Title of Invention

INJECTION DEVICE COMPRISING SEVERAL COUPLING MECHANISMS

Abstract The invention relates to an injection device comprising a first coupling mechanism between a drive unit (210, 230, 270, 310) and a delivery unit (90, 110, 120, 130, 140, 180) and a second coupling mechanism between a dosing unit (60) and the drive unit. The drive unit is tensioned by the rotation of the dosing unit. Said dosing unit is preferably fixed in relation to the housing by means of a double slip coupling. When the drive unit is tensioned, the first coupling mechanism is disengaged and the second coupling mechanism is engaged. A trigger device (80) triggers the administration process. Firstly, the first coupling mechanism is engaged and the second coupling mechanism is then disengaged. The device can optionally be provided with a third coupling mechanism, which only releases the delivery unit after said engagement and disengagement.
Full Text FORM 2
THE PATENT ACT 1970 {39 of 1970)
The Patents Rules, 2003 COMPLETE SPECIFICATION See Section 10, and rule 13)
TITLE OF INVENTION
INJECTION DEVICE COMPRISING SEVERAL COUPLING MECHANISMS



APPLICANT(S)
a) Name
b) Nationality
c) Address

TECPHARMA LICENSING AG SWISS Company BRUNNMATTSTRASSE 6, CH-34 00 BURGDORF, SWITZERLAND

3. PREAMBLE TO THE DESCRIPTION
The following specification particularly describes the invention and the manner in which it is to be performed : -


TECHNICAL FIELD
The present invention relates to a device for administering a fluid product. The device can be developed as an injection device for the injection of an adjustable dose of the product and in particular can take the form of an injection pen, i.e. a compact injection device in pen form.
PRIOR ART
A large number of injection devices are known from the prior art for the dosed administering of medicaments such as insulin, growth hormones or osteoporosis drugs, which must be administered regularly. Such devices are on the one hand intended to distribute reliably and precisely a dose which is able to be pre-set. On the other hand, they are intended to be reliable in operation and user-friendly to a high degree. This applies all the more because they are generally operated by the patient himself.
The medicament can be housed in an exchangeable carpule, which is able to be inserted into a carpule holder. The latter can then be fastened to a housing of the injection device, e.g. by a screw connection or a bayonet connection. For distribution, a product stopper in the carpule is pushed forward by a delivery arrangement with a delivery element in the form of a piston rod.
In particular, compact, pen-shaped administering devices are known, in which the distribution takes place automatically after a first triggering ("power-assisted pens'). The dose in such devices is generally pre-set by a rotation on a dosing button. A drive is present in the device, e.g. a spring drive, which is tensioned on setting of the dose. The device is triggered by pressing in a triggering button, which can be identical to the dosing button. In so doing, the drive generates a drive movement, e.g. in the form of a rotary movement, which is converted into an advancing
-2-

movement of the piston rod. In the case of a drive by a rotary movement, the piston rod is mostly constructed as a threaded rod on which a drive nut runs.
Injection pens are disclosed in DE-A10 2004 063 644. These comprise a housing with a reservoir for the product and a delivery arrangement for delivering the product. The delivery arrangement is able to be driven by a drive arrangement. In an embodiment, the drive arrangement has a torsion spring and a coupling input member which is able to be driven rotatably thereby, which is able to be coupled with a coupling output member of the delivery arrangement. A triggering element, which at the same time also serves as a dosing member, is connected with the drive arrangement so that the drive arrangement is tensioned by a rotation of the triggering element. With this tensioning movement, the coupling which is formed by the coupling input member and the coupling output member is uncoupled, i.e. the tensioning movement is only transferred to the drive arrangement, but not to the delivery arrangement. On tensioning, the drive arrangement is prevented from turning back relative to the housing by a ratchet connection with an element which is fixed to the housing. By axial pressing in of the triggering element, firstly the connection between the triggering element and the drive arrangement is released, so that the triggering element can idle. Then the coupling is coupled and a connection is thus produced between the drive arrangement and the delivery arrangement. Finally, the ratchet connection between the drive arrangement and the housing is released, so that the drive arrangement can now carry out a rotation and can thereby drive the delivery arrangement.
A disadvantage in this arrangement is that when the triggering element is not pressed in completely, only the connection between the triggering element and the drive arrangement is released, without, however, an administering being triggered. This is an undefined operating state. In this state, the user can turn the triggering element, which in fact at the same time also serves as dosing member, without this having any influence on the administering. Such an undefined state can lead to operating errors; such a state is therefore to be avoided. Furthermore, three phases
-3-

are necessary in this arrangement in order to trigger an administering: (a) releasing of the triggering- and dosing element; (b) coupling of the coupling for the connecting of drive arrangement and delivery arrangement; and (c) releasing of the ratchet connection between drive arrangement and housing. None of these phases can be omitted without destroying the functionality of the device. In actual terms, even further connections are produced and released in the known injection device. Accordingly, this requires a relatively complicated structure of the injection device.
REPRESENTATION OF THE INVENTION
It is therefore an object of the present invention to indicate an injection device which has a simpler structure and a simplified movement sequence on the triggering of an injection. A further object is to indicate an injection device in which undefined operating states of the above-mentioned type are avoided.
These problems are solved by the subject matter of Claim 1. Advantageous further developments are indicated in the dependent claims.
A device for administering a fluid product is therefore proposed, which has the following units:
• A housing;
• a delivery arrangement for delivering the product from a reservoir, wherein the delivery arrangement comprises a rotatable input member and a delivery element which is movable along a thrust axis, which delivery element is able to be driven, in particular is able to be advanced linearly, due to a rotation of the input member,
• a drive arrangement for producing a drive rotational movement about the thrust axis relative to the housing, wherein the drive arrangement is able to be tensioned by a tensioning rotational movement,
• a rotatable dosing arrangement for setting a dose of the product which is to be administered and for tensioning the drive arrangement; and
-4-

• a triggering arrangement, which is movable from a position of rest into a
triggering position for triggering an administering.
The device comprises two couplings. Each of the couplings can assume a coupled and an uncoupled position.
• A first coupling is formed between the drive arrangement and the input member of the delivery arrangement. In a coupled position of this coupling, the drive arrangement and the input member of the delivery arrangement are connected with each other so as to be locked against relative rotation, whereas in an uncoupled position these parts are detached from each other.
• A second coupling is formed between the dosing arrangement and the drive arrangement. In a coupled position of this coupling, the dosing arrangement and the drive arrangement are connected with each other so as to be locked against relative rotation and in an uncoupled position they are detached from each other.
The couplings are operable by the triggering arrangement. In the position of rest of the triggering arrangement, the first coupling assumes its uncoupled position and the second coupling its coupled position. In this way, a rotation of the dosing arrangement is able to be transmitted to the drive arrangement, but not to the delivery arrangement. Thereby, a tensioning of the drive arrangement is made possible by a rotation of the dosing arrangement without, in so doing, the delivery arrangement being moved. The dosing arrangement is preferably able to be fixed here detachably so as to be secure with regard to torque with respect to the housing, preferably by means of a ratchet connection, i.e. an elastically detachable detent connection in at least one direction (the dosing direction) by rotation of the dosing arrangement, which detent connection engages in several predefined angle positions.
A movement of the triggering arrangement from the position of rest into the triggering position thereafter brings about firstly a coupling of the first coupling and
-5-

thereafter or simultaneously an uncoupling of the second coupling. The coupling of the first coupling causes the drive arrangement to be coupled with the delivery arrangement. However, no drive movement is possible yet, because the drive arrangement is still held by means of the second coupling by the dosing arrangement. Only after the second coupling is uncoupled is the drive arrangement released, and the resulting drive movement is able to be transmitted to the delivery arrangement.
The proposed arrangement therefore makes possible a defined interaction of the dosing arrangement, the drive arrangement and the? delivery arrangement. By the first coupling being firstly coupled and the second coupling only then being released, it is avoided that undefined operating stated can occur, in which one of the arrangements is rotatable without this having any effect on the operation of the device. Furthermore, the movement sequences are simplified, because in essence only two movement phases are necessary in order to trigger an administering.
When the dosing arrangement is able to be fixed by means of a ratchet connection relative to the housing, this is preferably constructed #s a double slip coupling which makes possible a manual rotation of the dosing arrangement relative to the housing both in a first direction of rotation to increase the dose which is to be administered and also in an opposite direction of rotation, to reduce the dose. In this way, a very simple dose correction is possible. For this, the ratchet connection preferably has a spring-loaded toothing between an element which is locked against relative rotation with respect to the dosing arrangement and an element which is locked against relative rotation with respect to the housing. As this toothing must absorb the torque of the drive arrangement in the tensioned state of the injection device, the toothing is preferably formed asymmetrically, so that for a detachment of the ratchet connection on turning back the dosing arrangement contrary to the dosing direction a greater torque is necessary than for a releasing of the connection in the dosing direction. As a whole, it can thus be achieved that the user of the injection device when increasing the dose and in the case of a dose correction must apply a comparable torque.
-6-

In an actual embodiment, the ratchet connection is formed by an axial toothing of two ratchet elements, i.e. the ratchet connection comprises two ratchet elements which are axially opposite each other, on the end faces of which teeth are constructed. Here, a first of the ratchet elements can be formed as an axially movable ratchet ring which is spring-loaded in the direction of the second ratchet element, the ratchet ring being arranged so as to be locked against relative rotation with respect to the dosing element, and the second ratchet element can be connected so as to be locked against relative rotation and displacement with respect to the housing. In order to save space, the ratchet ring can be spring-loaded by a plurality of springs arranged along the periphery of the ratchet ring. A smaller space requirement thereby results than in an embodiment in which the ratchet ring is spring-loaded for example by a helical spring extending around the thrust axis.
In order to increase the reliability in operation, an optional third coupling can be provided. This is preferably constructed between the housing and the delivery arrangement. In a coupled position, the delivery arrangement is connected so as to be locked against relative rotation with respect to the housing (directly or via an element which is locked against relative rotation with respect to the housing). Thereby, the third coupling in the coupled position prevents any rotary movement of the delivery arrangement and an unintentional administering of the product which is caused thereby. In an uncoupled position, on the other hand, the delivery arrangement and the housing are detached from each other, so that in this position a movement of the delivery arrangement and hence an administering of the product becomes possible. In the position of rest of the triggering arrangement, the third coupling assumes its coupled position and thus prevents an unintentional movement of the delivery arrangement. A movement of the triggering arrangement from the position of rest into the triggering position firstly brings about a coupling of the first coupling, thereafter an uncoupling of the second coupling and finally an uncoupling of the third coupling. Thereby, the third coupling constitutes an effective security against an unintentional administering, which is then only released when the device is otherwise completely ready to bring about an administering.
-7-

