Title of Invention

REMOTE DELIVERY OF LATEX DRAG-REDUCING AGENT

Abstract Latex drag reducers and systems for delivering latex drag reducers are disclosed. The latex drag reducers comprise a polymer that is formed via an emulsion polymerization reaction dispersed in a continuous phase and can undergo subsequent modification in order to increase the solubility of the polymer in hydrocarbons. The polymers generally present a particle size of less than about 1000 nm and are suitable for delivery to a subsea flowline via a small diameter conduit of an umbilical line without an unacceptable level of pressure drop or plugging of the conduit.
Full Text

REMOTE DELIVERY OF LATEX DRAG-REDUCING AGENT
The present invention relates generally to systems for reducing turbulent drag associated with fluids flowing through conduits. In another aspect, the invention concerns the delivery of drag-reducing agents to subsea flowlines via a relatively small diameter conduit of an umbilical line.
In the subsea production of oil and gas, production piping typically presents a significant bottleneck because of the difficulty and expense associated with the subsea installation of the piping. The production decrease caused by bottlenecking at subsea flowlines can have severe economic ramifications due to the resulting inability to run the hydrocarbon production system at full capacity. Several options that exist for preventing or curing bottlenecking at subsea flowlines include increasing the diameter of the flowlines, increasing the number of flowlines, or reducing the amount of friction loss in the flowlines to thereby allow more flow through the same diameter lines. The first two de-bottlenecking options of increasing the size or number of flowlines are obviously veiy expensive. Thus, it is highly desirable to be able to reduce friction losses in subsea flowlines.
It is commonly known that a variety of drag reducers are available for reducing the friction loss of a fluid being transported through a conduit in a turbulent flow regime. Ultra-high molecular weight polymers are known to function well as drag reducers; however, drag reducers vary in their effectiveness. Traditionally, the more effective drag reducing additives have been those containing higher molecular weight polymers. Increasing the molecular weight of the polymer generally increases the percent drag reduction obtained, with the limitation that the polymer must be capable of dissolving in the liquid in which friction loss is affected.
Many offshore oil and gas production facilities are operated from remote locations which can be miles away from the production wells. When remote facilities are used to operate a subsea production facility, an umbilical line is typically employed to provide power and various flow assurance chemicals to the production facility. Such umbilical lines generally include a plurality of relatively small-diameter injection lines through which various chemicals can be introduced into the flowline at an injection point

proximate the production wells. These chemicals generally include low-viscosity fluids such as hydrate inhibitors, wax inhibitors, and corrosion inhibitors which help to improve flow conditions in the flowline.
In the past, it has been proposed that drag reducing agents could be transported through an umbilical line to thereby affect a reduction in friction loss in the subsea flowline. However, due to the high viscosity and/or large particle size associated with commercially available drag reducers, existing drag reducers cannot be transported through the relatively small diameter conduits an umbilical line without causing plugging or unacceptable pressure drop. Methods have been devised for transporting a high-viscosity, high-polymer-content drag reducer through a chemical injection line of an umbilical by facilitating the flow of the drag reducer with an immiscible low-viscosity liquid material injected at the periphery of the chemical injection line. However, this method requires special equipment for introducing the low-viscosity material into the periphery of the chemical injection line. Furthermore, these methods do not address the problems associated with drag reducers that require the formation of a strand (described below) to effectively dissolve in the host fluid.
Commercially available gel drag reducers are typically highly viscous (e.g., greater than 10,000 cP or sometimes greater than 100,000 cP at typical pumping shear rates) and highly concentrated with ultra-high molecular weight polymers. Even at polymer concentrations as low as 5%, these gel drag reducers are still highly viscous.
In the past, when drag reduction has been needed in chaotic flow environments, it has been necessary to utilize suspension or slurry drag reducers. However, conventional suspension or slurry drag reducers typically contain solid particulate matter that is too large to flow through an umbilical line without plugging the line. Furthermore, highly viscous materials present difficulties in transport across long umbilical lines because of the tremendous pressure drop associated therewith.
It is, desirable to provide a method of reducing turbulent friction loss in a subsea flowline by transporting a latex drag reducer through an umbilical line and injecting the drag reducer into the subsea flowline.

