Title of Invention

FIBER OPTIC SPLITTER MODULE

Abstract A telecommunications assembly including a housing and a plurality of modules mounted within the housing. The modules includes a rear face in which is mounted at least one fiber optic connector. Within an interior of the housing are positioned at least one fiber optic adapters. Inserting the module through a front opening of the housing at a mounting location positions the connector of the module for insertion into and mating with the adapter of the housing. The adapters within the interior of the housing are integrally formed as part of a removable adapter assembly. A method of mounting telecommunications module within a chassis.
Full Text WO 2006/127400

PCT7US2006/019285

FIBER OPTIC SPLITTER MODULE
Field
The present invention generally relates to fiber optic
telecommunications equipment. More specifically, the present invention relates to
fiber optic modules and chassis for holding fiber optic modules.
Background
In fiber optic telecommunications systems, it is common for optical
fibers of transmission cables to be split into multiple strands, either by optical
splitting of a signal carried by a single stranded cable or by fanning out the
individual fibers of a multi-strand cable. Further, when such systems are installed, it
is known to provide excess capacity in the installations to support future growth and
utilization of the fibers. Often in these installations, modules including splitters or
fanouts are used to provide the connection between transmission fibers and customer
fibers. To reduce the cost and complexity of the initial installation and still provide
options for future expansion, a module mounting chassis capable of mounting
multiple modules may be used in such an installation.
While the chassis may accept several modules, the initial installation
may only include fewer modules mounted in the chassis, or enough to serve current
needs. These chassis may be configured with limited access to one or more sides, or
may be mounted in cramped locations. In addition, some of these chassis may be
pre-configured with the maximum capacity of transmission cables to accommodate
and link to modules which may be installed in the future. Since it is desirable to
have access to components within the chassis for cleaning during the installation of a
new module, some provision or feature of the chassis will desirably permit a user to
access and clean the connectors of these pre-connector zed and pre-installed
transmission cables.
It is also desirable for the chassis to be configured to ensure that
modules are installed correctly and aligned with other components within the chassis
to mate with the pre-connector zed and pre-installed transmission cables.
1

WO 2006/127400

PCT/LS2006/019285

Summary
The present invention relates to a telecommunications assembly
including a housing and a plurality of modules mounted within the housing. The
modules includes a bulkhead in which is mounted a plurality of fiber optic
connectors. Within an interior of the housing at each mounting location are
positioned a plurality of fiber optic adapters. Inserting the module through a front
opening of the housing at a mounting location positions the connectors of the
module for insertion into and mating with the adapters of the housing. The adapters
within the interior of the housing are integrally formed within a unitary removable
adapter assembly. The present invention further relates to a method of mounting a
telecommunications module within a chassis.
Brief Description of the Drawings
The accompanying drawings, which are incorporated in and
constitute apart of the description, illustrate several aspects of the invention and
together with the detailed description, serve to explain the principles of the
invention. A brief description of the drawings is as follows:
FIG. 1 is a front perspective view of a telecommunications assembly
with a plurality of fiber optic modules installed through a front opening.
FIG. 2 is a front perspective of the telecommunications assembly of
FIG. 1, taken from an opposite side.
FIG. 3 is a front view of the telecommunications assembly of FIG. 1.
FIG. 4 is a top view of the telecommunications assembly of FIG. 1.
FIG. 5 is a rear view of the telecommunications assembly of FIG. 1.
FIG. 6 is a side view of the telecommunications assembly of FIG. 1.
FIG. 7 is a front perspective view of the telecommunications
assembly of FIG, 1, with one of the modules exploded out of the assembly and
mounting flanges removed from the upper and lower surfaces of the chassis.
FIG. 8 is a rear perspective view of the telecommunications assembly
of FIG. 7.
FIG. 9 is a side view of the telecommunications assembly of FIG. 7,
with a fiber optic adapter holder exploded out of the assembly.
2

WO 2006/127400

PCT/LS2006/019285

FIG. 10 is a side cross-sectional view of the telecommunications
assembly of FIG. 1, taken through the center of one of the modules mounted within
the assembly.
FIG. 11 is a front view of the telecommunications assembly of FIG.
1, with one of the modules removed to show the adapter holder mounted within the
interior of the assembly.
FIG. 12 is a front perspective view of the adapter holder of FIG. 11,
removed from the assembly.
FIG. 13 is a front view of the adapter holder of FIG. 12.
FIG. 14 is a rear view of the adapter holder of FIG. 12.
FIG. 15 is a side view of the adapter holder of FIG. 12.
FIG. 16 is a top view of the adapter holder of FIG. 12.
FIG. 17 is a front perspective view of an alternative
telecommunications assembly according to the present invention, with a plurality of
fiber optic splitter modules mounted within a chassis and two modules exploded
from their mounted positions.
FIG. 18 is a front view of the telecommunications assembly of FIG.
17.
FIG. 19 is atop view of the telecommunications assembly of FIG. 17.
FIG. 20 is a bottom view of the telecommunications assembly of
FIG. 17, with a cable management structure mounted adjacent one side of the
chassis.
FIG. 21 is a top view of the telecommunications assembly of FIG. 20,
with a top of the chassis removed.
FIG. 22 is a front perspective view of the telecommunications
assembly of FIG. 21, with one of the modules exploded from its mounting position
within the chassis.
FIG. 23 is a first side view of the telecommunications assembly of
FIG. 20.
FIG. 24 is a second side view of the telecommunications assembly of
FIG. 20.
FIG. 25 is a front view of the telecommunications assembly of FIG.
20 with two of the module removed.
3