The administering preferably takes place by the triggering arrangement being pushed axially with respect to the housing in a distal direction. For this, the triggering arrangement is preferably movable along the thrust axis between the position of rest and the triggering position. Each of the couplings comprises a coupling input member and a coupling output member. The triggering arrangement, through its axial displacement along the thrust axis, brings about a relative displacement of these members, whereby these are able to be brought into engagement or out of engagement with respect to each other. The triggering arrangement is preferably constructed as a push button which is able to be pushed into the housing along the thrust axis. However, it is also conceivable that the triggering arrangement comprises, for example, a sleeve which surrounds the proximal end of the housing at least partially along the peripheral direction.
Each of the couplings is preferably formed by longitudinal grooves and longitudinal ribs on radial inner or outer surfaces of the respective coupling input member or coupling output member. These longitudinal grooves and longitudinal ribs can be brought into and out of engagement in the manner of a groove-and-tongue connection by reciprocal longitudinal displacement of the coupling input members and coupling output members. Such an arrangement is very space-saving compared with other conceivable forms, e.g. toothings on the end face or oblique toothings, and it makes it possible that for example a coupling input member extends both in proximal and also in distal direction beyond the corresponding coupling output member.
In a preferred embodiment, the entire drive arrangement is arranged so as to be displaceable along the thrust axis, so that the movement of the triggering arrangement from the position of rest into the triggering position brings about a distal displacement of the drive arrangement out of its initial position. This makes possible a compact development of the injection device. Preferably, the drive arrangement is spring-loaded here along the thrust axis in proximal direction, in order to ensure an automatic return of the drive arrangement into its initial position
-8-

at the end of the administering. Further springs for this purpose can be dispensed with, because the spring-loaded drive arrangement at the same time also pushes the triggering arrangement back into the position of rest.
The device preferably comprises a detachable receptacle holder to hold a reservoir with the product. The delivery element is movable along the thrust axis between a proximal initial position and a distal final position. A dose limiting element is movable between an initial position and a dose limiting position and cooperates with the dosing arrangement such that it prevents a setting of a dose, the administering of which would require a movement of the delivery element beyond its distal final position, by it forming a stop in the dose limiting position. As the distal end position of the delivery element generally corresponds to a situation in which the reservoir is completely emptied except for an unavoidable residual amount, the dose limiting element therefore prevents a dose from being set on the dosing arrangement which exceeds the available amount of the product. With a change of reservoir, the delivery element automatically moves into the distal final position. For this, the device comprises a spring element which produces a spring force which acts on the delivery element along the thrust axis in the distal direction with respect to the housing and brings about a movement of the delivery element into its distal final position, when the receptacle holder is detached from the housing. At the same time, the dose limiting element is automatically brought into its dose limiting position. For this, the dose limiting element, at least in a state in which the receptacle holder is detached from the housing, is coupled with the delivery element such that the movement of the delivery element into its distal final position brings about a movement of the dose limiting element into its dose limiting position. After the receptacle holder has been detached from the housing, the delivery element is therefore in its distal final position and the dose limiting element is in its dose limiting position. When, in this state, the delivery element is moved in the direction of its proximal final position, the dose limiting element continues to remain coupled with the delivery element, so that this movement of the delivery
-9-

element brings about a proportional movement of the dose limiting element in the direction of its initial position.
On insertion of a new reservoir, the stopper of the reservoir will push the delivery element into the housing, and namely by an amount which corresponds precisely to the available amount of product in the reservoir. Through the coupling with the dose limiting element, this is also moved by a corresponding amount, so that after the insertion of the reservoir the dose limiting element will lie away from its dose limiting position by an amount which corresponds precisely to the available amount of product. In this way, it is ensured on the one hand that a correct administering takes place at any time, even when the reservoir, on insertion, was only partially filled, and that the dose limiting arrangement also functions correctly in this case.
In order to make this possible, preferably the couplings, in a state in which the receptacle holder is detached from the housing, are uncoupled.
The delivery element is preferably in a thread engagement with the input member of the delivery arrangement such that a movement of the delivery element into its distal final position leads to a rotary movement of the input member. The dose limiting element is then preferably coupled with the input member such that the rotary movement of the input member brings about a movement of the dose limiting element into its dose limiting position.
The delivery element can in particular have an internal thread, the thread axis of which runs along the thrust axis. The input member then comprises an external thread which is in engagement with the internal thread. Thereby, the outer side of the input member can be developed so that it can be simply sealed with respect to the housing, in particular so that it has a substantially smooth region. In addition, the appearance of the injection device can thus be improved for a user.
-10-

The dose limiting element can be constructed in a sleeve-shape or a ring-shape. It is preferably arranged locked against rotation and displaceable along the thrust axis relative to the input member and is in engagement via a thread with a further element such that a rotation of the dose limiting element leads at the same time to a displacement of the dose limiting element along the thrust axis, as long as the further element is stationary with respect to the housing.
This further element is preferably a part of the drive arrangement which carries out the drive rotary movement during the administering. By the first coupling being coupled during the administering, no movement of the dose limiting element along the thrust axis takes place during the administering, because both the input member of the delivery arrangement and also the drive arrangement rotate at the same angular speed, whereas, however, in the state in which the receptacle holder is detached from the housing and in which therefore the first coupling is released, a thrust of the delivery element also leads to a displacement of the dose limiting element.
In a preferred development, the device comprises a carrier element which is rotatably arranged relative to the housing. The carrier element is guided with respect to the housing such that on fastening of the receptacle holder on the housing and on detaching the receptacle holder from the housing it is entrained by the receptacle holder and is set into a movement which comprises a rotary movement about the rotation axis. In the holding position of the receptacle holder, a detent element, preferably spring-loaded axially by a spring element, then brings about a detachable detent connection, by which the carrier element is fixed relative to the housing. This, in turn, then holds the receptacle holder. The receptacle holder is therefore fixed indirectly, via the carrier element, relative to the housing. Thereby, a great freedom is made possible in the design of the receptacle holder and of the detent element and spring element.
-11-

In an advantageous embodiment, the device comprises a guide element which is arranged so as to be locked against relative rotation with respect to the housing, which guide element can be constructed in particular as a guide sleeve. This guide element can be rigidly connected with the housing, in particular can be produced integrally therewith, or it can be displaceable axiaily with respect to the housing. The carrier element, which can likewise be formed as a sleeve and can then be designated as a bayonet sleeve, is then connected rotatably with the guide element. The spring element and the detent element are preferably arranged so as to be locked against relative rotation with respect to the guide element, and in the holding position of the receptacle holder the detent element is engaged detachably with the carrier element. In particular, the guide element can be connected so as to be axially displaceable with respect to the housing and the carrier element can be in fact connected rotatably, but axially secure as regards displacement, with the guide element. Through this configuration, it is made possible that further parts of the device, arranged in the housing, which are connected with the guide element, are displaced axially, when the receptacle holder is detached from the housing. Thereby, it can be achieved in particular that the couplings which are described above are uncoupled.
Preferably, the carrier element is guided here with respect to the housing such that on fastening of the receptacle holder to the housing it is entrained by the receptacle holder and is set into a combined rotational movement about the rotation axis and translation movement along the rotation axis in a proximal direction.
Preferably the carrier element is movable between two defined final positions, and the detent element brings about in both positions a detachable detent connection, by which the carrier element is fixed relative to the housing. The carrier element assumes its first final position here, when the receptacle holder assumes its holding position, and it assumes its second final position when the receptacle holder is removed from the housing. Preferably, the detent element is detachably engaged both in the first final position and also in the second final position directly with the carrier element.'
-12-

The carrier element is preferably guided in at least one guide slit relative to the housing, i.e. on the actual housing itself or on an element which is fixed to the housing, in particular by one or more corresponding pins. Likewise, on fastening to the housing, the receptacle holder is guided in at least one guide slit, in the manner of a bayonet connection, relative to the housing.
The detent element is preferably constructed in the form of a ring which extends around the rotation axis and in particular around the thrust element. Suitable detent noses can be constructed on the ring. This detent element can be axially spring-loaded by a separate spring element. This may be, for example, a helical spring which is subjected to pressure, or another type of elastic element. However, the spring element preferably has the form of a ring which extends around the rotation axis and is curved about an axis perpendicularly to the rotation axis, so that the spring force is produced by a compressing of the spring element along the rotation axis.
The detent element is preferably constructed integrally with the spring element. This leads to a particularly simple development. In particular, the detent element can be constructed as a projection, protruding in the direction of the rotation axis, on the spring element. This is particularly advantageous when the spring element, as described above, has the form of a curved ring.
The device can further have at least one ball bearing which absorbs forces which are transmitted between the delivery element and the housing. By a ball bearing being provided, frictional losses which are caused during the administering owing to the transmission of forces between the delivery element and the housing, are largely minimized.
The ball bearing is advantageously arranged such that it absorbs (axial) forces acting along the thrust axis, which are transmitted from the delivery element (preferably locked with respect to rotation relative to the housing) via the rotatable element to
-13-

the housing, i.e. which act between the rotatable element and the housing. Expressed in general terms, axial forces, in particular acting in proximal direction, are therefore transmitted between the delivery element and the housing via a rotatable connection which is secure with respect to displacement in axial direction. For this, in the prior art, generally a sliding connection is provided between the rotatable element and the housing or an element which is fixed to the housing. In the present embodiment, on the other hand, at least one ball bearing is provided, which is preferably arranged between the rotatable element or an element connected therewith on the one hand, and the housing or an element which is fixed to the housing at least during the administering, on the other hand. Thereby, frictional losses during the rotation of the rotatable element can be avoided.
Preferably, two ball bearings are present, which are preferably arranged so that they can absorb forces along the thrust axis both in a proximal direction and also in the distal direction opposite thereto, i.e. the direction in which the thrust takes place. Axial forces in the proximal direction occur generally during the administering, whereas axial forces in the distal direction can occur in particular when the delivery element is spring-loaded in the distal direction, as is the case in a preferred embodiment. The spring serving for this is preferably so weak that it does not cause any ejection of the product out of the reservoir. Rather, it serves, in a change of reservoir, to automatically bring the delivery element into its distal final position, i.e. to extend it completely, when the reservoir is removed from the housing. When the delivery element is in a suitable connection with the rotatable element, this leads to the rotatable element being set into a rotation when the delivery element moves out due to the spring force. In order to keep the spring force, which is necessary for this, small, a ball bearing is particularly advantageous, because with the extending of the delivery element, it minimizes the frictional forces acting then.
-14-

