, and with odd suspension ratios above and below
the elevator car the compensating device 224 is fitted
in conjunction with the elevator car 1.

In Fig. 1, the hoisting ropes run as follows: One end
of the hoisting ropes 3 is fixed to a diverting pulley
225 fitted to hang on a rope portion coming downwards
from diverting pulley 216. Diverting pulleys 216 and
22 5 together with the fixing point 22 6 of the second
end of the hoisting rope constitute a rope force
equalizing device 224. This compensating device 224 is
fitted in place in the elevator shaft. From diverting
pulley 225, the hoisting ropes 203 go upwards and meet
a diverting pulley 216 placed above the elevator car
in the elevator shaft, preferably in the upper part of
the elevator shaft, passing around it along rope
grooves provided on the diverting pulley 216. From di-
verting pulley 216, the ropes go further downwards to
a diverting pulley 215 fitted in place on the elevator
car, and having passed around this pulley the ropes go
further upwards to a diverting pulley 214 fitted in
place in the upper part of the elevator shaft. Having
passed around diverting pulley 214, the ropes come
again downwards to a diverting pulley 213 fitted in
place on the elevator car, pass around it and go fur-
ther upwards to a diverting pulley 212 fitted in place
in the upper part of the elevator shaft, and having
passed around this pulley the hoisting ropes 2 03 go
further downwards to a diverting pulley 211 fitted in
place on the elevator car. Having passed around this
pulley 211, the hoisting ropes go further upwards to a
diverting pulley 210 fitted in place in the upper part
of the of the elevator shaft, and having passed around
it the hoisting ropes 2 03 go further downwards to a
diverting pulley 209 fitted in place on the elevator
car, and having passed around this pulley the ropes
2 03 go further upwards in tangential contact with di-
verting pulley 207 to the traction sheave 205. Divert-
ing pulley 207 is preferably fitted near and/or in

conjunction with the hoisting machine 204. Between di-
verting pulley 207 and the traction sheave 205 of the
hoisting machine 2 04, Fig. 2 shows Double Wrap (DW)
roping, as in connection with Fig. 1. Diverting pul-
leys 216,214,213,212,211,210,209,207 together with the
traction sheave 205 of the hoisting machine 2 04 form
the suspension above the elevator car, which has the
same suspension ratio as the suspension below the ele-
vator car, which suspension ratio in Fig. 2 is 8:1.
The rope portions going from the traction sheave in
the direction of the suspension above the elevator car
are under a first rope tension (T1) . From the traction
sheave 2 05, the ropes go further in tangential contact
with diverting pulley 207 to diverting pulley 208,
which is preferably fitted in place in the lower part
of the elevator shaft. Having passed around diverting
pulley 208, the ropes 203 go further upwards to a di-
verting pulley 218 fitted in place on the elevator
car, and having, passed around said diverting pulley
218 the ropes go further downwards to a diverting pul-
ley 219 in the lower part of the elevator shaft and,
having passed around this pulley, return to a divert-
ing pulley 22 0 fitted in place on the elevator car.
Having passed around diverting pulley 220, the hoist-
ing ropes 2 03 go further downwards to a diverting pul-
ley 221 fitted in place in the lower part of the ele-
vator shaft, pass around it and go further upwards to
a diverting pulley 222 on the elevator car. Having
passed around diverting pulley 222, the hoisting ropes
2 03 go further downwards to a diverting pulley 223
fitted in place in the lower part of the elevator
shaft, pass around it and go further upwards to a di-
verting pulley. 228 on the elevator car. having passed
around diverting pulley 228, the hoisting ropes 203 go
further downwards to a diverting pulley 227 fitted in
place in the lower part of the elevator shaft, and