Again it is desirable to provide a method of reducing drag in a flowline carrying a hydrocarbon-containing fluid produced from a subsea formation by transporting a drag reducer comprising relatively small particles of a high molecular weight polymer dispersed in a continuous phase through small-diameter chemical injection conduits of an umbilical line without plugging the lines and injecting the drag reducer into the subsea flowline.
It should be understood that the above-listed desires are only exemplary, and not all these need be accomplished by the invention described and claimed herein.
Accordingly, in one embodiment of the present invention there is provided a method comprising the steps of: (a) transporting a latex drag reducer through a subsea umbilical line, the drag reducer comprising a continuous phase and a plurality of particles of a high molecular weight polymer dispersed in the continuous phase; and (b) introducing the transported drag reducer into a flowline carrying fluid produced from a subterranean formation.
In another embodiment of the present invention, there is provided a method of reducing the drag forces associated with transporting a hydrocarbon-containing fluid through a subsea flowline comprising the steps of: (a) transporting a latex drag reducer from a control facility to an injection point in the subsea flowline via a subsea umbilical line, the control facility and the injection point being separated by a distance of at least 1,000 feet, the drag reducer comprising a continuous phase including at least one high HLB surfactant and at least one low HLB surfactant and a plurality of particles of a high molecular weight polymer dispersed in the continuous phase; and (b) introducing the transported drag reducer into the flowline at the injection point.
In still another embodiment of the present invention, there is provided a method of reducing drag in a flowline carrying a hydrocarbon-containing fluid produced from a subsea formation comprising the steps of: (a) transporting a drag reducer through a subsea umbilical line, the drag reducer comprising a latex emulsion including a quantity particles of a drag reducing polymer formed by an emulsion polymerization reaction, the polymer having a weight average molecular weight of at least about 1 x 106 g/mol, said particles having a mean particle size of less than about 1000 nm, the latex emulsion

having been modified by the addition of at least one low HLB surfactant; and (b) introducing the transported drag reducer into the flowline.
BRIEF DESCRIPTION OF THE DRAWING FIGURES
A preferred embodiment of the present invention is described in detail below with reference to the attached drawing figures, wherein:
FIG. 1 is a simplified depiction of an offshore production system including a plurality of subsea wellheads connected to a common production manifold which is tied back to an offshore platform via a subsea flowline, particularly illustrating an umbilical line running from the offshore platform to the production manifold;
FIG; 2 is a partial cut-away view of an umbilical line, particularly illustrating the various electrical and fluid conduits contained in the umbilical line;
FIG. 3 is a schematic diagram of an Engineering Loop Re-circulation Test apparatus used to measure the effectiveness of drag reducers;
F$G. # is a schematic- illustration of a test apparatus used to perform dissolution rate tests on various drag reducers;
FIG. 5 is an isometric view of the stirrer employed in the dissolution rate
tests;
FIG. 6 is atop view of the stirrer employed in the dissolution rate tests;
FIG. 7 is a side view of the stirrer employed in the dissolution rate tests;
FIG. 8 is a graph showing the effect that modification of the initial latex has on the hydrocarbon dissolution rate constant of the drag reducer over a range of temperatures;
FIG. 9 is a graph of the dissolution rate constant for various drag reducer formulations over a range of temperatures; and
FIG. 10 is a plot of the drag reduction in the Engineering Loop Recirculation Test apparatus using various drag reducing materials.

Referring initially to FIG. 1, a simplified offshore production system is illustrated as including a plurality of subsea wellheads 10, a common production manifold 12, an offshore platform 14, a subsea flowline 16, and an umbilical line 18. Each wellhead 10 is operable to produce a hydrocarbon-containing fluid from a subterranean formation. Each wellhead 10 is fluidly connected to production manifold 12 wherein the flow of the produced fluids are combined. The combined fluids from manifold 12 are transported via flowline 16 to platform 14. A first end 20 of umbilical line 18 is connected to a control facility on platform 14, while a second end 22 of umbilical line 18 is connected to wellheads 10, manifold 12, and/or flowline 16.
Referring now to FIG. 2, umbilical line 18 generally includes a plurality of electrical conduits 24, a plurality of fluid conduits 26, and a plurality of protective layers 28 surrounding electrical conduits 24 and fluid conduits 26. Referring to FIGS. 1 and 2, electrical conduits 24 carry power from platform 14 to wellheads 10 and/or manifold 12. Fluid conduits 26 , commonly referred to as chemical injection lines, are typically used to inject low-viscosity flow assurance chemicals into the produced hydrocarbon-containing fluids transported back to platform 14 via flowline 16. Typical flow assurance chemicals which are injected through fluid conduits 26 include, for example, hydrate inhibitors, corrosion inhibitors, paraffin inhibitors, scale inhibitors, biocides, demulsifiers, hydrogen sulfide scavengers, oxygen scavengers, water treatments, and asphaltene inhibitors.
Although it has been desired for many years to be able to transport a drag reducer through chemical injection lines (such as fluid conduits 26) in umbilicals (such as umbilical line 18) to thereby provide for drag reduction in a subsea hydrocarbon pipeline (such as flowline 16), no conventional drag reducers have been suitable for transportation through the long and narrow chemical injection lines without the need for simultaneous injection of a separate, immiscible, low-viscosity flow facilitator material at the periphery ' of the lines. Typically, the length of umbilical line 18 is at least 500 feet, more typically at least 1,000 feet, and frequently 5,000 feet to 30 miles. The maximum inside diameter of each fluid conduit 26 is typically 5 inches or less, more typically 2.5 inches or less, even more typically 1 inch or less, frequently 0.5 inches or less, and sometimes 0.25 inches or less.