BRIEF DESCRIPTION OF THE DRAWINGS

Preferred embodiments of the invention are described below with the aid of the drawings, in which are shown:
Fig. 1 a perspective exploded view of an injection device according to a
first embodiment;
Fig- 2
Fig. 3
Fig. 4
Fig. 5A
Fig. 5B
Fig. 6
Fig. 7
Fig. 8
Fig. 9A
Fig. 9B
Fig. 9C
Fig. 10
Fig. 11A
Fig. 11B
Fig. 12A
Fig. 12B
Fig. 12C
a longitudinal section through the injection device of Fig. 1; an enlarged cut-out of Fig. 2;
a longitudinal section through an arrangement of a guide sleeve and of a coupling sleeve in the injection device of Fig. 1; a top view onto a ball bearing ring; a sectional view of the ball bearing ring in the plane A-A; a perspective view of a coupling sleeve;
a longitudinal section through selected parts of the injection device of Fig. 1;
a perspective illustration of a bayonet sleeve; a top view onto a bayonet spring; a side view of the bayonet spring of Fig. 9A; a perspective view of the bayonet spring of Fig. 9A; a longitudinal section through selected parts of the injection device of Fig. 1;
a longitudinal section through selected parts of the injection device of Fig. 1 with a dose limiting ring in its final position; a longitudinal section through selected parts of the injection device of Fig. 1 with the dose limiting ring in its initial position; a perspective view of a coupling shaft with a dose limiting ring of the injection device of Fig. 1; the parts of Fig. 12A in an exploded view;
the coupling shaft of Fig. 12A in a perspective view from another direction of view;
-15-

Fig. 13 an exploded view of an arresting sleeve, a coupling spring and a
support ring;
Fig. 14 a perspective view of selected parts of the injection device of Fig. 1;
Fig. 15 a perspective exploded view of the proximal end of the injection
device of Fig. 1;
Fig. 16 a longitudinal section through the injection device of Fig. 1 in the
initial position;
Fig. 17 the longitudinal section of Fig. 16 after a first increase of dose up to
half the maximum dose;
Fig. 18 the longitudinal section of Fig. 16 after a first increase of dose up to
the full maximum dose;
Fig. 19 the longitudinal section of Fig. 16 after a first triggering and a second
increase of dose;
Fig. 20 a longitudinal section through the injection device of Fig. 1 after a
complete emptying of the carpule;
Fig. 21 a longitudinal section through an injection device according to a
second embodiment.
DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
By means of Figures 1 and 2, firstly the basic structure and the basic operation of an injection device according to the invention are explained, before for a first embodiment the structure of the device and the mode of operation of the dosing mechanism are explained in detail with the aid of Figures 3 to 20. A second embodiment is then discussed with the aid of Fig. 21.
Basic structure and operation
Fig. 1 shows an injection device in the form of an injection pen in a perspective exploded view. Fig. 2 shows the device in longitudinal section. The following description relates to the device in the assembled state, as is illustrated in Fig. 2.
-16-

The injection device has a housing sleeve 20 in which a mechanism is housed for setting and distributing a dose. The housing sleeve 20 has substantially the form of a circular cylinder and hereby defines a longitudinal axis. A receptacle holder in the form of a carpule housing 30 is detachably fastened to a distal end of the housing sleeve 20 by means of a bayonet connection which is described in further detail below. This receives a receptacle in the form of a carpule 40 with a fluid medicament, in which a stopper 41 is displaceably guided. A medicament reservoir R of changeable volume is thereby delimited inside the carpule. Instead of a carpule, a different receptacle can also be present, the volume of which is changeable, e.g. a receptacle with walls folded in a concertina-like manner in the manner of a bellows. The content of the carpule 40 can be monitored through an elongated viewing window 34 in the carpule sleeve 30. A needle holder 31 is screwed on the distal end of the carpule sleeve 30, which needle holder 31 carries a hollow needle (cannula) 32, serving as injection needle, the proximal end of which projects through a sealing septum into the medicament reservoir R, A removable needle protection sleeve 33 surrounds the forwardly projecting region of the needle 32 and protects a user from being pricked accidentally. A protective sleeve 10, the distal end of which is permanently closed by a protective cap 50, is pushed over the carpule sleeve 30. A holding ring 11 with detent arms 12 extending in proximal direction is mounted inside the protective sleeve 10. The ends of the detent arms 12 are detachably engaged with the carpule sleeve 30. Whilst the invention is described here by means of an injection device which has a needle 32, it is also conceivable that the injection device has several needles or no needle, as in a jet injector.
At the proximal end of the housing sleeve 20, a dosing sleeve 60 is rotatably arranged with a push button 80 held therein. The dosing sleeve serves for the setting of a dose which is to be distributed from the medicament reservoir R and for the tensioning of a drive arrangement with a drive element in the form of a spiral spring 310, acting as a torsion spring, which is only indicated in the drawings. The dose which is set is displayed on a display drum 70 and can be read through a window 21 in the housing sleeve 20 which is covered by a transparent covering 22. A correcting
-17-

(reduction) of the set dose is possible in a simple manner by turning back the dosing sleeve 60. It will be explained in further detail below, with reference to the further figures, how this setting is made possible.
With reference to these parts, the following directions can be defined, which will be referred to consistently below: The distal direction is the direction in which the adrninistering takes place, i.e. it points along the longitudinal axis from the push button 80 in the direction of the hollow needle 32. The proximal direction is accordingly defined as the opposite direction. If reference is made to a direction of rotation (clockwise, anticlockwise), this means the direction of rotation which one observes when one views along the longitudinal axis in distal direction.
After the setting of the dose, the hollow needle 32 is pierced through the skin of the patient and a distribution of the dose is triggered by the user pushing the push button 80 into the dosing sleeve 60. A rotary movement is produced by the drive arrangement via a mechanism which is described in detail below, this rotary movement being converted into an advancing of a delivery element in the form of a thrust sleeve 90 in distal direction. The thrust sleeve 90 pushes the stopper 41 of the medicament carpule 40 by the set amount in distal direction via a thrust flange 100 arranged at its distal end, whereby the distribution of the medicament is brought about out of the reservoir R. The thrust sleeve 90 therefore acts as a piston rod for the piston which is formed by the thrust flange 100 and the stopper 41. After the end of the administering, the user releases the push button 80 again. During the advance of the thrust sleeve 90, the display drum is entrained by the drive arrangement such that it returns to its zero position in the course of the distribution. The injection pen is thereby immediately ready for the next dose setting.
When the medicament in the medicament reservoir R is running low, i.e. the thrust sleeve 90 is almost completely extended, this is detected by a dose limiting arrangement in the injection pen, which is described in further detail below. The dose limiting arrangement allows the user to only set as a maximum the remaining
-18-

available residual dose. In a subsequent carpule change, the dose limiting arrangement and also the display drum 70 automatically return into the initial state. No manual resetting is therefore necessary.
The structure and mode of operation of the mechanism are described in detail below.
Structure of the Mechanism
Fig. 3 shows an enlarged illustration of the rear (proximal) region of the injection device of Fig. 1. The structure of this region will now be described in detail substantially from the interior outwards.
The thrust sleeve 90 is mounted in a guide sleeve 110, arranged locked against relative rotation with respect to the housing and displaceably, again locked against relative rotation and displaceably in longitudinal direction. For this, the thrust sleeve 90 has at its proximal end several radially outwardly projecting guide cams 91 which are guided in longitudinal grooves, complementary thereto, on the inner side of the guide sleeve 110.
The guide sleeve 110 can be seen particularly well in Fig. 4, which illustrates the cooperation of the guide sleeve with further parts. The guide sleeve 110 has at its distal end a radially outwardly projecting, circumferential ring flange 111 with radial bores 112. A ring-shaped bearing holder 130 is pushed from the proximal side via the guide sleeve 110, surrounds the ring flange 111 radially and is connected rigidly therewith via radial cylinder pins which are not illustrated in the drawings.
A coupling sleeve 120 is rotatably mounted between the ring flange 111 of the guide sleeve 110 and an inwardly projecting shoulder 132 of the bearing holder 130. As is described in further detail below, the coupling sleeve 120 is connected via a threaded rod 180 with the thrust sleeve 90 and therefore forms a part of a delivery arrangement, which is driven by a rotary movement and brings about a thrust of the
-19-

delivery element in the form of the thrust sleeve. The coupling sleeve 120 therefore absorbs considerable axial forces in operation, which are transmitted via its bearing onto the guide sleeve 110, the bearing holder 130, the mechanism holder 150 and therefore finally to the housing.
In order to construct the bearing so as to be as low-loss as possible, the bearing takes place by means of ball bearings. For this, a first ball bearing ring 140 is provided between the flange 111 of the guide sleeve and a radially encircling flange 124 of the coupling sleeve 120. A further such ball bearing ring 140 is arranged between the flange 124 and an end face of the bearing holder 130.
The ball bearing ring 140 is illustrated in detail in Figures 5A and 5B. It carries a plurality of bearing balls 141 (twelve, here). These run, as can be seen in Fig. 3, in flat, circular grooves which are formed in both end faces of the radial flange 124 of the coupling sleeve 120, in the corresponding end face of the flange 111 of the guide sleeve 110 and in the end face of the bearing holder 130.
The coupling sleeve 120 is illustrated in Fig. 6 together with the ball bearing rings 140 (but without balls 141). As can be seen particularly well here, on the cylindrical sleeve body 121 a plurality of longitudinal ribs 122 are formed, which extend over a considerable part of the length of the sleeve body in longitudinal direction up to its proximal end. Corresponding grooves are present therebetween. From a thickening 123 the flange 124 follows towards the front, which adjoins the ball bearing rings 140 on both sides.
There is illustrated in Fig. 7 how the unit of guide sleeve 110 and bearing holder 130 is held in a sleeve-shaped mechanism holder 150 so as to be locked against relative rotation, but displaceably in longitudinal direction.
The mechanism holder 150 has a distal section 151 with increased internal and external diameter and a proximal section 152 with a somewhat smaller internal and
-20-