WO 2006/127400

PCT/US2006/019285

FIG. 26 is a rear view of the telecommunications assembly of FIG.
25.
FIG. 27 is a front view of the chassis of the telecommunications
assembly of FIG. 25, with the modules and adapter assemblies removed from within
the chassis.
FIG. 28 is a rear view of the chassis of FIG. 27.
FIG. 29 is a first side view of the chassis of FIG. 27.
FIG. 30 is a second side view of the chassis of FIG. 27.
FIG. 31 is a top view of the chassis of FIG. 27.
FIG. 32 is a top view of an adapter assembly according to the present
invention with extended dust plugs inserted a front end of each adapter and standard
duct plugs inserted within a rear end of each adapter.
FIG. 33 is a bottom partially exploded perspective view of the
adapter assembly of FIG. 32.
FIG. 34 is a front view of the adapter assembly of FIG. 32.
FIG. 35 is a first side view of the adapter assembly of FIG. 32.
FIG. 36 is a front perspective view of the adapter assembly of FIG.
32, with the dust plugs removed from the adapters and a shutter partially exploded
from its mounting position adjacent one of the adapters.
FIG. 37 is a front view of the adapter assembly of FIG. 36.
FIG. 38 is a rear view of the adapter assembly of FIG. 36.
FIG. 39 is a first side view of the adapter assembly of FIG. 36.
FIG. 40 is a second side view of the adapter assembly of FIG. 36.
FIG. 41 is a top view of the adapter assembly of FIG. 36.
FIG. 42 is a bottom view of the adapter assembly of FIG. 36, with
access panels for each adapter of the assembly removed.
FIG. 43 is a top perspective view of a splitter module according to the
present invention for use with the assembly of FIG. 17.
FIG. 44 is a bottom exploded perspective view of the splitter module
of FIG. 43.
FIG. 45 is a bottom view of the splitter module of FIG. 44, with the
cover removed.
FIG. 46 is a top view of the splitter module of FIG. 43.
FIG. 47 is a bottom view of the splitter module of FIG. 43.
4

WO 2006/127400

PCT/US2006/019285

FIG. 48 is a first side view of the splitter module of FIG. 43.
FIG. 49 is a second side view of the splitter module of FIG. 43.
FIG. 50 is a rear view of the splitter module of FIG. 43.
FIG. 51 is a front view of the splitter module of FIG. 43.
Detailed Description
Reference will now be made in detail to exemplary aspects of the
present invention which are illustrated in the accompanying drawings. Wherever
possible, the same reference numbers will be used throughout the drawings to refer
to the same or similar parts.
FIG. 1 illustrates a telecommunications assembly 10 with mounting
locations 12 for mounting a plurality of modules 14. Assembly 10 includes a
chassis or housing 16 with a first major side 18, a second major side 20 and a pair of
opposing transverse sides 22 extending between the first and second major sides. A
mounting flange 24 may be mounted to each of the major sides extending generally
oppositely of each other. A secondary or alternative mounting flange 26 may also
be mounted to one of the major sides to provide options for mounting housing 16 to
a particular size or shape of equipment rack, cabinet or other type of installation.
Housing 16 defines a front opening 28 through which modules 14 are
inserted within an interior 30 (shown below in FIG. 7) of housing 16, Openings 32
may be defined in the transverse sides 22 to permit access by a person into interior
30. Openings 32 may include a protective pad 34 about a perimeter to provide chafe
and other injury to any hands which may pass into or out of interior 30 through one
of the openings 32. Visible through opening 32 in FIG. 1 is a housing 40 of one of
the modules 14 mounted within front opening 28. Flanges 24 and 26 may include a
plurality of fastener openings 36 for mounting housing 16 where needed in a
telecommunications installation.
Referring now to FIG. 2, each module 14 includes a releasably catch
42 adjacent second major side 20. As can be seen below in and described with to
FIG. 10, catch 42 engages a portion of housing 16 to hold module 14 within front
opening 28 and can also be deflected to permit withdrawal of module 14 from
housing 16. Each module 14 also may include one or more cable exits 44 extending
from a front face 46. Cable exits 44 permit telecommunications cables within
module 14 to be directed outside of module 14, as will be described below with
5