In one embodiment of the invention, a drag reducer, such as one of those described below, is transported from platform 14 to production manifold 12 via at least one of the fluid conduits 26 making up umbilical line 18. It is preferable that at least one fluid conduit 26 be kept available for transporting a flow assurance chemical simultaneously with the drag reducer through umbilical line 18.
In another embodiment of the present invention there are provided drag reducer compositions which can be transported by themselves through one or more fluid conduits 26 of umbilical line 18 without causing unacceptably high pressure drops or plugging of fluid conduits 26. As used herein, the term "drag reducer" shall denote any substance that can be added to a host fluid flowing through a conduit to thereby reduce the friction loss associated with the turbulent flow of the host fluid through the conduit.
It is preferred for the inventive drag reducers to possess physical properties which allow them to be pumped through fluid conduit 26 of umbilical line 18 at typical operating conditions with a pressure drop of less than about 5 psi (pounds per square inch) per foot, more preferably less than about 2.5 psi per foot, and most preferably less than about 1 psi per foot. Generally, the temperature at which the drag reducer will be transported through fluid conduit 26 is relatively low due to the cool ocean-bottom environment around umbilical line 18. Thus, the temperature of the drag reducer during transportation through fluid conduit 26 is generally less than about 60°F, more typically less than about 40°F for deep sea systems.
It is preferred for the inventive drag reducers to comprise latex drag reducers comprising a high molecular weight polymer dispersed in an aqueous continuous phase. The first step in producing latex drag reducers according to the present invention is to prepare the high molecular weight polymer that can be formed into an initial latex. The polymer is prepared through an emulsion polymerization reaction of a reaction mixture comprising one or more monomers, a continuous phase, at least one surfactant, and an initiation system. The continuous phase generally comprises at least one component selected from the group consisting of water, polar organic liquids, and mixtures thereof. When water is the selected constituent of the continuous phase, the reaction mixture may also comprise at least one of a solvent and buffer.







method described by W.C. Griffin in J. Soc. Cosmet Chem,, 1,311 (1949) and J Soc. Cosmet. Chem., 5, 249 (1954), which is incorporated by reference herein. As used herein, "high HLBn shall denote an HLB number of 7 or more. The HLB number of surfactants for use with forming the reaction mixture is preferably at least about 8, more preferably at least about 10, and most preferably at least about 12.
Exemplary high HLB anionic surfactants include high HLB alkyl sulfates, alkyl ether sulfates, dialkyl sulfosuccinates, alkyl phosphates, alkyl aryl sulfonates, and sarcosinates. Commercial examples of high HLB anionic surfactants include sodium lauryl sulfate (available as RHODAPON™ LSB from Rhodia Incorporated, Cranbury, NJ), dioctyl sodium sulfosuccinate (available as AEROSOL™ OT from Cytec Industries, Inc., West Paterson, NJ), 2-ethylhexyl polyphosphate sodium salt (available from Jarchem Industries Inc., Newark, NJ), sodium dodecylbenzene sulfonate (available asNORFOX™ 40 from Norman, Fox & Co., Vernon, CA), and sodium lauroylsarcosinic (available as HAMPOSYL™ L-30 from Hampshire Chemical Corp., Lexington, MA).
Exemplary high HLB nonionic surfactants include high HLB sorbitan esters, PEG fatty acid esters, ethoxylated glycerine" esters, ethoxylated fatty amines, ethoxylated sorbitan esters, block ethylene oxide/propylene oxide surfactants, alcohol/ fatty acid esters, ethoxylated alcohols, ethoxylated fatty acids, alkoxylated castor oils,, glycerine esters, linear alcohol ethoxylates, and alkyl phenol ethoxylates. Commercial examples of high HLB nonionic surfactants include nonylphenoxy and octylphenoxy poly(ethyleneoxy) ethanols (available as the IGEPAL™ CA and CO series, respectively from Rhodia, Cranbury, NJ), C8to CI 8 ethoxylated primary alcohols (such as RHODASURF™ LA-9 from Rhodia Inc., Cranbury, NJ), CI1 to C15 secondary-alcohol ethoxylates (available as the TERGITOL™ 15-S series, including 15-S-7, 15-S-9, 15-S-12, from Dow Chemical Company, Midland, MI), polyoxyethylene sorbitan fatty acid esters (available as the TWEEN™ series of surfactants from Uniquema, Wilmington, DE), polyethylene oxide (25) oleyl ether (available as SIPONIC™ Y-500-70 from Americal Alcolac Chemical Co., Baltimore, MD), alkylaryl polyether alcohols (available as the TRITON™ X series, including X-IOO, X-165, X-305, and X-405, from Dow Chemical Company, Midland, MI).