external diameter. These two sections are connected by a step 153. The outer side of the distal section 151 is held rigidly in the housing sleeve 20. Thereby, the entire mechanism holder 150 is therefore also immovable with respect to the housing, therefore forming functionally a part of the housing.
Adjoining the step 153, at least two longitudinal slits 154 are formed in the mechanism holder 150. Pins, which are not illustrated in Fig. 7, are inserted in the bearing holder 130. These project radially beyond the bearing holder 130 and into the longitudinal slits 154 of the mechanism holder. Hereby, the bearing holder 130 and the guide sleeve 110, which is securely connected therewith, are guided displaceably between a distal and a proximal final position and so as to be secured with regard to rotation in the mechanism holder 150. Towards the proximal end, on the outer covering surface of the mechanism holder 150, an external thread 157 is formed. Several longitudinal grooves 158 are formed in this region on the inner surface.
In distal direction, a bayonet sleeve 160 adjoins the guide sleeve 110 and the bearing holder 130, which is also illustrated in Fig. 8. It is held on the bearing holder 130 in axial direction and is rotatable with respect thereto. With an inwardly projecting ring flange 161 it supports the unit of guide sleeve 110 and bearing holder 130, with coupling sleeve 120 held therein, in the distal direction. The bayonet sleeve 160 has two arms 162 projecting axially in the distal direction and lying diametrically opposite each other, which arms 162 have radial openings 163. Radially outwardly projecting pins are inserted into these openings, which pins run in two guide slits 155 of the mechanism holder 150 acting as connecting link guides (positive guides). These guide slits 155 are developed so that the bayonet sleeve 160, with an anticlockwise rotation (in the sense of the definition indicated above, i.e. on observation along the longitudinal axis in distal direction) is compulsorily also moved axially in the proximal direction. In this way, the unit of guide sleeve 110, bearing holder 130 and coupling sleeve 120 is moved in proximal direction. Vice versa, with a rotation of the bayonet sleeve 160 clockwise, this unit moves in the distal direction. Parallel to the guide slits 155, a further pair of guide slits 156 runs, in
-21-

order to receive radial pins 36 of a locking region 35 of the carpule sleeve 30 (cf. Figures 1 and 3). On introduction of the carpule sleeve 30 into the housing, the carpule sleeve is therefore also subject to a positive guidance, so that the carpule sleeve 30 performs a combined rotary movement and displacement. The carpule sleeve 30 is developed here so that on its movement it is coupled with the arms 162 of the bayonet sleeve 160 and entrains the bayonet sleeve 160.
The guide slits 155 are of finite length and delimit the movement of the bayonet sleeve between a distal and a proximal final position. In Fig. 7 the proximal final position is illustrated. In particular, the guide slits 155 allow a rotation of the bayonet sleeve through 90 degrees between these positions.
In order to fix the bayonet sleeve detachably in its two final positions so as to be locked against relative rotation with respect to the guide sleeve 110 and hence with respect to the housing sleeve 20, a bayonet spring 170 is arranged between the bayonet sleeve 160 and the guide sleeve 110. This is illustrated in detail in Figures 9A to 9C. The bayonet spring 170 has a substantially flat and ring-shaped base body 171 acting as a spring element. Two diametrically opposite, axially flatly projecting bulges or projections 172 protrude out from this base body as detent elements or detent cams axially in the distal direction. Two diametrically opposite flat tongues 173 protrude inwards and come to lie in corresponding flat recesses of the guide sleeve 110. Thereby, the bayonet spring 170 is held, so as to be secured with regard to torsion, on the guide sleeve 110. As can be seen from Fig. 9B, the base body 171 is bent slightly about an axis perpendicularly to the longitudinal axis, and namely such that the curvature mid-point lies on the same side of the bayonet spring as the projections 172 (i.e. distal). Hereby, the bayonet spring 170 is pre-stressed between the guide sleeve 110 and the bayonet sleeve 160 permanently such that the projections 172 are pressed in distal direction against the corresponding counter-surface on the ring flange 161. In this counter-surface, four depressions are present which are arranged at intervals of 90 degrees about the longitudinal axis. In the proximal final position, the projections 172 come to lie in a first pair of these
-22-

depressions, whereas in the distal final position, in which the bayonet sleeve is turned through 90 degrees, they are held in the second pair of the depressions. Thereby, two defined detent positions are produced, in which the bayonet sleeve 160 engages via the bayonet spring 170 with the projections 172 detachably with the guide sleeve 110. In both positions, firstly a certain force must be overcome, in order to move the bayonet sleeve in the direction of the respective other final position again. The depressions can be distinctive differently, e.g. of different depth, so that a different releasing force is necessary in the two detent positions.
In one detent position, the carpule sleeve 30 is held via its coupling with the bayonet sleeve 160 so as to be secure with regard to rotation and displacement on the guide sleeve 110 and hence finally oh the housing. In the other detent position, the carpule sleeve 30 is detached from the housing. In this position, the bayonet sleeve 160 is again engaged with the guide sleeve 110 and is thereby fixed on the housing 20 so as to be secure with regard to rotation and displacement. In this way, it is ensured that the carpule sleeve, on insertion into the guide slits 156, "finds" the arms 162 of the bayonet sleeve again in the correct position around the longitudinal axis and can then entrain these after the releasing of the detent connection.
In the present example, the detent elements are constructed as projections 172 integrally with the spring element in the form of the base body 171. Instead of this, however, a separate detent element can be provided, e.g. in the form of a rigid ring with detent cams, which is pressed in the axial direction by the spring element. Instead of projections, the detent element can also have depressions which then cooperate with corresponding projections of the counter surface. In the present example, the detent element is locked against relative rotation with respect to the housing. Instead of this, it can also be locked against relative rotation with respect to the bayonet sleeve. The spring element can also be developed differently to produce an axial force. Various modifications of the locking illustrated here between the carpule sleeve 30 and the housing are therefore possible.
-23-

In Fig. 10, the parts of the injection device illustrated in Fig. 7 are illustrated together with further components. In particular, the thrust sleeve 90 is now pushed into the guide sleeve 110. At its proximal end, the thrust sleeve 90 has a short internal thread 92 in which a hollow external threaded rod 180 is guided. The latter is connected at its proximal end rigidly with the coupling sleeve 120 via a transverse pin 181. A thrust of the thrust sleeve 90 in distal direction therefore takes place, by the coupling sleeve 120, which is in fact rotatably mounted, carrying out a rotary movement. Owing to the rigid connection between coupling sleeve 120 and external threaded rod 180, this rotary movement also brings about a rotation of the external threaded rod 180. The thrust sleeve 90 runs with its internal thread 92 on the external threaded rod 180, similar to a nut. The thrust sleeve 90 is locked against relative rotation with respect to the guide sleeve 110, because it runs via the guide cams 91 in longitudinal grooves on the inner side of the guide sleeve 110. In this way, the thrust sleeve 90 is advanced axially on a rotation of the external threaded rod 180. As a whole, therefore, a rotary movement of the coupling sleeve 120 is converted into an axial displacement of the thrust sleeve 90.
As can be seen from Fig. 3, the thrust sleeve 90 is assisted in this thrust movement by a long helical spring 190 which is subjected to pressure, which is arranged in the interior of the threaded rod 180 and is guided on a guide needle 200. The helical spring 190 presses a ring-shaped thickening 201 close to the distal end of the guide needle 200 in the distal direction against the thrust flange 100. An axial pin 202 projects into a corresponding blind-end bore of the thrust flange 100 and is rotatable in this blind-end bore.
Furthermore, in Fig. 10 a substantially cylindrical transmission sleeve 210 is inserted into the mechanism holder 150 from the proximal side, which transmission sleeve partially surrounds the coupling sleeve 120. The transmission sleeve 210 has on the outer side a plurality of longitudinal ribs 212. The external diameter of the transmission sleeve 210 is selected here so that, despite its external longitudinal ribs, it is freely rotatable inside the mechanism holder 150. On the inner side, the
-24-

transmission sleeve 210 has an internal thread 211, in which a dose limiting ring 220 runs with a corresponding external thread 221. In the interior of the dose limiting ring 220, longitudinal grooves 222 are present which can be seen particularly well in Figures 12A and 12B, into which the longitudinal ribs 122 of the coupling sleeve 120 (cf. Fig. 6) engage. Thereby, the dose limiting ring 220 is movable on the one hand so as to be secure with regard to rotation in axial direction on the coupling sleeve, and on the other hand is guided in the internal thread of the transmission sleeve 210. A rotation of the coupling sleeve 120 with respect to the transmission sleeve 210 therefore leads to a rotation and axial displacement of the dose limiting ring 220.
The axial displacement range of the dose limiting ring is limited in distal and in proximal direction. This is to be described by means of Figures 11A, 11B, 12A and 12B.
In Figures 11A and 11B a coupling shaft 230 is connected with the transmission sleeve 210. The coupling shaft has an axis 231 with a transverse bore 232 close to the proximal end 233. A circumferential flange 234 extends radially outwards from the distal end of the axis. A ring flange 235 extends in turn therefrom axially in distal direction. The external diameter of the flange 234 is greater than that of the ring flange 235, whereby the flange 234 protrudes radially over the ring flange 235 and forms a stop for the transmission sleeve 210. The ring flange 235 is pushed into the transmission sleeve 210, so that the latter lies with its proximal end against the flange 234. The ring flange is secured by radial pins in the transmission sleeve 210, which are pushed into bores 237. Thereby, the coupling shaft 230 and the transmission sleeve 210 are connected with each other so as to be locked against relative rotation and secured against displacement. Several longitudinal grooves 238 are formed in the inner surface of the ring flange 235.
Figures 12A and 12B show the coupling shaft 230 and the dose limiting ring 220 alone. A radial stop 223, which cooperates with a corresponding radial stop 236 on the ring flange 235 of the coupling shaft, is formed on the dose limiting ring 220. A
-25-

radial stop is understood to mean a stop surface, the surface normal of which points substantially in the tangential direction, and which is formed to cooperate with a corresponding counter surface. The radial stop is therefore primarily stressed in tangential direction (i.e. in rotational direction) instead of in axial direction. Thereby, a radial stop avoids the risk of jamming, which exists when two parts collide axially via a screw connection, and which is especially marked in particular in the case of a small pitch of the helical thread. The radial stop 236 delimits here the screw motion of the dose limiting ring 220 in proximal direction. In Fig. 11A the dose limiting ring 220 is shown in the resulting proximal final position, and iri Fig. 11B on the other hand in a distal initial position.
The proximal end of an arresting sleeve 280 is rotatably clicked into an inwardly directed ring flange 213, chamfered in the distal direction, at the distal end of the transmission sleeve 210. For better clarity, the arresting sleeve 280 is not illustrated in Fig. 10. However, it is shown in Fig. 13. The arresting sleeve comprises a ring-shaped main body 281, from which four arms 282, extending in distal direction, extend in the distal direction. On its inner surface, the main body has longitudinal grooves 284 which are meshed with the longitudinal ribs 122 of the coupling sleeve 120. Thereby, the arresting sleeve 280 is displaceable in longitudinal direction relative to the coupling sleeve 120, but is secured as regards torsion with respect thereto. At the end of the arms 282, inwardly extending flange regions 283 are present. The possible displacement range is limited in proximal direction by these flange regions. These abut in the proximal final position of the arresting sleeve 280, as illustrated in Fig. 3, onto the distal end of the longitudinal ribs 122 of the coupling sleeve 120. Longitudinal ribs are formed on the outer peripheral surface of the main body 281. These longitudinal ribs engage, in the position of Fig. 3, into the inner longitudinal grooves 158 of the mechanism holder 150. Thereby, the arresting sleeve 280 is displaceable in this position axially with respect to the mechanism holder 150, but secured with regard to torsion. Finally, the arresting sleeve 280 in this position therefore secures the coupling sleeve 120 against a rotation in the mechanism holder 150. As described further below, the arresting sleeve 280 is, however, displaceable so
-26-