WO 2006/127400

PCT/US2006/019285

regard to FIG. 10. As shown in FIG. 2, front faces 46 of modules 14 are angled with
regard to front opening 28, which may aid in the direction of cables exiting module
14 toward a desired location in the telecommunications installation. It is anticipated
that front faces 46 could be made generally parallel to front edges 38 of transverse
sides 22 at front opening 28 within the scope of the present disclosure.
Referring now to FIG. 3, modules 14 includes unequal length flanges
48 and 50 which are received within correspondingly sized slots 52 and 54,
respectively. Flange 48 and slot 52 are smaller in size than flange 50 and slot 54.
Slot 52 is sized so that, while flange 48 maybe received within slot 52, larger flange
50 will not fit. This ensures that modules 14 are positioned within front opening 28
in a particular desired orientation. Similar flanges are described in commonly-
owned U.S. Patent No. 5,363,465, the disclosure of which is incorporated herein by
reference. Opposite latch 42 and mounted to housing 16 at each mounting location
12 are an adapter holder 56 releasably held within front opening 28 by a thumbscrew
58. Adapter holder 56 is described in further detail below with regard to FIGS. 9 to
16.
Referring now to FIGS. 4 and 5, housing 16 further includes a back
60 opposite front opening 28, substantially closing off the rear of housing 16.
Openings may be provided through back 60 to allow cables or air to pass, but it is
anticipated that user access into interior 30 of housing 16 will be made through front
opening 28. As shown in FIG. 6, on one end of modules 14, a lip or finger grip 62
may be included to aid removal of module 14 from housing 16. Finger grip 62 is
preferably positioned on module 14 opposite latch 42 so that a user may apply
opposing force with fingers or hands to securely grasp the module and remove it
from housing 16.
Referring now to FIG. 7, latch 42 of module 14 includes a recessed
area 66 which engages an edge 64 of mounting location 12 to hold module 14 in
place within front opening 28. Recessed area 66 is formed near a distal end of latch
42 and a flexible portion 68 extends from recessed area 66 to a point of connection
to a first side 70 of module 14. Flexible portion 68 is resiliency deformable and
allows a user to deflect latch 42 to disengage recessed area 66 from edge 64 and
remove module 14 from housing 16 or for latch 42 to deflect as module 14 is
inserted into front opening 28 and engage edge 64. Module 14 includes a second
opposing side 72 and a back 78. An intermediate rear face 76 is formed in second
6

WO 2006/127400

PCT7US2006/019285

side 72 by an inset side portion 74. A pair of fiber optic connectors 80 is positioned
in rear face 76 to mate with fiber optic adapters mounted to adapter holder 56 within
interior 30 of housing 16.
Module housing 40 also includes a first transverse face 82 extending
between first side 70, second side 72, back 78 and front face 46. A second
transverse face 84 closes off the opposite side of module housing 40 between front
face 46 and back 78 but extends beyond sides 70 and 72 to form flanges 48 and 50
(flange 50 is not visible in FIG. 7). In FIG. 8, flange 50 is visible as an extension of
second transverse face 84 beyond side 70 of module 14. Module housing 40 may
include curved transitions 86 between sides 70 and 72 and back 78. Transitions 86
may be shaped to provide bend radius protection to cables within interior 30 as the
cables extend to adapters 88. Alternatively, sides 70 and 72 may terminate directly
at back 78, depending on the needs for placing components within module housing
40 and efficiencies in manufacturing of module housing 40.
FIG. 9 shows assembly 10 with adapter holder 54 exploded out from
interior 30. Holder 54 includes an extension 86 to hold and position a pair of
adapters 88 to engage connectors 80 of module 14. Each adapter 88 includes a first
or rear end 90 and a second or front end 92, and each of the first and second ends are
adapted to receive a fiber optic connector which may terminate a fiber optic cable.
FIG. 10 shows a cross-section of assembly 10 with a first cable 94
extending from connector 80 to an optical component 98, mounted within an interior
96 of module housing 40. Optical component 98 may be a splitter or a fan-out or
another type of optically significant element. First cable 94 may be a multi-strand
fiber cable with a plurality of strands of optical fiber and optical component 98 may
be a fanout to separate the individual strands into each of a plurality of second cables
100. Second cables 100 extend from optical component 98 to cable exit 44.
Alternatively, first cable 94 may be a single fiber whose signal is separated by
optical component 98 which is a splitter and a plurality of second cables 100
carrying portions of the signal from first cable 94 may extend to cable exit 44. The
arrangement of optical fiber and sheathing at cable exit 44 may be as disclosed in
commonly-owned U.S. Patent Application Serial No. 10/658,802, the disclosure of
which is incorporated herein by reference.
An outside cable 102 may extend to rear end 90 of adapter 88 and be
terminated by a connector 104. Connector 104 may be received in rear end 90 to be
7