having passed around it the hoisting ropes go further
upwards to the diverting pulley 225 of the compensat-
ing device, pass around it and go further to the fix-
ing point 226 of their second end, which is located in
a suitable place in the elevator shaft. Diverting pul-
leys 208,218,219,220,221,222,223,228,227 form the sus-
pension and rope portion below the elevator car, which
rope portion is subject to a second rope tension T2.
The elevator presented in Fig. 2 comprises a compen-
sating device designed to equalize and/or compensate
the rope tension and/or rope elongation and/or to ren-
der the ratio of the first and the second rope ten-
sions (T1/T2) substantially constant, the action of the
compensating device being produced by the motion of
diverting pulley 225. The diverting pulley 225 moves
through a limited distance, thereby compensating elon-
gations of the hoisting ropes 303. In addition, this
arrangement keeps the rope tension over the traction
sheave 2 05 at a constant level, so that the Tl/T2 ratio
between the rope tensions in the situation illustrated
in Fig. 2 is about 2/1. It is also possible to imple-
ment the compensating device 224 in other ways besides
that described in the example, such as e.g. by using
more complex suspension arrangements and larger num-
bers of diverting pulleys in the compensating device,
thus providing different suspension ratios between the
diverting pulleys of the compensating device. In the
elevator without counterweight presented in Fig. 2,
the elevator must be prevented from being driven up to
the shaft's ceiling to obviate injury to installers
who may be working on the car top and to prevent dam-
age to the elevator. If a traditional buffer is used,
it will be necessary to use heavy and expensive solu-
tions and structures. The arrangement of the invention
for preventing the elevator from being driven up to
the ceiling as illustrated in Fig. 2 is advantageously

placed as close to the machine 24 as possible, so that
the delay caused by the elongation of the hoisting
rope 2 03 is as small as possible and the stopping dis-
tance as short as possible. This placement is also
preferable because the coercivity to the hoisting rope
is minimized. When the elevator car 21 comes up and
reaches the area where it has to be stopped at the
latest, the gripping element 22 9 acting on the ropes
grips the hoisting rope 2 03 and stops the motion of
the rope. The gripping element 22 9 is closed when it
is hit by a guard 230, preferably a buffer, fitted on
the elevator car, whereupon the gripping element 22 9
will stop the motion of the rope. In this situation,
the compensating device 224 no longer works. In addi-
tion, as the traction sheave is further supplying rope
into the hoisting rope portion on the side of the sec-
ond rope tension T2, the gripping element gripping the
rope has the effect that, due to the internal stiff-
ness of the rope, the second rope tension T2 in the
rope portion above the elevator car is reduced so much
that the frictional force between the traction sheave
and the hoisting ropes disappears and the traction
sheave starts slipping, the motion of the elevator car
being simultaneously stopped. The gripping element 22 9
presented in Fig. 2 is so arranged that when the car
starts moving in the downward direction, the gripping
element 22 9 will release the rope, and the compensat-
ing device 224 and therefore the elevator again works
in the normal way. As to the structure of the gripping
element 22 9, it may be e.g. an arrangement comprising
a first part which has been designed to meet the
buffer 23 0 of the elevator car and which, upon meeting
the buffer, is pressed against a second part of the
gripping element, to which the first part is pivotally
connected. As a consequence of this, the set of hoist-
ing ropes is caught between the first part and second

parts of the ,gripping element and its motion is
stopped while the rope portion below the elevator car
is immediately slackened. The gripping element is
preferably fitted in place e.g. in the elevator shaft.
Fig. 3 presents an elevator according to Fig. 2 with
the difference that in the elevator in Fig. 3 the sus-
pension ratio is 6:1. Fig. 3 presents a compensating
device corresponding to that presented in connection
with Fig. 2 and the passage of the hoisting ropes is
implemented in the same way. The difference in Fig. 3
with respect to Fig. 2 is in the equipment used to
prevent and/or stop the motion of the elevator car and
in the part the effect of said equipment is applied
to. In the elevator without counterweight presented in
Fig. 3, the elevator is prevented from being driven up
to the ceiling by means of a gripping element 3 33
whose action is applied to a hoisting rope portion
near the compensating device 324, preferably to a di-
verting pulley 314 placed in the upper part of the of
the elevator shaft, the hoisting ropes being passed
around said diverting pulley and then going further to
the diverting pulley 325 of the compensating device.
When the elevator car 1 comes up and reaches the area
where the motion of the elevator car has to be stopped
at the latest, the gripping element 333 stops the mo-
tion of the rope. The gripping element stops the rope
whose second end is connected to the diverting pulley
325 of the compensating device 324. After the gripping
action of the gripping element 333, the compensating
device 324 no longer works, and consequently the first
rope tension Ti acting over the traction sheave in-
creases and the second rope tension T2 decreases, as a
result of which the hoisting rope portion below the
elevator car is immediately slackened and therefore
the frictional force needed in the machine 3 04 between
the machine 304 and the traction sheave 305 disappears