far in the distal direction that it can come out of engagement with the mechanism holder 150 and is then rotatable with respect thereto together with the coupling sleeve 120.
The arresting sleeve 280 is pre-stressed in the proximal direction by means of a coupling spring 290. The coupling spring has the form of a helical spring which is subjected to pressure, which surrounds the arms 282 of the arresting sleeve 280 and lies with its proximal end against the distal end face of the main body 281. At the distal end of the coupling spring 290, the latter is held on a support ring 300 which abuts against the bearing holder 130 in the distal direction and on the inner side of which longitudinal grooves are formed.
In Fig. 14 the unit of Fig. 10 is now illustrated with further components again. The display drum 70, which has already been previously mentioned, is now held on the mechanism holder 150. In addition, a stop sleeve 240 can be seen. As can be seen in Fig. 2, the stop sleeve 240 is connected immovably with the housing sleeve 20 by pins which project into the radial holes 242 which can be seen in Fig. 14. At its distal end, radial stops 243 are formed. Its proximal end is formed so as to be serrated, i.e. teeth 244 are formed on the end face for a ratchet connection which is yet to be described.
The display drum 70 has an internal thread which can be seen in Fig. 3. This runs on the external thread 157 of the mechanism holder, which can be seen particularly well in Figures 7 and 10. At its proximal end, the display drum 70 narrows to a ring-shaped region 72. Longitudinal grooves are formed on the inner side of the ring-shaped region 72. By these longitudinal grooves, the display drum 70 is secured with regard to torsion, but is guided displaceably in longitudinal direction on the longitudinal ribs 212 of the transmission sleeve 210. Through the combination of this longitudinal guide on the transmission sleeve and the thread guide on the mechanism holder, a rotation of the transmission sleeve 210 leads to a combined rotation and longitudinal displacement of the display drum 70. This movement is
-27-

delimited by radial stops in both directions. At the proximal end, a radial stop cooperates with the radial stop 243 of the stop sleeve 240. At the distal end, a corresponding radial stop 73 cooperates with a radial stop 159 of the mechanism holder 150. Thereby, the screw motion of the display drum 70 is limited in both directions by radial stops.
The mechanism for setting a dose and for triggering the administering of this dose is now described in the following with the aid of Figures 3 and 15. The dosing sleeve 60, which has already been mentioned, is arranged at the proximal end of the housing sleeve 20. It is secured with regard to displacement axially with a spring ring 61 and is fixed rotatably on the stop sleeve 240. The dosing sleeve 60 is rotatable via a slip coupling in the form of a ratchet connection both clockwise and also anticlockwise about the longitudinal axis towards the housing sleeve 20, being able to assume several predefined detent positions. This mechanism is to be described in the following.
An inner ring 250 is arranged inside the dosing sleeve 60 and is rigidly connected with the dosing sleeve 60. The inner ring 250 has in its radial inner surface a plurality of longitudinal grooves. In distal direction from the inner ring 250, a ratchet ring 260 is held so as to be axially displaceable but secured with regard to rotation in the dosing sleeve 60. The ratchet ring 260 is formed so as to be serrated on its distal end face, and namely in a complementary manner to the teeth 244 of the serrated proximal end face of the stop sleeve 240, so that teeth of the ratchet ring 260 can engage in depressions on the end face of the stop sleeve 240 and vice versa. The ratchet ring 260 is axially displaceable by a certain amount between the distal end face of the inner ring 250 and the serrated proximal end face of the stop sleeve 240. The amount by which an axial displacement is possible is at least so great here that the serrated end faces of the ratchet ring 260 and of the stop sleeve 240 can come out of engagement. The ratchet ring 260 is pressed elastically by an elastic force against the stop sleeve 240. For this, several axial bores 251 are present in the form of blind-end bores in the inner ring 250. Helical springs 252 which are subjected to pressure
-28-

are inserted in at least one of these bores, preferably in at least two bores at a uniform spacing along the circumference of the ring. The helical springs 252 press the ratchet ring elastically against the stop sleeve.
In the position of rest, the ratchet ring 260 with its serrated end face is in engagement with the serrated end face of the stop sleeve 240. Thereby, the ratchet ring and the dosing sleeve 60 connected therewith assume one of several defined angle positions about the longitudinal axis. With a rotation of the dosing sleeve 60 relative to the housing sleeve 20, the teeth of the ratchet ring 260 and of the stop sleeve 240 slide on each other against the axial spring force of the helical springs 252, until they come out of engagement and arrive in engagement again in the next defined angle position. In this way, an elastically detachable detent connection is produced by rotation with a sufficient torque in several predefined angle positions of the dosing sleeve 60 relative to the housing sleeve 20. This mechanism can also be designated as a double slip coupling.
By rotation of the dosing sleeve 60 clockwise, the spiral spring 310 can be tensioned, which is indicated in Fig. 3. The spiral spring 310 has a plurality of spring coils which run around the longitudinal axis and are arranged over one another radially to the longitudinal axis. The inner end of the spiral spring 310 is fastened to a spring holding region 311 of the coupling shaft 230 which region can be seen particularly well in Fig. 12C. The outer end of the spiral spring 310 is mounted on a spring sleeve 320, which is held so as to be locked against relative rotation in the stop sleeve 240.
A coupling disc 270 is mounted on the coupling shaft 230 and is secured against rotation and displacement by means of a pin 271 in the transverse bore 232 of the coupling shaft 230. The coupling disc 270 has a plurality of longitudinal ribs on its outer peripheral surface. In the position of Fig. 3, these longitudinal ribs engage into the longitudinal grooves, which are complementary thereto, on the inner side of the inner ring 250, but can be brought out of engagement by an axial displacement.
-29-

The dosing sleeve 60 has an axial passage opening, in which the push button 80 is arranged so as to be axially displaceable. The push button 80 is rotatable with a plurality of radially elastic arms 81 and is clicked on the proximal end 233 of the coupling shaft 230 so as to be secured against displacement. It abuts with its distal end against a proximal end face of the coupling disc 270. In the interior of the push button 80 there is a helical spring 82 which lies with its proximal end against the inner end face of the push button and presses with its distal end against a bearing ring 83. The bearing ring 83 has on its outer peripheral face longitudinal ribs which are guided in corresponding longitudinal grooves in the inner covering surface of the push button 80. Thereby/ the support ring 83 is arranged in the push button 80 so as to be locked against relative rotation and so as to be axially displaceable. The bearing ring 83 is formed so as to be serrated in a flat manner on its distal end face. The proximal end face of the coupling disc 270 is formed so as to be serrated in a complementary manner hereto, so that the bearing ring 83 is axially meshed with the coupling disc 270. On distribution of the medicament, the coupling disc 270 rotates with respect to the bearing ring 83. Thereby, the serrated surfaces slide on one another, so that the toothing comes alternately into and out of engagement. Thereby, a characteristic clicking sound is produced, which indicates to the user that an administering is just taking place. The toothing of bearing ring 83 and coupling disc 270 is preferably developed here so that each clicking corresponds to precisely one unit (or of a predetermined multiple of one unit) of the administered medicament.
Sealing
The entire mechanism for setting the dose and the distribution is housed in the housing sleeve 20 so as to be protected against splashing. For this, in total four seals Dl, D2, D3 and D4 are present. The seal Dl comprises a sealing ring which lies in a sealing manner between the mechanism holder 150 and the bayonet sleeve 160. The mechanism holder 150 is mounted immovably and tightly in the housing 2, whilst the bayonet sleeve 160 is both displaceable and also rotatable with respect to the mechanism holder 160 arid is sealed here with respect to the housing by means of
-30-

the seal Dl. The seal D2 comprises a further sealing ring, constructed so as to be flat here, which lies in a sealing manner between the bayonet sleeve 160 and the smooth outer side of the thrust sleeve 90. Furthermore, the thrust flange 100 is arranged tightly on the thrust sleeve 90. The region of the injection device, including the interior of the thrust sleeve 90, lying proximally from the bayonet sleeve 160, is thereby sealed completely against the region lying distally herefrom. In case fluids were to arrive into this distal region, e.g. due to a breakage of the medicament carpule 40, these can not penetrate into the difficult mechanics and contaminate or jam it.
The other two seals are situated at the proximal end of the injection device. The seal D3 comprises a sealing ring which lies in a sealing manner between the dosing sleeve 60 and the stop sleeve 240. The stop sleeve 240 is mounted immovably and tightly in the housing sleeve 20, whereas the dosing sleeve 60 is rotatable with respect to the stop sleeve 240. The seal D4 comprises a further sealing ring which lies in a sealing manner between the dosing sleeve 60 and the push button 80. In addition, a transparent window covering 22 is placed in a fluid-tight manner on the window 21. Hereby, the entire mechanics, which are delimited toward the exterior by the housing sleeve 20, the dosing sleeve 60 and the push button 80, is also completely sealed toward the exterior and is thus fully protected against the penetration of fluids. Rainfall or a glass of water accidentally spilt by the user can therefore also not harm the injection device.
In particular the seal towards the thrust sleeve is preferably constructed such that it acts as a stripper, similar to a windscreen wiper in a car. For this, at least towards the distal side, there is as small a contact angle as possible between the surfaces of the sealing element and the thrust sleeve. This can lie below 90 degrees.
Instead of conventional seals or in addition hereto, the parts which are to be sealed with respect to each other can have a hydrophobic surface, in particular can be formed from a hydrophobic material or be coated therewith. A hydrophobic surface
-31-

prevents the parts from being wetted. Drops of water thereby roll off and a leaking of fluids through gaps is efficiently prevented between the parts which are to be sealed due to capillary effects. The parts provided with a hydrophobic surface which are to be sealed with respect to each other can therefore be arranged at a certain distance (gap) from each other, without the sealing effect being lost ("virtual seal").
A hydrophobic surface is understood here to mean a surface for which the contact angle of a water drop is at least 90 degrees, preferably at least 110 degrees. The contact angle is the angle between the surface normal of the water drop and the respective surface at the contact site. Examples of materials with hydrophobic characteristics are PTFE (polytetrafluoroethylene) or PVDF (polyvinylidene fluoride). Several further materials, in particular also for thin coatings in the range of a few micrometres, are known.
In experiments, various pens and a sleeve were provided nanotechnologically with a hydrophobic coating. 20 pens with external diameters of 10.0 to 11.9 mm in graduations of 0.1 mm were examined. The pens were arranged centrally in a sleeve with 12 mm internal diameter, which corresponds to gap thicknesses of 0.05 mm to 1.0 mm in graduations of 0.05 mm. The interior of the sleeve was then acted upon with water. A sealing effect up to a gap thickness of approximately 0.5 mm was observed. With reciprocal rotation between pen and sleeve, a sealing effect up to a gap thickness of approximately 0.25 mm was observed.
In order to improve the sealing effect, the surfaces can be micro- or nanostructured, i.e. provided with structures, the dimensions of which lie in the nanometre to micrometre range. These structures can have a preferred direction, in order to inhibit the flow of fluids on the surface in one direction. Thus, for example, scales can be provided.
-32-