WO 2006/127400

PCT/US2006/019285

optically connected to connector 80 of module 14. Cable 102 may extend from
interior 30 of housing 16 through an opening in one of sides 18, 20, or 22 in housing
16.
Referring now to FIG. 11, assembly 10 has a module removed from
one of the mounting locations 12 and includes an alternative adapter holder 154 in
that mounting location 12. Holder 154 includes a shield 108 in front of second ends
92 of adapters 88. In some installations, a housing 16 may be installed and a cable
102 led to and connected to first ends 90 of adapters 88, before a module 14 is
placed in the associated mounting location 12. If cable 102 is illuminated and
transmitting light signals, shield 108 will prevent accidental exposure to thesis
signals which might damage eyes or other sensitive organs, or nearby
communications equipment.
In FIG. 12, holder 154 includes an opening 124 through extension 86
through which adapters 88 are mounted. Thumbscrew 56 extends through a front
flange 114 and pair of wall engaging flanges 116 extend backward from adjacent
front flange 114. Alternatively, other releasable features, such as snap fit devices,
quarter turn fasteners, swell latches or similar features may be used in place of
thumbscrew 56 on holder 54 or 154. Positioned between a forward end of each
flange 116 and front flange 114 is a slot 118. Toward a rear end of flanges 116 are a
pair of wall slots 120. As shown in FIG. 10, an inner wall 110 is positioned within
interior 30 offset inwardly from first major surface 18. Wall slots 120 extend along
both sides of inner wall 110. A turned-in forward edge 112 of first major surface 18
engages slot 118. These engagements between housing 16 and holder 154 correctly
position adapters offset from inner wall 110 within interior 30 to engage connector
80 on rear face 76 of module 14. A central member 122 extends from front flange
114 between wall flanges 116 to extension 86 to correctly position adapters 88
within interior 30 between front opening 28 and rear 60.
Referring now to FIGS. 13 to 16, extension 86 of holder 154 includes
a plurality of fastener openings 124 for mounting adapters 88 to extension 86.
Fasteners 126 maybe extended through side flanges 128 of adapter 88 to permit
secure mounting of adapters 88. Adapters 88 are shown as SC style connectors,
although other types, styles and formats of adapters may be used within the scope of
the present disclosure and connectors 80 and 104 changed to mate with these
alternative adapters. Within each of the adapters 88 shown may be an alignment
8

WO 2006/127400

PCT/US2006/019285

device, such as a split sleeve 130 to correctly position optical fiber terminated in a
ferrule and held by connectors 80 and 104. Such alignment devices and termination
ferrules are well known in the art.
Shield 108 is curved when viewed from the side, as in FIG. 15, so
that shield 108 will be deflected by module 14 as module 14 is inserted into interior
30 through front opening 28 so that connectors 80 can mate with adapters 88. Shield
108 is preferably made of a resilient deformable material that will return to the
position shown in FIG. 154 when the module 14 is withdrawn from mounting
location 12. Shield 108 may be connected to central member 122 by a pair of
fasteners such as screws 132. Alternatively, shield 108 could be connected to holder
154 by being formed integrally with holder 154 or by spot-welding or other
fastening techniques. As rear 60 closes off the rear of housing 16 so that is no
access to the rear any modules 14 mounted at a mounting location 12, providing a
second shield 108 to block light from first end 90 of each adapter 88 is not needed as
shown. However, if any sensitive equipment is mounted within module 14 or
housing 16, it may be desirable to have a second shield 108 blocking first side 90 of
adapters 88.
Insertion of module 14 into housing 16 at one of the mounting
locations 12 may include first unfastening thumbscrew 56 and removing holder 54
or 154 from interior 30 through front opening 28. Cable 102 preferably includes
enough excess length or slack within interior 30 to permit adapters 88 to be pulled
through opening 28. Once positioned outside of interior 30, connector 104 of cable
102 can be removed from first end 90 of adapter 88 to permit a polished endface of
an optical fiber within cable 102 to be cleaned. Connector 104 can then be
reinserted within first end 90. Holder 54 or 154 can be reinserted within interior 30
so that the holder engages inner wall 110 and inward turned extension 112 and
thumbscrew 56 resecured. Insertion of module 14 into front opening 28 begins the
mating of module 14 to housing 16 and adapters 88. Flanges 48 and 50 engage slots
52 and 54, respectively, as module 14 is inserted. Connectors 80 and portions of
second side 72 engage and deflect shield 108 (if present) as connectors 80 approach
second ends 92 of adapters 88. Further insertion of module 14 brings connectors 80
into and contact with adapters 88 and the connectors are received within second ends
92. Latch 42 is deflected inward as module 14 is inserted and then springs back so
that recessed area 66 engages edge 64. Module 14 is now mounted within front
9