The initiation system for use in the reaction mixture can be any suitable system for generating the free radicals necessary to facilitate emulsion polymerization. Preferred initiators include persulfates (e.g., ammonium persulfate, sodium persulfate, potassium persulfate), peroxy persulfates, and peroxides (e.g., tert-butyl hydroperoxide) used alone or in combination with one or more reducing components and/or accelerators. Preferred reducing components include, for example, bisulfites, metabisulfites, ascorbic acid, erythorbic acid, and sodium formaldehyde sulfoxylate. Preferred accelerators include any composition containing a transition metal with two oxidation states such as, for example, ferrous sulfate and ferrous ammonium sulfate. Alternatively, known thermal and radiation initiation techniques can be employed to generate the free radicals.
When water is used to form the reaction mixture, the water is preferably a purified water such as distilled or deionized water. However, the continuous phase of the emulsion can also comprise polar organic liquids or aqueous solutions of polar organic
liquids, such as those listed below.
As previously noted, the reaction mixture optionally includes at least one solvent and/or a buffer. Preferably, the at least one solvent is an organic solvent such as a hydrocarbon solvent (e.g., pentane, hexane, heptane, benzene, toluene, xylene), a halogenated solvent (e.g., carbon tetrachloride), a glycol (e.g., ethylene glycol, propylene glycol, glycerine), an ether (e.g., diethyl ether, diglyme, polyglycols, glycol ethers). More preferably, the solvent is a hydrocarbon solvent, and most preferably the solvent is toluene. The buffer can comprise any known buffer that is compatible with the initiation system such as, for example, carbonate, phosphate, and/or borate buffers.
In forming the reaction mixture, the monomer, water, the at least one surfactant, and optionally the at least one solvent, are combined under a substantially oxygen-free atmosphere that is maintained at less than about 1000 ppmw oxygen, more preferably less than about 100 ppmw oxygen. The oxygen-free atmosphere can be maintained by continuously purging the reaction vessel with an inert gas such as nitrogen. Preferably, the temperature of the system is kept at a level from the freezing point of the continuous phase up to about 60°C, more preferably from about 0°C to about 45°C, and most preferably from about CPC to about 30°C. The system pressure is preferably kept

between about 5-100 psia, more preferably between about 10-25 psia, and most preferably about atmospheric. However, higher pressures up to about 300 psia may be necessary to polymerize certain monomers, such as diolefins. Next, a buffer may be added, if required, followed by addition of the initiation system, either all at once or over time. The polymerization reaction is carried out for a sufficient amount of time to achieve at least 90% conversion by weight of the monomers. Typically, this is between about 1-10 hours, and most preferably between about 3-5 hours. All the while, the reaction mixture is continuously agitated.
The following table sets forth approximate broad and preferred amounts of the ingredients present in the reaction mixture.

The emulsion polymerization reaction yields an initial latex composition. The initial latex is a stable colloidal dispersion comprising a dispersed phase and a continuous phase. The dispersed phase comprises colloidal particles of the high molecular weight polymer and solvent (if present). The colloidal particles form about 10-60% by weight of the initial latex, most preferably about 40-50% by weight. The continuous phase preferably comprises water, the at least one high HLB surfactant, the at least one solvent (if present), and buffer as needed. Water comprises from about 20-80%