and the traction sheave 305 starts slipping. The grip-
ping element 333 preferably works automatically, so
that when the elevator car 301 is set in motion in the
downward direction the gripping element 333 releases
the rope and the compensating device of the elevator
again works normally. In Fig. 3 the gripping element
333 is preferably fitted on the ceiling of the eleva-
tor shaft and comprises a first part 334 designed to
meet a stopper 33 0, preferably a buffer mounted on the
elevator car. The first part may comprise a device 32 7
which limits the braking force of the impact of the
elevator car and which can be utilized to influence
the braking speed of the gripping element 333 and
which may also be provided with a second braking
spring 332 which can be utilized to influence the
speed of braking action of the gripping element 333
and its release when the elevator is set in motion in
the downward direction after the action of the grip-
ping element. In addition, the gripping element com-
prises a second part 331, with respect to which the
first part is movably mounted. The first part also
comprises an intermediate beam, on which is mounted a
diverting pulley 314. When the buffer 330 of the ele-
vator meets the first part of the gripping element
333, the movement of the first part can be used to
move diverting pulley 314, which presses the hoisting
rope against the second part 331 of the gripping ele-
ment, the result of which is that the motion of the
rope is stopped and the motion of the elevator is
stopped as described above.
A preferred embodiment of the elevator of the inven-
tion is an elevator without machine room and with ma-
chine above, in which the drive machine has a coated
traction sheave and which elevator has thin and strong
hoisting ropes of substantially round cross-section.
The contact angle of the hoisting ropes on the trac-

tion sheave of the elevator is greater than 18 0° and
is implemented using DW roping in a drive machine hav-
ing a traction sheave and a diverting pulley, in which
drive machine the traction sheave and the diverting
pulley are ready fitted at a correct angle relative to
each other. The drive machine is fitted in place on
the elevator guide rails. The elevator is implemented
without counterweight with a suspension ratio of 8:1
so that both the roping suspension ratio above the
elevator car and the roping suspension ratio below the
elevator car is 8:1, and that the ropes run in the
space between one of the walls of the elevator car and
a wall of the elevator shaft. The elevator has a com-
pensating device that keeps the ratio of the rope ten-
sions T1/T2 equal to about the ratio of 2:1. The com-
pensating device of the elevator comprises at least
one slack rope prevention device for preventing uncon-
trolled slackening of the hoisting ropes and/or uncon-
trolled motion of the compensating device, said slack
rope prevention device being preferably a buffer. The
motion of the elevator is stopped and/or prevented by
increasing the ratio of the first rope tension (T1) to
the second rope tension (T2) , as a consequence of
which the friction between the traction sheave and the
hoisting ropes is removed.
It is obvious to the person skilled in the art that
different embodiments of the invention are not limited
to the examples described above, but that they may be
varied within the scope of the claims presented below.
For example, the number of times the hoisting ropes
are passed between the diverting pulleys in the upper
part of the elevator shaft and those on the elevator
car and between the diverting pulleys in the lower
part of the elevator shaft and those on the elevator
car may vary so that a desired suspension ratio is
achieved both above and below the elevator car. Appli-

cations are generally so implemented that the ropes go
to the elevator car from above as many times as from
below, so that the suspension above the elevator car
and the suspension below the elevator car have the
same suspension ratios. In accordance with the exam-
ples described above, a skilled person can vary the
embodiment of the invention as the traction sheaves
and diverting pulleys, instead of being coated metal
pulleys, may also be uncoated metal pulleys or un-
coated pulleys made of some other material suited to
the purpose.
It is further obvious to the person skilled in the art
that the metallic traction sheaves and rope wheels
used as diverting pulleys in the invention, which are
coated with a non-metallic material at least in the
area of their grooves, may be implemented using a
coating material consisting of e.g. rubber, polyure-
thane or some other material suited to the purpose.
It is obvious to the skilled person that the elevator
of the invention can be implemented using as hoisting
ropes almost any flexible hoisting means, e.g. a
flexible rope of one or more strands, a flat belt, a
cogged belt, a trapezoidal belt or some other type of
belt suited to the purpose. It is also obvious to the
person skilled in the art that, instead of using ropes
with a filler, the invention can be implemented using
ropes without a filler, which are either lubricated or
unlubricated. In addition, it is also obvious to the
skilled person that the ropes may be twisted in many
different ways.
It is also obvious to the person skilled in the art
that the elevator of the invention can be implemented
using other types of roping between the traction
sheave and the diverting pulley/diverting pulleys to