WO 2006/127400

PCT/US2006/019285

opening 28 and interior 30 at mounting location 12 and in position to process and
transmit signals from cable 102 through first cable 94, optical component 98 and
second cable 100 within module interior 96.
Referring now to FIGS. 17 to 19, an alternative embodiment 200 of a
telecommunications assembly includes a plurality of fiber optic splitter modules 202
mounted in mounting locations 206 in a front 214 of chassis 204. Chassis 204
includes a top 208, a pair of opposing sides 210 and a pair of mounting flanges
extending outward from sides 210 adjacent front 214. Chassis 204 also includes a
rear 216. Front 214 defines a pair vertical stacks of mounting locations 206 which
are offset front to rear from each other to provide improved cable pathways for fiber
optic cables extending from modules 202.
FIGS. 20 to 26 illustrate assembly 200 with a cable management
structure 220 mounted to one of the mounting flanges 212 and a bottom 218. Two
of the modules 202 have been removed from mounting locations 206. Referring
now specifically to FIGS. 21 and 22, each module 202 includes up to four rear
feeing connectors 226 which are received within an adapter assembly 222 positioned
at each mounting location 206. As shown, rear 218 of chassis 204 is open for entry
of fiber optic cables extending to a rear side of adapter assembly 222 and a rear
cable protector is mounted adjacent rear 218 to assist direction of these rear entering
cables to adapter assembly 222. Each adapter assembly 222 includes up to four fiber
optic adapters 232 which are configured to receive one of the rear facing connectors
226 in a front end and, connector of a rear entering fiber optic cable in the opposite
end.
Referring now also to FIGS. 27 to 31, each mounting location 206
includes a pair of opposing slots 228 when engage flanges 230 extending from sides
of modules 202 to positions connectors 226 of modules 202 to engage adapter
assembly 222.
FIGS. 32 to 35 show adapter assembly 222 removed from chassis
204. Adapter assembly 222 includes four integrated adapters 232 and each adapter
has a rear end 234 and a front end 236. As shown in FIGS. 32 and 33, a dust plug
238 is positioned in each rear end 234 and an extended dual dust plug 240 is inserted
within the front ends of each pair of adapters 232 to seal the interior of adapters 232
from contaminants. Adapter assembly 222 includes an adapter housing portion 246
within which are located adapters 232, and a chassis mounting slide 248 which is
10

WO 2006/127400

PCT/US2006/019285

received within chassis 204 through front end 214 and which cooperates with
chassis 204 to define a mounting location 206. A flange 250 extends from mounting
slide 248 and a thumbscrew 252 for securing adapter assembly 222 within chassis
204 extends through flange 250. Screw 252 is positioned within an opening 254,
and is preferably a captive fastener, although other fasteners may be used.
As shown in FIG. 33, each adapter 232 is positioned within housing
portion 246. Elements of adapter 232 are positioned through an opening 256 into an
adapter recess 258. The elements for each adapter 232 include a ferrule alignment
sleeve 260 and a pair of inner housing halves 262. These elements are placed within
recess 258 in manner similar to that shown in U.S. Patent No. 5,317,663, issued May
20, 1993, the disclosure of which is incorporated herein by reference. A panel 264
closes opening 256 and secures the elements within each adapter 232.
Referring now to FIGS. 36 to 41, a shutter 244 is positioned within a
front opening 266 in front end 236 of each adapter 232 to provide protection against
accidental exposure to light. Shutters similar to shutter 244 are described in PCT
Publication No. WO 03/093889A1, published on November 12, 2003, the disclosure
of which is incorporated herein by reference. Shutter 244 slides into a slot 268 in
housing portion 246. A tab 270 extends from shutter 244 and engages a tab recess
272 to retain shutter 244 in position within each adapter 232. While shutter 244 is
not essential to the function of adapter 232 in connecting fiber optic cables, it is
desirable to provide protection against accidental optical signal exposure that could
cause injury to workers or other equipment. Preferably, shutter 244 does not engage
the ferrule of the connector inserted into each adapter 232. Instead, the connector
housing pushes shutter 244 out of the way.
FIG. 42 illustrates adapter assembly 222 with access panels 264
removed to show elements of each adapter 232 within recesses 258.
FIG. 43 shows splitter module 202 with side flanges 230 for engaging
slots 228 of mounting locations 206 within chassis 204. Connectors 226 are
mounted to an inset bulkhead 274 positioned between a front 276 and a rear 278 of a
module body 280. A screw cover flange 282 extends from one of a pair of sides 284
of body 280 and latch 42 extends from the other side 284. Flange 282 extends over
screw 252 of adapter assembly 222 when module 202 is mounted within chassis
204. This prevents removal of adapter assembly 222 or loosening of screw 252
when module 202 is mounted at a mounting location 206. Cable exits 44 permit
11