by weight of the initial latex, more preferably from about 40-60% by weight. The high HLB surfactant comprises from about 0.1-10% by weight of the initial latex, more preferably from about 0.25-6% by weight. As noted in the table above, the buffer is present in an amount necessary to reach the pH required for initiation of the polymerization reaction and is initiator dependent. Typically, the pH required to initiate a reaction is in the range of about 6.5-10.
The polymer of the dispersed phase preferably presents a weight average molecular weight (MJ of at least about 1 x 106 g/mol, more preferably at least about 2 x 106 g/mol, and most preferably at least about 5 x 106 g/mol. The colloidal particles preferably have a mean particle size of less than about 10 microns, more preferably less than about 1000 nm (1 micron), still more preferably from about 10-500 nm, and most preferably from about 50-250 nm. At least about 95% by weight of the colloidal particles are larger than about 10 nm and smaller than about 500 nm, more preferably at least about 95% by weight of the particles are larger than about 25 nm and smaller than about 250 nm. Preferably, the polymer of the dispersed phase exhibits little or no branching or crosslinking.
The continuous phase preferably has apH of about 4-10, most preferably from about 6-8, and contains few if any multi-valent cations.
In order for the polymer to function as a drag reducer, the polymer must dissolve or be substantially solvated in a hydrocarbon stream. The efficacy of the emulsion polymers as drag reducers when added directly to the hydrocarbon is largely dependent upon the temperature of the hydrocarbon. For example, at lower temperatures, the polymer dissolves at a lower rate in the hydrocarbon, therefore, less drag reduction is achieved. However, when the temperature of the hydrocarbon is above about 30°C, and more preferably above about 40°C3 the polymer is more rapidly solvated and appreciable drag reduction is achieved. As shown in the examples below, drag reduction can be achieved at a greater range of temperature by modifying the initial latex through the addition of a low HLB surfactant and/or a solvent. The resulting modified latex can be provided as a "one package" system wherein the drag reduction properties of the polymer are available to the hydrocarbon stream in a much faster time period.

In addition to increasing the hydrocarbon dissolution rate of the polymer, modification of the latex serves to provide a stable colloidal dispersion that will not flocculate or agglomerate over time and to ensure that the latex will not become fully broken or inverted. The modified latex is formed by adding at least one low HLB surfactant and/or at least one solvent to the initial latex. It is preferable to modify the initial latex with both a low HLB surfactant and a solvent. As used herein, "low HLB" shall denote an HLB number less than 7. Preferably, the low HLB surfactant has an HLB number of less than about 6, still more preferably less than about 5, and most preferably between about 1-4.
Exemplary suitable low HLB surfactants include low HLB sorbitan esters, PEG fatty acid esters, ethoxylated glycerine esters, ethoxylated fatty amines, ethoxylated sorbitan esters, block ethylene oxide/propylene oxide surfactants, alcohol/fatty acid esters, ethoxylated alcohols, ethoxylated fatty acids, alkoxylated castor oils, glycerine esters, polyethylene glycols, linear alcohol ethoxylates, alkyl phenol ethoxylates, and oil soluble polymeric emulsifiers such as polyisobutylene succinic anhydride copolymer diethanol amine salt/amide or salt/amide mixtures, and Hypermer B-206.
Commercial examples of suitable nonanionic low HLB surfactants include sorbitan trioleate (available as SPAN™ 85 fromUniqema, Wilmington, DE), sorbitan tristearate (available as SPAN™ 65 fromUniqema, Wilmington, DE), sorbitan sesquioleate (available as LUMISORB™ SSO from Lambent Technologies, Skokie, IL), sorbitan monooleate (available as ALKAMULS™ SMO from Rhodia Inc., Cranbury, NJ), sorbitan monostearate (available as SPAN*™ 60 fromUniqema, Wilmington, DE), ethylene glycol fatty acid ester (available as MONOSTRIOL™ EN-C from Undesa, Barcelona, Spain), polyethylene glycol dioleate (such as ALKAMULS™ 600 DO from Rhodia Inc., Cranbury, NJ) propylene glycol monostearate (available as MONOSTRIOL™ PR-A from Undesa, Barcelona, Spain), glycerol monostearate (available as KEMFLUID™ 203-4 from Undesa, Barcelona, Spain), polyisobutylene succinic anhydride copolymer diethanol amine salt (available as LUBRIZOL™ 2700, from The Lubrizol Corporation, Wickliffe, OH), and proprietary hydrophobic polymeric surfactants (such as HYPERMER™ B-206 fromUniqema, Wilmington, DE).