Couplings
The mode of operation of the injection device is now to be described below. For this, firstly reference is made to Fig. 16, in which the injection device is illustrated in its initial position before the first use. The mechanism described above for setting and distributing a dose has three couplings Kl, K2 and K3 for the transmission of torques. Each of these couplings can be brought into and out of engagement by an axial movement of two components with respect to each other.
The coupling Kl is formed by the longitudinal grooves on the inner surface of the axial flange 235 of the coupling shaft 230 as a coupling input member in cooperation with the longitudinal ribs 122 on the outer side of the coupling sleeve 120 (cf. Fig. 5) as coupling output member. In the position of Fig. 16, this coupling is uncoupled, i.e. the toothing formed by the longitudinal grooves and longitudinal ribs is out of engagement. The coupling Kl can be coupled by an axial displacement of the coupling shaft 230 in distal direction.
The coupling K2 is formed by the longitudinal grooves in the radial inner surface of the inner ring 250 as a coupling input member in cooperation with the longitudinal ribs on the radial outer surface of the coupling disc 270 as coupling output member. In the position of Fig. 16, this coupling is coupled, i.e. the toothing formed by the longitudinal grooves and longitudinal ribs is in engagement. The coupling K2 can be uncoupled by an axial displacement of the coupling disc 270 in distal direction.
The coupling K3 is formed by the longitudinal ribs on the outer side of the outer ring flange 282 of the arresting sleeve 280 as coupling input member in cooperation with the longitudinal grooves 158 on the inner surface of the mechanism holder 150 as coupling output member. In the position of Fig. 13, this coupling is coupled. It can be uncoupled by an axial displacement of the arresting sleeve 280 in distal direction.
-33-

All three couplings Kl, K2 and K3 can be coupled and respectively uncoupled by the push button 80 being displaced sufficiently far axially. Here, a particular sequence is adhered to. On pressing in of the push button 80, the coupling disc 270 and the coupling shaft 230, which is securely connected therewith, are displaced in distal direction. Here, firstly the coupling Kl comes into engagement, i.e. the coupling shaft is coupled for torque transmission with the coupling sleeve 120. At the same time, the coupling shaft 230 advances the transmission sleeve 210 in the distal direction. This entrains the arresting sleeve 280 in distal direction, whereby the coupling spring 290 is compressed. When the coupling Kl arrives in engagement for the first time, the arresting sleeve 280 is not yet advanced sufficiently far in order to arrive with its outer ring flange 282 out of engagement with the mechanism holder 250. The coupling K3 is therefore initially still coupled. The same applies to the coupling K2: The coupling disc 270 is firstly still in engagement with the inner ring 250. Firstly, therefore, all three couplings are coupled. When the push button 80 is pushed in further, next the coupling K2 comes out of engagement. With a still further pushing in, finally also the coupling K3 comes out of engagement. Therefore, the following sequence is adhered to:
• Initial state: Kl uncoupled, K2 and K3 coupled.
• Pushing in of the push button 80: Kl couples, thereafter K2 uncouples, thereafter K3 uncouples.
Fig. 19, which is to be described later in further detail, shows the injection device with the push button 80 pushed in completely. The coupling Kl is now coupled, whereas the couplings K2 and K3 are uncoupled.
On releasing of the push button 80, the engaging of the couplings into each other runs in the reverse sequence. Here, the coupling spring 290 presses the arresting sleeve 280, the transmission sleeve 210, the coupling shaft 230, the coupling disc 270 and the push button 80 back into the distal initial position.
-34-

The couplings Kl, K2 and K3 and the ratchet connection make possible the systematic transmission of torques between five functionally independent units. A first unit is formed by the housing sleeve 20, the mechanism holder 150, the stop sleeve 240 and the spring ring 320. This unit can be regarded functionally as a holding arrangement or as a housing in an extended sense. It constitutes the stationary reference system for all movements.
A second unit is formed by the dosing sleeve 60, the inner ring 250 and the ratchet ring 260. It can be regarded functionally as a rotatable dosing arrangement. This dosing arrangement is held detachably on the housing by means of the ratchet connection, but so as to be secure with regard to torque up to a certain value.
A third unit is formed by the coupling disc 270, the coupling shaft 230 and the transmission sleeve 210, which are in fact all rigidly connected with each other, and by the spiral spring 310, connected therewith, which acts as the actual drive element. This unit can be regarded as a drive arrangement. The rotary movement of the drive arrangement is limited by two limiting elements which are both guided on the transmission arrangement. The first limiting element is formed by the display drum 70, which limits the range of movement of the drive arrangement in both directions, a dosing direction and a correction- and distribution direction. The second limiting element is formed by the dose limiting ring 220, which limits the range of movement of the drive arrangement at least in one direction, the dosing direction, independently of the first limiting element. The drive arrangement is able to be coupled detachably by the coupling K2 so as to be locked against relative rotation with respect to the dosing arrangement, which makes it possible to tension the drive element in the form of the spiral spring 310.
A fourth unit comprises the coupling sleeve 120 and the threaded rod 180 which form a rigid unit, the elements on which these parts are mounted, namely the guide sleeve 110, the bearing holder 130 and the ball bearing rings 140, and also the thrust sleeve 90. This unit constitutes a delivery arrangement which converts a rotary
-35-

movement of an input member in the form of the coupling sleeve 120 into a thrust of the delivery element in the form of the thrust sleeve 90. Its input member is able to be detachably coupled by the coupling Kl so as to be locked against relative rotation with the drive arrangement. In addition, it is able to be detachably coupled via the coupling K3 so as to be locked against relative rotation with the holding arrangement (i.e. the housing).
Furthermore, a triggering arrangement is present, which primarily comprises the push button 80 and serves for the operation of the couplings Kl to K3.
Mode of operation
The injection device is operated as follows. Starting from the initial position of Fig. 16, firstly a dose is set which is to be administered. For this, the dosing sleeve 60 is turned clockwise. In so doing, the dosing sleeve entrains the coupling disc 270 and the coupling shaft 230 via the coupling K2. Hereby, the spiral spring 310 is wound up. The torque being generated hereby is held by the ratchet connection between the co-rotating ratchet ring 260 and the stationary stop sleeve 240. Through the rotation of the coupling shaft 230, the transmission sleeve 210 and the display drum 70, which is guided thereon, are also co-rotated. The display drum 70, owing to its thread guidance on the mechanism holder 150, is additionally displaced axially in proximal direction, and therefore performs as a whole a screw motion in proximal direction. Hereby, markings on the surface of the display drum 70 pass through under the window 21 and indicate the currently set dose. Furthermore, the dose limiting ring 220, owing to its thread engagement with the interior of the transmission sleeve 210 and owing to its arrangement, secured with regard to rotation, on the coupling sleeve 120, is displaced in proximal direction.
Fig. 17 shows the injection device after half the maximum individual dose has been set. The display drum has travelled rearwards half-way between its distal and its proximal final position. In addition, the dose limiting ring 220 has travelled in the
-36-

proximal direction by an amount which is proportional to the individual dose which has been set.
The rotation of the dosing sleeve 60 clockwise is limited on the one hand by the maximum movement range of the display drum 70 and on the other hand by the maximum movement range of the dose limiting ring 220. After a predetermined number of revolutions of the dosing sleeve 60, the display drum 70 abuts with its proximal radial stop against the stop sleeve 240, in so far as the rotation of the dosing sleeve 60 has not already been previously limited by the dose limiting ring 220, as is described in further detail below. Thereby, no further rotation of the dosing sleeve 60 is possible. This position corresponds to the maximum individual dose which can be set. This situation is illustrated in Fig. 18.
If the dose which has been set is to be corrected, i.e. reduced, then the dosing sleeve 60 can be turned back anticlockwise against the force of the ratchet connection. As the ratchet connection in this direction additionally also has to absorb the torque of the spiral spring 310, the ratchet connection is developed asymmetrically; The toothing on the end face has a larger angle of inclination on the side which is stressed by a torque which acts anticlockwise onto the dosing sleeve than on the side which is stressed with a torque clockwise (cf. the development of the teeth 244 in Fig. 14). The angle of inclination is understood here to mean the absolute amount of the angle between the respective flank of a tooth on the end face of the ratchet ring 260 or on the end face of the stop sleeve 240 and a cross-sectional area through the injector.
The distribution of the dose which has thus been set takes place by the push button 80 being pushed in. Hereby, firstly the coupling Kl is coupled. Thereby, a connection is produced which is locked against relative rotation between the coupling shaft 230 on the one hand and the coupling sleeve 120 and also the threaded rod 180 rigidly connected therewith on the other hand. All three couplings Kl, K2 and K3 are now coupled. On further pushing in of the push burton 80, the coupling K2 uncouples.
-37-