WO 20(16/127400

PCT/US2006/019285

passage of optical fibers from within body 280 through front 276 so that the fibers
may be extended through cable structure 220 and to other telecommunications
equipment.
Referring now to FIG. 44, module 202 includes an interior 286
defined by body 280 and removable bottom plate 288, which is held to body 280 by
a plurality of removable fasteners such as screws 290. Mounted within interior 286
adjacent and behind each cable exits 44 are a pair of fiber anchors 292. As noted
with regard to module 14 above, module 202 preferable houses a splitter which
receives a single fiber strand on one end and plurality of fiber strands on the other
end. Module 202 includes up to four rear connectors 226 and so may include up to
four splitters (not shown in FIG. 44). Within interior 286, each connector 226 may
include an angled strain relief boot 227 to provide for redirection of a fiber
terminated by connector 226.
Connectors 226 are access from outside interior 286 through an
opening 292 in body 180. A connector mounting block 296 spaces and secures
connectors 226 for interface with and engagement of adapters 232 of adapter
assembly 222. Mounting block 296 also includes an upper cable guide 298 for
routing cables within interior 286 between connectors 226 and exits 44. A splitter
mount 300 is also included within interior 286 for positioning and securing one or
more optical splitters or other optical components within module 202. A central
support post and screw boss 302 may also be positioned to provide additional
support to bottom plate 288. A finger grip or handle 304 extends from front 276 to
provide a convenient grip for removing module 202 from chassis 204, or otherwise
assisting in handling.
Referring now to FIGS. 45 to 51, module 202 includes a full depth
portion 306 adjacent front 276 and into which connectors 226 direct incoming fibers,
and a partial depth portion 308 beginning adjacent connectors 226 and extending to
rear 278. The number of connectors 226 that may be mounted to module 202 does
not permit sides 184 from being moved toward each other, reducing the width of
interior 286, without encroaching too significantly on cable routing space within
interior 286. Having partial depth portion 308 extending from rear 278 to
connectors 226 permits adapters to be overlapped with body 280, which is not
possible with module 14, described above. The reduced depth does reduce the
volume of interior 286 but does not adversely impact bend radius requirements
12

WO 2006/127400

PCT/US2006/019285

within interior 286. A transition 310 provides a smooth flow between the depths of
portions 306 and 308. A smooth transition may be desirable to reduce any sharp
angles within interior 286 that fibers may come in contact with, and also may permit
easier forming or construction of body 280.
In module 202, connectors 226 are positioned within the top vie
footprint of body 280, i.e., between sides 284, and are also inset from rearmost
extension of module 202, i.e., rear 278.
Modules 202 are configured so that they can be mounted within
chassis 204 from the front without having to access any rear connections, once the
adapter assemblies 222 have been positioned and connected to cables. Access to
cables and connectors connected to rear end 234 of adapter assemblies 222 may be
provided by pulling the assemblies through front 214 of chassis 204 by releasing
screw 252 so that these connectors may be accessed for inspection or cleaning.
The above specification, examples and data provide a complete
description of the manufacture and use of the invention. Since many embodiments
of the invention can be made without departing from the spirit and scope of the
, invention, the invention resides in the claims hereinafter appended.
13

WO 2006/127400

PCT/LS2006/019285

What is claimed is:
1. A telecommunications assembly comprising:
a chassis and a module mounted within the chassis;
the chassis including:
a housing with a top, a bottom, and opposing sides, defining
an interior space accessible through an open front, the interior space substantially
closed off by a back opposite the open front;
at least one mounting location within the interior space;
at least one fiber optic adapter assembly corresponding to
each of the mounting locations mounted within the interior space, each adapter
assembly including a unitary housing with a plurality of adapter integrally formed in
the unitary housing, each adapter including a front end directed toward the open
front and a back end directed toward the back, each end configured to receive a fiber
optic connector; and,
each adapter assembly housing including a mounting portion
adjacent one of the sides of the chassis, the adapter assembly removable from the
interior through the open front of the chassis to permit access to the back end of the
adapters of the adapter assembly, the adapter assembly positioning the adapters
within the interior behind the open front; and,
the module mounted at one of the mounting locations and including a
housing with a bulkhead to which is mounted a plurality of fiber optic connectors
engaging the plurality of fiber optic adapters of the adapter assembly, the bulkhead
of the module positioned forward of a rear most extension of the housing of the
module.
2. The telecommunications assembly of claim 1, the module further
comprising:
a body defining an interior;
at least one optical component within the interior of the housing; and
a front with a cable exit.
3. The telecommunications assembly of claim 1, wherein the adapter assembly
positions the plurality of adapters forward of the back of the chassis.
14