increase the contact angle a than the roping arrange-
ments described above as examples. For example, it is
possible to arrange the diverting pulley/diverting
pulleys, traction sheave and hoisting ropes in other
ways than in the roping examples presented. It is fur-
ther obvious to the skilled person that the elevator
of the invention may also be provided with a counter-
weight, in which elevator, for example, the counter-
weight preferably has a weight below that of the car
and is suspended on separate ropes, the elevator car
is supported partly by the hoisting ropes and partly
by the counterweight and its roping.

WE CLAIM;
1. An elevator, preferably an elevator without machine room, wherein the elevator
car is supported by a set of hoisting ropes comprising one rope or a number of parallel
ropes, and which elevator has a traction sheave that moves the elevator car by means of
the hoisting ropes, and which elevator has rope portions of hoisting ropes going upwards
and downwards from the elevator car, and the rope portions going from the traction
sheave in the direction of the rope portion above the elevator car are under a first rope
tension (T1)and the rope portions going from the traction sheave in the direction of the
rope portion below the elevator car are under a second rope tension (T2), and which
elevator has a compensating device for equalizing and/or compensating the rope tension
and/or rope elongation and/or to render the ratio of the first and the second rope tensions
(T1/T2) substantially constant,
characterized in that the motion of the elevator is prevented and/or stopped by
increasing the ratio of the first rope tension (T1) to the second rope tension (T2).
2. An elevator as claimed in claim 1, wherein the motion of the elevator is stopped
and/or prevented by acting on the compensating device.
3. An elevator as claimed in claim 1 or 2, wherein the motion of the elevator is
stopped and/or prevented by acting on the rope by means of at least one gripping
element.
4. An elevator as claimed in anyone of the preceding claims, wherein the gripping
element acting on the rope has been fitted to prevent motion of the elevator car.

5. An elevator as claimed in claim 3 or 4, in which when the elevator starts moving
downwards after the gripping element has gripped, the gripping element stops acting on
the hoisting rope.
6. An elevator as claimed in anyone of the preceding claims, wherein the gripping
element comprises at least a first part designed to meet a stopper provided on the elevator
car, and a second part, on which the first part is movably pivoted, and in which gripping
element a movement of the first part causes the element to grip the hoisting rope of the
elevator.
7. An elevator as claimed in anyone of the preceding claims, wherein the
compensating device of the elevator comprises one and/or more diverting pulleys.
8. An elevator as claimed in anyone of the preceding claims, wherein both the
number of diverting pulleys on the elevator car that serve to increase the suspension ratio
above the elevator car and from which diverting pulleys the hoisting ropes go upwards
and the number of diverting pulleys on the elevator car that serve to increase the
suspension ratio below the elevator car and from which diverting pulleys the hoisting
ropes go downwards is 1, 2, 3, 4, 5 or even greater.
9. An elevator as claimed in anyone of the preceding claims, wherein the elevator is
an elevator without counterweight.
10. A method for preventing/stopping the motion of an elevator, in which elevator the

elevator car is at least partially supported by a set of hoisting ropes comprising one rope
or a number of parallel ropes, and which elevator has a traction sheave that moves the
elevator car by means' of the hoisting ropes, and which elevator has rope portions of
hoisting ropes going upwards and downwards from the elevator car, and the rope
portions going from the traction sheave in the direction of the rope portion above the
elevator car are under a first rope tension (T1) and the rope portions going from the
traction sheave in the direction of the rope portion below the elevator car are under a
second rope tension (T2), and which elevator has a compensating device for equalizing
and/or compensating the rope tension and/or rope elongation and/or rendering the ratio of
the first and the second rope tensions (T1/T2) substantially constant, characterized in that
the motion of the elevator is prevented and/or stopped by increasing the ratio of the first
rope tension (T1) to the second rope tension (T2).