Thereby, the connection which is locked against relative rotation between the dosing sleeve 60 on the one hand and the coupling shaft 230 with the now coupled coupling sleeve 120 and threaded rod 180 on the other hand is cancelled. This leads to the ratchet connection no longer absorbing the torque of the spiral spring 310. However, the system is still held so as to be locked against relative rotation via the coupling K2 in the mechanism holder 150 and hence in the housing sleeve 20. When the push button 80 is now pressed in still further, the coupling K3 also uncouples. At this moment, the torque of the spiral spring 310 becomes free and acts via the coupling shaft 230 and the coupling sleeve 120 on the threaded rod 190. Hereby, these parts are set in an anticlockwise rotation. Through its thread engagement with the threaded rod 190, the thrust sleeve 90 undergoes an axial displacement in distal direction. Via the thrust flange 100, the thrust sleeve advances the stopper 41 in the carpule 40. In this way, the medicament is distributed.
During the distribution, considerable axial forces act on the thrust sleeve 90: The torque of the spiral spring 310 is converted into a force in the thrust direction, which advances the stopper 41 in the carpule 40. These forces are absorbed by the ball bearings between the coupling sleeve 120 on the one hand and the guide sleeve 110 and the bearing holder 130 on the other hand in a low-friction manner, so that counter forces, due to friction, which could reduce the driving torque, are minimized.
In the distribution, the display drum 70 is entrained again by the rotation of the transmission sleeve 210 anticlockwise and is thereby moved again in distal direction owing to its thread engagement with the stationary mechanism holder 150, until it assumes its distal initial position again. In this position, it is prevented from rotating further by a radial stop, whereby the distribution is terminated. After the end of the distribution, the display drum therefore indicates the dose "zero" again.
The distribution can be interrupted at any time, by the push button 80 being released. Thereby, the couplings K3 and K2 couple again, and the coupling Kl
-38-

uncouples again. The display drum 70 indicates the remaining residual dose which is further distributed when the push button is pressed again and thereby the distribution is continued.
The dose limiting ring 220 maintains its axial position during the distribution, because the transmission sleeve 210 and the coupling sleeve 120, between which the dose limiting ring 220 is situated, rotate synchronically.
After the end of the distribution, the injection device is ready for the next injection process. Compared with Fig. 16, however, two components have changed their position: On the one hand, the thrust sleeve 90 has travelled in accordance with the distributed dose in the distal direction. On the other hand, the dose limiting ring 220 has likewise travelled by an amount proportional thereto in proximal direction. Apart from this, the state after the end of the injection corresponds to the initial state of Fig. 16. With each further injection, the thrust sleeve 90 therefore travels further in the distal direction, whereas the dose limiting ring 220 travels in the proximal direction. This is illustrated in Fig. 19, which illustrates the injection device after firstly a first dose was administered, which corresponds to half the maximum individual dose, and then with the dosing sleeve a dose was again set, which in turn corresponds to half the maximum individual dose. The display drum now indicates again, as in Fig. 15, half the maximum individual dose,, whereas the dose limiting ring 220 now assumes a position in the transmission sleeve 210 which corresponds to the sum of the doses which have been set hitherto, here therefore twice half the maximum individual dose.
The maximum axial path by which the dose limiting ring 220 can travel in proximal direction in the transmission sleeve corresponds precisely to the content of a completely filled carpule. As soon as the sum of the doses set on the dosing sleeve corresponds to the carpule content, the dose limiting ring 220 reaches its proximal final position and abuts with its radial stop against the axial ring flange 235 of the coupling shaft 230, as is illustrated in Fig. 12A. Thereby, the dosing sleeve 60 is
-39-

prevented from a further clockwise rotation. Therefore, no larger dose can be set than the dose which corresponds to the remaining residual amount of the medicament in the carpule. Fig. 20 shows this situation, in which no further increasing of the dose is possible, although the display drum is situated in the distal initial position, i.e. the zero position. Correspondingly, the thrust sleeve 90 has reached its distal final position, and has therefore moved out at a maximum.
Carpule change
In order to exchange the carpule, the carpule sleeve 30 is detached from the mechanism holder 150 against the elastic resistance of the bayonet spring 170 and is unscrewed, guided through the corresponding guide slit 156 in the mechanism holder. Hereby, compulsorily, the bayonet sleeve 160 is likewise twisted along its own, parallel guide slit 155 and at the same time is displaced in distal direction. Hereby, the guide sleeve 110 is drawn in the distal direction. Hereby, all the movable parts which are connected axially therewith also travel in the distal direction, in particular the coupling sleeve 120, the threaded rod 190, the arresting sleeve 280, the transmission sleeve 210, the coupling shaft 230, the coupling disc 270 and the push button 80. In particular, the push button 80 is therefore drawn into the dosing sleeve 60 and thus indicates that the injection device is not ready for operation.
Through this axial displacement of the various parts of the mechanism, the couplings K2 and ,K3 come out of engagement, whilst Kl was in any case already out of engagement. If a dose had still been set before the carpule change, but had not been administered, then the accordingly wound spiral spring 310 now sets the coupling shaft 230 and the transmission sleeve 210 connected therewith into an anticlockwise rotation, until the display drum 70 has reached its distal final position and prevents a further turning back by means of its radial stop on the mechanism holder 150. In this way, the display drum 70 is brought back into its distal initial position, the zero position. An automatic resetting of the dose display to zero therefore takes place.
-40-

If, before the carpule change, a residual amount of the medicament was still situated in the carpule 40, then the thrust sleeve 90 had not yet moved out to a maximum before the carpule change, and had therefore not yet reached its distal final position. On removal of the carpule sleeve 30, the helical spring 190 now presses the guide needle 200, the thrust flange 100 and the thrust sleeve 90 in the distal direction. Hereby, the threaded rod 180 is set in rotation via its screw connection with the interior of the thrust sleeve 90. Here, the threaded rod 180 entrains in particular the coupling sleeve 120 and the dose limiting ring 220. With this rotation, the dose limiting ring 220 is displaced into its proximal final position through its thread engagement with the transmission sleeve 210. As soon as the dose limiting ring 220 has reached this initial position, it prevents a further rotation of the coupling sleeve 120 and of the threaded rod 180, so that no further moving out of the thrust sleeve 90 is possible. The thrust sleeve 90 has thereby now reached its distal final position. This situation is illustrated in Fig. 1. As a whole, therefore, the display drum 70 is now situated in the zero position, the dose limiting ring 220 in the proximal final position and the thrust sleeve 90 in its distal final position.
A new carpule 40 is now pushed into the carpule sleeve 30, and the carpule sleeve 30 with the carpule 40 held therein is guided axially in the proximal direction against the housing sleeve 20. Here, firstly the stopper 41 of the carpule presses the thrust flange 100 and the thrust sleeve 90 against the force of the helical spring 190 in the proximal direction. Hereby, in turn, the threaded rod 180 is set in rotation. The threaded rod again entrains the coupling sleeve 120 and the dose limiting ring 220. Thereby, the dose limiting ring, owing to its thread engagement with the transmission sleeve 210, is displaced in the distal direction, i.e. in the direction of its initial position. The amount by which it is displaced in this direction corresponds exactly to the dose which is present in the carpule 40. With a completely filled carpule, the dose limiting ring 220 travels into its distal initial position. The carpule sleeve 30 is then pushed into the mechanism holder 150, with the radial pins 36 of the carpule sleeve 30 engaging again into the guide slits 156 in the mechanism holder 150 (cf. Figures 1 and 3). Through the positive guidance of the carpule sleeve
-41-

30 on insertion into the mechanism holder 150, in turn the bayonet sleeve 160 is forced to follow the movement of the carpule sleeve 30 in the corresponding guide slits. The bayonet sleeve 160 is thereby brought back into its proximal final position, in which it is detachably locked by the bayonet disc 170 (cf. Figures 8 to 10). The injection device is now situated again in the initial position of Fig. 16 and, after the screwing of a new needle holder 31, is available for • a new sequence of administerings.
Second embodiment
In Fig. 21, a second embodiment of the injection device according to the invention is illustrated as a variant. The mode of operation is substantially the same as in the first embodiment. Parts which act identically are therefore designated by the same reference numbers as in the first embodiment. Only the essential differences are to be described in detail below.
In the second embodiment, the stop sleeve 240 is omitted. Its function is taken over by the correspondingly extended housing sleeve 20.
The drive arrangement which, in the first embodiment, apart from the spiral spring 310, is formed from the coupling disc 270, coupling shaft 230 and transmission sleeve 210, is formed here by different parts, namely by a connecting shaft 400 (with coupling disc 410 formed integrally thereon), a first transmission sleeve 410 closed at the proximal end, and a second transmission sleeve 420 adjoining distally thereto. These three parts are, in turn, connected rigidly with each other.
Whereas in the first embodiment the display drum not only served to indicate the set dose but also served to delimit the maximum individual dose which was able to be set in the dosing direction and to delimit the movement in the distribution direction, the latter function in the second embodiment is taken over by a second dose limiting ring 430. The latter is guided so as to be locked against relative rotation, but axially
-42-

displaceable, in the housing sleeve 20. With an internal thread it runs on a corresponding external thread of the first transmission sleeve 410. Its axial movement is limited by two radial stops between a distal initial position, which corresponds to the zero position, and a proximal final position, which corresponds to the maximum dose which is able to be set. In this way, it takes over the stop functions of the display drum according to the first embodiment.
The display drum 70 in the second embodiment is guided axially displaceably via a carrier sleeve 440, rigidly connected therewith, and so as to be locked against relative rotation on the second transmission sleeve 420. Its mode of operation is otherwise identical to the first embodiment.
Apart from these differences, the structure and mode of operation of the injection device are substantially the same as in the first embodiment.
Further variants
The differences between the first and the second embodiment show that the functions of the injection device according to the invention can be reached in a variety of ways and the invention is in no way restricted to the example embodiments represented above. Various further modifications are possible. These can be due, in particular, to manufacturing requirements.
-43-

LIST OF REFERENCE NUMBERS

R medicament reservoir
Dl seal
D2 seal
D3 seal
D4 seal
Kl first coupling
K2 second coupling
K3 third coupling
10 protective sleeve
11 holding ring
12 detent arm
20 housing sleeve
21 window
22 window covering
30 carpule sleeve
31 needle holder
32 hollow needle
33 needle protection sleeve
34 viewing window
35 locking region
36 pin
40 carpule
41 stopper
50 protective cap
60 dosing sleeve
61 spring ring
70 display drum
72 ring-shaped region
73 radial stop

80 push button
81 arm
82 helical spring
83 bearing ring

90 thrust sleeve
91 guide cam
92 internal thread 100 thrust flange

110 guide sleeve
111 flange
112 bore

120 coupling sleeve
121 sleeve body
122 longitudinal rib
123 thickening
124 flange
130 bearing holder
132 shoulder
140 ball bearing ring
141 bearing ball

150 mechanism holder
151 distal section
152 proximal section
153 step
154 longitudinal slit
155 guide slit
156 guide slit
157 external thread
158 longitudinal groove
159 radial stop
160 bayonet sleeve

161 ring flange
162 arm
163 opening
170 bayonet spring
171 base body
172 projection
173 tongue
180 external threaded rod
181 transverse pin
190 helical spring
200 guide needle
201 thickening
202 pin
210 transmission sleeve
211 internal thread
212 longitudinal rib
213 ring flange
220 dose limiting ring
221 external thread
222 longitudinal groove
223 radial stop
230 coupling shaft
231 axis
232 transverse bore
233 proximal end
234 flange
235 ring flange
236 radial stop
237 bore
238 longitudinal groove
240 stop sleeve