WO 2006/127400

PCT/US2006/019285

4. The telecommunications assembly of claim 1, wherein each module includes
a pair of opposing mounting flanges and each mounting location includes a pair of
opposing slots to receive the flanges of the modules.
5. The telecommunications assembly of claim 2, wherein the body of the
module defines a shallower depth between the bulkhead and the rear of the module
and a greater depth between the bulkhead and the front of the module.
6. The telecommunications assembly of claim 1, wherein the adapter assembly
is positioned adjacent one of the sides of the chassis and the mounting portion
extends along the adjacent side to the front opening, the mounting portion releasably
held to the chassis by a removable fastener.
7. The telecommunications assembly of claim 6, wherein the adapter assembly
is held at the mounting location by a releasable fastener and the front of the module
includes an extension which prevents access to the releasable fastener when the
module is mounted at the mounting location.
8. The telecommunications assembly of claim 6, wherein the releasable fastener
is a thumbscrew captively held by the forward extension of the adapter assembly and
releasably received within a fastener opening of the chassis.
9. The telecommunications assembly of claim 1, wherein the module is held at
the mounting location by a releasable latch.
10. The telecommunications assembly of claim 2, wherein the module includes a
four fiber optic connectors on the bulkhead, and the adapter assembly includes four
fiber optic adapters which each receive one of the fiber optic connectors.
11. The telecommunications assembly of claim 2, wherein the module includes a
pair of cable exits on the front.
15

WO 2006/127400

PCT/US2006/019285

12. The telecommunications assembly of claim 2, wherein each of the at least
one cable exits includes a bell shaped portion to provide bend radius protection to
the second optical fiber cables extending through the cable exit.
13. The telecommunications assembly of claim 1, wherein one of the mounting
locations of the chassis further includes a fiber optic cable extending to and received
within the rear of the one of the plurality of fiber optic adapters of the adapter
assembly, and removal of the adapter assembly through the front opening of the
chassis allows access to the fiber optic cable received within the rear of the adapter.
14. The telecommunications assembly of claim 13, wherein the fiber optic cable
extending to the rear of the fiber optic adapter may be accessed by removing the
adapter assembly through the front opening of the chassis, the fiber optic cable may
be removed from the rear of the adapter and cleaned, the fiber optic cable may be
replaced within the adapter and the adapter assembly repositioned within the chassis.
15. A method of mounting a module within a chassis comprising:
providing the chassis including a front opening and a module
mounting location, an adapter assembly positioned within an interior of the chassis
at the module mounting location and accessible through the front opening, the
adapter assembly including a unitary body including a plurality of fiber optic
adapters with a connector of a fiber optic cable received in a rear of each adapter,
and further providing a module adapted to be mounted at the mounting location, the
module including a bulkhead with a plurality of fiber optic connectors;
removing the adapter assembly from the interior of the chassis
through the front opening;
removing the connector of the fiber optic cable from the rear of the
adapter and inspecting an endface of an optical fiber within the fiber optic cable;
replacing the connector with the fiber optic cable within the rear of
the adapter;
replacing the adapter assembly within the chassis at the mounting
location;
16

WO 2006/127400

PCT/US2006/019285

inserting the module within the chassis through the front opening at
the mounting location and engaging a front of each adapter with one of the
connectors of the bulkhead of the module.
16. A telecommunications module comprising:
a body defining an interior and including first and second opposing
sides, a front, a rear defining a rear-most extension of the housing, and a bulkhead
positioned between the front and the rear;
the bulkhead positioned between the sides and adjacent one of the
sides of the housing and accessible from a rear of the housing;
the body defining a shallower depth between the bulkhead and the
rear and a greater depth between the bulkhead and the front;
a mounting flange extending beyond each side of the body;
a plurality of fiber optic connectors mounted to the bulkhead and
positioned to be inserted into a mating adapter with a rearward movement of the
body;
at least one cable exit positioned in the front of the body, each cable
exit including a bell shaped outer extension beyond the front face.
17. The telecommunications module of claim 16, further comprising a handle
extending from the front of the body adjacent the at least one cable exit.
18. The telecommunications module of claim 16, wherein the front further
comprises a flange extending beyond the mounting flange on side of the body.
19. A fiber optic telecommunications chassis comprising:
a housing with a first major side, a second major side, and a pair of
opposing transverse sides extending between the major sides defining an interior
with an front opening and a back substantially closing off the interior opposite the
front opening;
a plurality of mounting locations defined for telecommunications
modules inserted through the front opening with the module generally oriented
parallel to one of the transverse sides;
17