ABSTRACT


"ELEVATOR"
According to the invention there is provided an elevator, preferably an elevator
without machine room, wherein the elevator car (1) is supported by a set of hoisting ropes
(203) comprising one rope or a number of parallel ropes, and which elevator has a
traction sheave (205) that moves the elevator car by means of the hoisting ropes, and
which elevator has rope portions of hoisting ropes going upwards and downwards from
the elevator car, and the rope portions going from the traction sheave in the direction of
the rope portion above the elevator car are under a first rope tension (T1) and the rope
portions going from the traction sheave in the direction of the rope portion below the
elevator car are under a second rope tension (T2), and which elevator has a compensating
device (224) for equalizing and/or compensating the rope tension and/or rope elongation
and/or to render the ratio of the first and the second rope tensions (T1/T2) substantially
constant, characterized in that the motion of the elevator is prevented and/or stopped by
increasing the ratio of the first rope tension (T1) to the second rope tension (T2).
There is also provided a method for preventing/stopping the motion of the
elevator.

Documents:

01861-kolnp-2006-abstract.pdf

01861-kolnp-2006-claims.pdf

01861-kolnp-2006-correspondence others-1.1.pdf

01861-kolnp-2006-correspondence others.pdf

01861-kolnp-2006-description(complete).pdf

01861-kolnp-2006-drawings.pdf

01861-kolnp-2006-form-1.pdf

01861-kolnp-2006-form-3-1.1.pdf

01861-kolnp-2006-form-3.pdf

01861-kolnp-2006-form-5.pdf

01861-kolnp-2006-gpa.pdf

01861-kolnp-2006-international publication.pdf

01861-kolnp-2006-international seacch authority report.pdf

01861-kolnp-2006-pct form.pdf

01861-kolnp-2006-priorty document.pdf

1861-KOLNP-2006-(20-02-2014)-ABSTRACT.pdf

1861-KOLNP-2006-(20-02-2014)-ANNEXURE TO FORM 3.pdf

1861-KOLNP-2006-(20-02-2014)-CLAIMS.pdf

1861-KOLNP-2006-(20-02-2014)-CORRESPONDENCE.pdf

1861-KOLNP-2006-(20-02-2014)-DESCRIPTION (COMPLETE).pdf

1861-KOLNP-2006-(20-02-2014)-DRAWINGS.pdf

1861-KOLNP-2006-(20-02-2014)-FORM-1.pdf

1861-KOLNP-2006-(20-02-2014)-FORM-2.pdf

1861-KOLNP-2006-(20-02-2014)-OTHERS.pdf

1861-KOLNP-2006-(20-02-2014)-PETITION UNDER RULE 137.pdf

1861-KOLNP-2006-(21-02-2014)-CORRESPONDENCE.pdf

1861-KOLNP-2006-ABSTRACT.pdf

1861-KOLNP-2006-CLAIMS.pdf

1861-KOLNP-2006-DESCRIPTION (COMPLETE).pdf

1861-KOLNP-2006-DRAWINGS.pdf

1861-kolnp-2006-form 18.pdf

1861-KOLNP-2006-FORM 2.pdf

1861-KOLNP-2006-PETITION UNDER RULE 137.pdf

1861-KOLNP-2006-REPLY TO EXAMINATION REPORT.pdf

1861-KOLNP-2006-SPECIFICATION-COMPLETE.pdf

abstract-01861-kolnp-2006.jpg


Patent Number 265177
Indian Patent Application Number 1861/KOLNP/2006
PG Journal Number 07/2015
Publication Date 13-Feb-2015
Grant Date 12-Feb-2015
Date of Filing 04-Jul-2006
Name of Patentee KONE CORPORATION
Applicant Address KARTANONTIE 1, FI-00330 HELSINKI,
Inventors:
# Inventor's Name Inventor's Address
1 AULANKO ESKO KAENKATU 6 C 33, FI-04230 KERAVA
2 MUSTALAHTI JORMA RAIVAAJANTIE 13, FIN-05620 HYVINKAA
PCT International Classification Number B66B 5/12,B66B 7/06
PCT International Application Number PCT/FI2005/000154
PCT International Filing date 2005-03-17
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 20040461 2004-03-26 Finland