242 hole
243 radial stop
244 tooth
250 inner ring
251 bore
252 helical spring
260 ratchet ring
270 coupling disc
271 pin
280 arresting sleeve
281 main body
282 arm
283 flange region
284 longitudinal groove
290 coupling spring
300 support ring
310 spiral spring
311 spring holding region
320 spring sleeve
400 connecting shaft
401 coupling disc
410 first transmission sleeve
420 second transmission sleeve
430 second dose limiting ring
440 carrier sleeve

WE CLAIM:
1. Device for the administering of a fluid product,
• with a housing (20),
• with a delivery arrangement (90, 110, 120, 130, 140, 180) for the delivering of the product from a reservoir (R, 40), wherein the delivery arrangement comprises a rotatable input member (120) and a delivery element (90) movable along a thrust axis, which delivery element is able to be driven by a rotation of the input member (120),
• with a drive arrangement (210, 230, 270, 310) for producing a drive rotary movement about the thrust axis relative to the housing (20), wherein the drive arrangement (210, 230, 270, 310) is able to be tensioned by a tension rotary movement,
• with a rotatable dosing arrangement (60) for setting a dose of the product, which dose is to be administered and for tensioning the drive arrangement (210, 230, 270, 310); and
• with a triggering arrangement (80) which is movable from a position of rest into a triggering position to trigger an administering,
• wherein between the drive arrangement (210, 230, 270, 310) and the input member (120) of the delivery arrangement (90,110,120,130,140, 180) a first coupling (Kl) is formed, wherein the drive arrangement and the input member of the delivery arrangement are connected with each other so as to be locked against relative rotation in a coupled position, and are detached from each other in an uncoupled position,
characterized in that
• between the dosing arrangement (60) and the drive arrangement (210,
230, 270, 310) a second coupling (K2) is formed, wherein the dosing
arrangement and the drive arrangement are connected with each other
-48-

so as to be locked against relative rotation in a coupled position, and are detached from each other in an uncoupled position,
• that in the position of rest of the triggering arrangement (80) the first coupling (Kl) assumes its uncoupled position and the second coupling (K2) assumes its coupled position, so that a rotation of the dosing arrangement (60) is able to be transferred to the drive arrangement (210, 230, 270, 310) but not to the delivery arrangement (90, 110, 120, 130,140,180),
• and that a movement of the triggering arrangement (80) from the position of rest into the triggering position firstly brings about a coupling of the first coupling (Kl) and thereafter an uncoupling of the second coupling (K2), so that the drive arrangement (210, 230, 270,310) is released and the resulting drive movement is able to be transferred to the delivery arrangement (90,110,120,130,140,180).

2. Device according to Claim 1, wherein the dosing arrangement (60) is able to be fixed detachably so as to be secure with regard to torque with respect to the housing (20).
3. Device according to Claim 2, wherein the dosing arrangement (60) is able to be fixed detachably so as to be secure with regard to torque with respect to the housing (20) by means of a ratchet connection.
4. Device according to Claim 3, wherein the ratchet connection is constructed as a double slip coupling which makes possible a manual turning of the dosing arrangement (60) relative to the housing (20) both in a first direction of rotation to increase the dose to be administered and also in an opposite direction of rotation to reduce the dose.
5. Device according to Claim 4, wherein the ratchet connection comprises a spring-loaded toothing, and wherein the toothing is formed asymmetrically.
-49-

6. Device according to any of Claims 3 to 5, wherein the ratchet connection comprises two ratchet elements (240, 260) lying axially opposite each other, on the end faces of which teeth are constructed.
7. Device according to Claim 6, wherein a first of the ratchet elements (260) is formed as a spring-loaded ratchet ring, movable axially in the direction of the second ratchet element (240), which ratchet ring is arranged so as to be locked against relative rotation with respect to the dosing element (60), and wherein the second ratchet element (240) is connected so as to be locked against rotation and displacement with respect to the housing (20).
8. Device according to Claim 7, wherein the ratchet ring is spring-loaded by a plurality of springs arranged along the periphery of the ratchet ring.
9. Device according to any of the preceding claims, wherein the first coupling (Kl) is formed by longitudinal grooves on an inner surface of an element (230) of the drive arrangement and longitudinal ribs on an outer surface of an element (120) which is locked against relative rotation with respect to the input member of the delivery arrangement.
10. Device according to any of the preceding claims, wherein the second coupling is formed by longitudinal grooves on an inner surface of an element (250) of the dosing arrangement and longitudinal grooves on an outer surface of an element (270) of the drive arrangement.
11. Device according to any of the preceding claims,
• wherein between the housing (20) and the delivery arrangement (90,
110, 120, 130, 140, 180) a third coupling (K3) is formed, wherein the housing (20) and the delivery arrangement (90,110,120,130,140,180) are connected with each other so as to be locked against relative
-50-

rotation in a coupled position, and are detached from each other in an uncoupled position,
* wherein the third coupling (K3) assumes its coupled position in the
position of rest of the triggering arrangement (80),
• and wherein a movement of the triggering arrangement (80) from the
position of rest into the triggering position firstly brings about a
coupling of the first coupling (Kl), thereafter an uncoupling of the
second coupling (K2) and thereafter an uncoupling of the third
coupling (K3).
Device according to Claim 11, wherein the third coupling (K3) is formed by longitudinal ribs on the outer side of an element (280) which is locked against relative rotation with respect to the input member of the delivery arrangement, and longitudinal grooves on the inner side of an element (150) which is locked against relative rotation with respect to the housing.
Device according to any of the preceding claims, wherein the triggering arrangement (80) is movable between the position of rest and the triggering position in a distal direction along the thrust axis, and wherein each of the couplings (Kl, K2, K3) comprises a coupling input member and a coupling output member, which through a movement of the triggering arrangement undergo a relative displacement with respect to each other and are thereby able to be brought into and out of engagement.
Device according to Claim 13, wherein each of the couplings (Kl, K2, K3) is formed by longitudinal grooves and longitudinal ribs on radial inner or outer surfaces of the respective coupling input member or coupling output member.
-51-

15. Device according to any of the preceding claims, wherein the drive arrangement is arranged so as to be displaceable along the thrust axis, so that a movement of the triggering arrangement (80) from the position of rest into the triggering position brings about a displacement of the drive arrangement in a distal direction.
16. Device according to Claim 14 wherein the drive arrangement is spring-loaded along the thrust axis in a proximal direction opposed to the distal direction.

HIRAL CHANDRAKANT JOSHI AGENT FOR TECPHARMA LICENSING AG
Dated this 9th day of March, 2009
-52-

Documents:

490-MUMNP-2009-ABSTRACT(9-10-2014).pdf

490-mumnp-2009-abstract.doc

490-mumnp-2009-abstract.pdf

490-MUMNP-2009-CANCELLED PAGE(29-10-2013).pdf

490-MUMNP-2009-CANCELLED PAGE(9-10-2014).pdf

490-MUMNP-2009-CLAIMS(AMENDED)-(9-10-2014).pdf

490-mumnp-2009-claims.doc

490-mumnp-2009-claims.pdf

490-MUMNP-2009-CORRESPONDENCE(12-1-2010).pdf

490-MUMNP-2009-CORRESPONDENCE(12-6-2009).pdf

490-MUMNP-2009-CORRESPONDENCE(29-10-2013).pdf

490-MUMNP-2009-CORRESPONDENCE(4-6-2009).pdf

490-MUMNP-2009-CORRESPONDENCE(5-6-2009).pdf

490-MUMNP-2009-CORRESPONDENCE(8-1-2013).pdf

490-MUMNP-2009-CORRESPONDENCE(8-5-2009).pdf

490-mumnp-2009-correspondence.pdf

490-mumnp-2009-description(complete).doc

490-mumnp-2009-description(complete).pdf

490-mumnp-2009-drawing.pdf

490-mumnp-2009-english translation.pdf

490-MUMNP-2009-FORM 1(4-6-2009).pdf

490-MUMNP-2009-FORM 1(5-6-2009).pdf

490-mumnp-2009-form 1.pdf

490-mumnp-2009-form 13(4-6-2009).pdf

490-MUMNP-2009-FORM 18(4-6-2009).pdf

490-mumnp-2009-form 18.pdf

490-MUMNP-2009-FORM 2(TITLE PAGE)-(4-6-2009).pdf

490-mumnp-2009-form 2(title page).pdf

490-mumnp-2009-form 2.doc

490-mumnp-2009-form 2.pdf

490-MUMNP-2009-FORM 3(29-10-2013).pdf

490-MUMNP-2009-FORM 3(4-6-2009).pdf

490-MUMNP-2009-FORM 3(9-10-2014).pdf

490-mumnp-2009-form 3.pdf

490-MUMNP-2009-FORM 5(4-6-2009).pdf

490-mumnp-2009-form 5.pdf

490-MUMNP-2009-GENERAL POWER OF ATTORNEY(12-6-2009).pdf

490-MUMNP-2009-GENERAL POWER OF ATTORNEY(9-10-2014).pdf

490-MUMNP-2009-OTHER DOCUMENT(9-10-2014).pdf

490-MUMNP-2009-PCT-IB-373(8-5-2009).pdf

490-mumnp-2009-pct-isa-210.pdf

490-MUMNP-2009-PCT-ISA-237(8-5-2009).pdf

490-MUMNP-2009-PETITION UNDER RULE-137(29-10-2013).pdf

490-MUMNP-2009-REPLY TO EXAMINATION REPORT(9-10-2014).pdf

490-mumnp-2009-wo international publication report a1.pdf

abstract1.jpg


Patent Number 266043
Indian Patent Application Number 490/MUMNP/2009
PG Journal Number 14/2015
Publication Date 03-Apr-2015
Grant Date 30-Mar-2015
Date of Filing 09-Mar-2009
Name of Patentee TECPHARMA LICENSING AG
Applicant Address BRUNNMATTSTRASSE 6, CH-3400 BURGDORF, SWITZERLAND.
Inventors:
# Inventor's Name Inventor's Address
1 WITTMANN JUERGEN STEINHOFSTRASSE 65A, CH-3400 BURGDORF, SWITZERLAND.
2 WITTWER MARTIN DORF ll8G, CH-4954 WYSSACHEN, SWITZERLAND.
3 HOSTETTLER PATRICK FRAUMATTSTRASSE 4A, CH-3415 HASLE-RUEEGSAU, SWITZERLAND.
4 KOHLBRENNER PHILIPPE ROTHENBAUM 527, CH-3413 KALTACKER, SWITZERLAND.
5 STETTLER PETER ROETIMATTE 3, CH-3422 KIRCHBERG, SWITZERLAND,
PCT International Classification Number A61M 5/315
PCT International Application Number PCT/CH2007/000243
PCT International Filing date 2007-05-11
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 1475/06 2006-09-15 Switzerland