The amount of the at least one low HLB surfactant required to modify the initial latex depends on the desired dissolution rate for the polymer as well as the amount of solvent used. This provides the flexibility needed to adjust the dissolution rate to pipeline conditions. Preferably, the finished formulation (i.e., the modified latex drag reducer) contains from about 1-95% by weight of the low HLB surfactant, more preferably from about 1-50% by weight, even more preferably from about 1-30% by weight, and most preferably from about 1-25% by weight.
Suitable solvents for use m forming the modified latex drag reducer include aromatic solvents (such as benzene, toluene, xylene, ethylbenzene, dibenzyl toluene, benzyltoluene, butylxylene, diphenylethane, diisopropylbiphenyl, triisopropylbiphenyl, etc.,), partially or fully hydrogenated aromatic solvents (such as tetxahydronaphthalene or decahydronaphthalene), glycols (such as ethylene glycol, propylene glycol, butylenes glycol, hexylene glycol, polyglycols such as diethylene glycol, Methylene glycol, polyethylene glycol, polypropylene glycol and ethylene oxide propylene oxide block copolymers, glycol ethers, polypropylene glycol butyl ether, ethylene glycol butyl ether, propylene glycol methyl ether, propylene glycol butyl ether, propylene glycol phenyl ether, diethylene glycol methyl ether, dipropylene glycol methyl ether, triethylene glycol methyl ether), esters (such as butyl formate, ethyl acetate, lactate esters), nitrogen containing solvents (such as dimethylformamide), aliphatic and aromatic alcohols (such as methanol, ethanol, isopropanol, hexyl alcohol, 2-ethylhexyl alcohol, benzyl alcohol, tetrahydrofurfuryl alcohol), ketones (such as acetone, methyl ethyl ketone, methyl isobutyl ketone, methyl isoamyl ketone, cyclohexanone), sulfur containing solvents (such as dimethyl sulfoxide), tetrahydrofuran, alkyl halides (such as methylene chloride, 1,1,1-trichloro ethane, perchloroethylene), and combinations thereof. Most preferred are low molecular weight glycols having a molecular weight of less than about 1000, more preferably having a molecular weight between about 100-600, and most preferably between about 200-500. Polyethylene glycol having a molecular weight of about 200 can also be used.
The amount of solvent required depends on the desired dissolution rate for the polymer. The minimum amount of solvent is that which is necessary to provide the minimum desired dissolution rate in the pipeline in order to maximize the amount of

active drag reducing polymer. Preferably, the modified latex drag reducer contains from about 1-95% by weight of the solvent, more preferably from about 1-50% by weight, even more preferably from about 10-30% by weight, and most preferably from about 15-25% by weight.
Modification of the initial latex emulsion is accomplished through a simple mixing operation. Mixing may be accomplished using a simple overhead mixer, or the materials may be metered and proportionately fed into a continuous or static mixer depending on the viscosity of the materials selected for the modification. The order of addition of the modification materials has been observed to have an effect on the ease of preparation in the case of materials that have a high viscosity. In this situation, it is generally easiest to add the solvent first followed by the surfactant and lastly the emulsion. However, in most cases, the order of addition does not appear to have an impact on the properties of the finished mixture. Mixing preferably occurs at a temperature between about 5-60 °C, more preferably between about 15-30°C under about atmospheric pressure. If a high viscosity surfactant is used, a dispersion mixer may be employed such as those used to prepare pigment dispersions. The time of mixing depends largely on the viscosity of the materials being used. Low viscosity mixtures may be prepared within minutes, however, mixtures of high viscosity surfactants may require extended mixing periods.
The molecular weight of the polymer from the initial latex is substantially unaffected by the addition of the at least one modifying low HLB surfactant and the at least one solvent. The particle size of the colloidal particles are generally the same as in the initial latex, however, it is possible that some swelling of the particles may occur depending on the type of solvent used in the modification step. Because of this swelling, the particle size distribution may also be affected. The viscosity of the latex drag reducer may be increased by the addition of the surfactant and solvent. The maximum concentration of surfactant and solvent should be selected so that the modified latex composition remains relatively easy to pump.
The modified latex can be employed as a drag reducer in almost any liquid having a hydrocarbon continuous phase. For example, the modified latex may be used in