WO 2006/127400

PCT/US2006/019285

each mounting location including an adapter assembly positioned
adjacent one of the first or second major sides, the adapter assembly removably
mounted within the interior of the housing and including a unitary housing with a
plurality of integrally formed fiber optic adapters, each fiber optic adapter including
a front end and a rear end, each end configured to receive a mating fiber optic
connector;
each adapter assembly orienting the at least one fiber optic adapter
with a front end positioned to receive the mating fiber optic connector inserted
through the front opening toward the back and generally parallel to the sides;
each adapter assembly positioned to hold the plurality of adapters
within the interior of the housing at a location behind the front opening and forward
of the back, so that a fiber optic cable with a mating fiber connector may be directed
to and inserted within the rear end of the adapter;
18
the adapter assembly removable from the interior of the housing
through the front opening so that the rear end of the plurality of adapters may be
accessed outside of the interior.

A telecommunications assembly including a housing and a plurality of modules
mounted within the housing. The modules includes a rear face in which is
mounted at least one fiber optic connector. Within an interior of the housing are
positioned at least one fiber optic adapters. Inserting the module through a front
opening of the housing at a mounting location positions the connector of the
module for insertion into and mating with the adapter of the housing. The
adapters within the interior of the housing are integrally formed as part of a
removable adapter assembly. A method of mounting telecommunications module
within a chassis.

Documents:

04494-kolnp-2007-abstract.pdf

04494-kolnp-2007-claims.pdf

04494-kolnp-2007-correspondence others.pdf

04494-kolnp-2007-description complete.pdf

04494-kolnp-2007-drawings.pdf

04494-kolnp-2007-form 1.pdf

04494-kolnp-2007-form 2.pdf

04494-kolnp-2007-form 3.pdf

04494-kolnp-2007-form 5.pdf

04494-kolnp-2007-international publication.pdf

04494-kolnp-2007-international search report.pdf

04494-kolnp-2007-pct priority document notification.pdf

04494-kolnp-2007-pct request form.pdf

4494-KOLNP-2007-(26-09-2014)-ANNEXURE TO FORM 3.pdf

4494-KOLNP-2007-(26-09-2014)-CLAIMS.pdf

4494-KOLNP-2007-(26-09-2014)-CORRESPONDENCE.pdf

4494-KOLNP-2007-(26-09-2014)-DESCRIPTION (COMPLETE).pdf

4494-KOLNP-2007-(26-09-2014)-DRAWINGS.pdf

4494-KOLNP-2007-(26-09-2014)-FORM-1.pdf

4494-KOLNP-2007-(26-09-2014)-FORM-2.pdf

4494-KOLNP-2007-(26-09-2014)-OTHERS 1.pdf

4494-KOLNP-2007-(26-09-2014)-OTHERS 2.pdf

4494-KOLNP-2007-(26-09-2014)-OTHERS 3.pdf

4494-KOLNP-2007-(26-09-2014)-OTHERS.pdf

4494-KOLNP-2007-(26-09-2014)-PETITION UNDER RULE 137.pdf

4494-KOLNP-2007-(29-09-2014)-CORRESPONDENCE.pdf

4494-KOLNP-2007-(29-09-2014)-OTHERS.pdf

4494-KOLNP-2007-ASSIGNMENT.pdf

4494-KOLNP-2007-CLAIMS.pdf

4494-KOLNP-2007-CORRESPONDENCE 1.1.pdf

4494-KOLNP-2007-CORRESPONDENCE OTHERS 1.1.pdf

4494-KOLNP-2007-CORRESPONDENCE OTHERS 1.2.pdf

4494-KOLNP-2007-FORM 13.pdf

4494-kolnp-2007-form 18.pdf

4494-KOLNP-2007-FORM 26.pdf

4494-KOLNP-2007-FORM 3 1.1.pdf

4494-KOLNP-2007-REPLY TO EXAMINATION REPORT.pdf


Patent Number 266060
Indian Patent Application Number 4494/KOLNP/2007
PG Journal Number 14/2015
Publication Date 03-Apr-2015
Grant Date 30-Mar-2015
Date of Filing 22-Nov-2007
Name of Patentee ADC TELECOMMUNICATIONS, INC.
Applicant Address 13625 TECHNOLOGY DRIVE EDEN PRAIRIE, MINNESOTA
Inventors:
# Inventor's Name Inventor's Address
1 ZIMMEL, STEVEN C. 5516 12TH AVENUE SOUTH MINNEAPOLIS, MINNESOTA 55417
PCT International Classification Number G02B 6/44
PCT International Application Number PCT/US2006/019285
PCT International Filing date 2006-05-18
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 11/138,063 2005-05-25 U.S.A.