pipelines carrying crude oil or various refined products such as gasoline, diesel fuel, fuel oil and naphtha. The drag reducer is ideally suited for use in pipelines and conduits carrying fluid in turbulent flow conditions and may be injected into the pipeline or conduit using conventional or umbilical delivery systems. The amount of drag reducer injected is expressed in terms of concentration of polymer mthe hydrocarbon-containing fluid. Preferably, the concentration of the polymer in the hydrocarbon-containing fluid is from about 0.1-100 ppmw, more preferably from about 0.5-50 ppmw, even more preferably from about 1-20 ppmw, and most preferably 1-5 ppmw.
The solubility of the modified and initial latexes in a hydrocarbon-containing liquid are described herein in terms of a hydrocarbon dissolution rate constant "k." The hydrocarbon dissolution rate constant (k) is determined in the manner described in Example 2, below. The modified latex, described above, has a hydrocarbon dissolution rate constant (lcn,) that is greater than the hydrocarbon dissolution rate constant of the initial (i.e., unmodified) latex (k-). Preferably, the hydrocarbon dissolution rate constant of the modified latex (km) in kerosene at 20, 40, and/or 60°C is at least about 10% greater than the hydrocarbon dissolution rate constant of the initial latex (Icc) in kerosene at 20, 40, and/or 60°C, respectively, more preferably at least about 25% greater, still more preferably at least about 50% greater, even more preferably at least about 100% greater, and most preferably at least 500% greater. The hydrocarbon dissolution rate constant of the modified latex (\c) in kerosene at 20°C is preferably at least about 0.004 min"1, more preferably at least about 0.008 min"1, and most preferably at least 0.012 min"1. The hydrocarbon dissolution rate constant of the modified latex (ich) in kerosene at 40°Cis preferably at least about 0.01 min'1, more preferably at least about 0.02 min"1, and most preferably at least 0.04 min"1. The hydrocarbon dissolution rate constant of the modified latex (ic ) in kerosene at 60°C is preferably at least about 0.05 min"1, more preferably at least about 0.2 min"1, and most preferably at least 0.4 min"1. The hydrocarbon dissolution rate constant of the initial latex (kj) in kerosene at 20°C is typically less than about 0.004 min'1, or even less than about 0.002 min"1, or even less than 0.001 min"1. The hydrocarbon dissolution rate constant of the initial latex (k;) in kerosene at 40°C is typically less than about 0.01 min \ or even less than about 0.008 min"1, or even less than 0.006 min"1. The hydrocarbon dissolution rate constant of the initial latex (k,) in kerosene at 60°C is

typically less than about, or even less than about 0.004 min*1, or even less than 0.003 min'1.
It is preferred for modified latex drag reducers of the present invention of be relatively stable so that they can be stored for long periods of time and thereafter employed as effective drag reducers without further modification. As used herein, "shelf stability" shall denote the ability of a colloidal dispersion to be stored for significant periods of time without a significant amount of the dispersed solid phase dissolving in the liquid continuous phase. It is preferred for the modified drag reducer to exhibit a shelf stability such that less than about 25 weight percent of the solid particles of high molecular weight polymer dissolves in the continuous phase over a 6-month storage period, where the modified drag reducer is stored without agitation at standard temperature and pressure (STP) during the 6-month storage period. More preferably, the modified drag reducer exhibits a shelf stability such that less than about 10 weight percent of the solid particles of high molecular weight polymer dissolves in the continuous phase over the 6-month storage period. Most preferably, the modified drag reducer exhibits a shelf stability such that less than 5 weight percent of the solid particles of high molecular weight polymer dissolves in the continuous phase over the 6-month storage period.
As used herein, "dissolution rate stability" shall denote the ability of a drag reducer to be stored for significant periods of time without significantly altering the hydrocarbon dissolution rate constant of the drag reducer. It is preferred for the modified latex drag reducer to exhibit a dissolution rate stability such that the hydrocarbon dissolution rate constant of the modified latex drag reducer at the end of a 6-month storage period, defined above, is within about 25 percent of the hydrocarbon dissolution ; * rate constant of the modified latex drag reducer at the beginning of the 6-month storage period. More preferably, the modified latex drag reducer exhibits a dissolution rate stability such that the hydrocarbon dissolution rate constant of the modified latex drag reducer at the end of the 6-month storage period is within about 10 percent of the hydrocarbon dissolution rate constant of the modified latex drag reducer at the beginning of the 6-month storage period. Most preferably, the modified latex drag reducer exhibits a dissolution rate stability such that the hydrocarbon dissolution rate constant of the Dfiodified latex drag reducer at the end of the 6-month storage period is within 5 percent of

the hydrocarbon dissolution rate constant of the modified latex drag reducer at the beginning of the 6-month storage period.
Drag reducers made in accordance with the present invention preferably provide significant percent drag reduction (% DR) when injected into a pipeline. Percent drag reduction (% DR) and the manner in which it is calculated are more fully described in Example 2, below. Preferably, modified drag reducers according to the present invention provide at least about a 2% drag reduction, more preferably at least about 5% drag reduction, and most preferably at least 8% drag reduction.
EXAMPLES
Example 1
Emulsion Polymerization of 2-Ethylhexyl Methacrylate Using Redox Initiation
In this example, an initial latex according to the present invention was prepared. Generally, 2-ethylhexyl methacrylate was polymerized in an emulsion comprising water, surfactant, initiator, and a buffer.
More specifically, the polymerization was performed in a 300 mLjacketed reaction kettle with a condenser, mechanical stirrer, thermocouple, septum ports, and nitrogen inlets/outlets. The kettle was charged with 0.23 1 g of disodium hydrogenphosphate, 0.230 g of potassium dihydrogenphosphate, and 4.473 g of sodium dodecyl sulfonate. The kettle was purged with nitrogen overnight. Next, the kettle was charged with 125 g of deoxygenated HPLC-grade water, the kettle contents were stirred at 300 rpm, and the kettle temperature set to 5 °C using the circulating bath. The 2-ethylhexyl methacrylate monomer (100 mL, 88.5 g) was then purified to remove any polymerization inhibitor present, deoxygenated (by bubbling nitrogen gas through the solution), and transferred to the kettle.
In this example, four initiators were prepared for addition to the kettle: an ammonium persulfate (APS) solution by dissolving 0.131 g of APS in 50.0 mL of water; a sodium formaldehyde sulfoxylate (SFS) solution by dissolving 0.175 g of SFS in 100.0 mL of water; a ferrous sulfate solution by dissolving 0.021 g OfFeS04 • 7H20 in 10.0 mL

water; and atert-butyl hydroperoxide (TBHP) solution by dissolving 0.076 gof70% TBHP in 50.0 mL of water.
The kettle was then charged with 1.0 mL of ferrous sulfate solution and over a two-hour period, 1.0 mL of APS solution and 1.0 mL of SFS solution were added concurrently. Following APS and SFS addition. 1.0 mL of TBHP solution and 1.0 mL of SFS solution were added concurrently over a two-hour period.
The final latex was collected after the temperature cooled back to the starting temperature. The final latex (216.58 g) comprised 38.3% polymer and a small amount of coagulum (0.41 g).
Example 2
In this example, the drag reduction capabilities of the 38% poly-2-ethylhexyl methacrylate polymer emulsion prepared in Example 1 were evaluated in a #2 diesel fuel system. The test device used in this example was a two inch Engineering Loop Re-circulation Test apparatus as shown in FIG. 3. This test allowed for the evaluation of drag reducer performance when injected in non-predissolved form into a hydrocarbon fluid in the flow loop. The test was used to simulate performance profiles and drag reducer behavior in field pipelines over a three-hour time period in terms of dissolution, peak performance, and degradation of the drag-reducing polymer.
In the two inch pipe-loop recirculation test, 600 gallons of diesel at 70°F was recirculated from a mixed reservoir through a 2-inch diameter pipe loop and back to the reservoir. Approximate holdup in the pipe was 100 gallons. The diesel was recirculated at 42.3 gpm using a low-shear progressing cavity pump. Pressure drop was measured over a 440-ft section of the pipe loop. "Base" case pressure drop was measured during a period of non-injection. "Treated" case pressure drop was measured during and following injection of the drag reducer sample. In the two inch pipe-loop recirculation test, sample material was injected for a 2-minute period into the pipe just downstream of the reservoir and pump, with the volume of material injected being equal to that required to obtain the target ppm for the full 600 gallon reservoir. Monitoring of pressure drop continued for a 3-hour period following injection. In this particular example, sufficient

drag reducer polymer emulsion was injected into the test loop to yield a 5 ppm concentration ofpoly-2-ethylhexylmethacrylate (w/w) based on the #2 diesel fuel. No measurable drop in pressure was recorded in 3 hours of recirculation. This was equal to 0% drag reduction (% DR).

The rate at which the polymer dissolves into the hydrocarbon stream is a very important property. The most effective drag reduction cannot occur until the polymer is dissolved or substantially solvated in the conduit. The rate at which the polymer dissolves can be determined by a vortex inhibition test in kerosene at various temperatures. At a constant stirring speed, the depth of the vortex is proportional to the amount of dissolved polymer in the kerosene. The dissolution rate is a first order function:

FIG. 4 schematically illustrates the dissolution rate test apparatus used to determine the dissolution rate constant. The dissolution rate test apparatus included a rotating stirrer that was placed in a jacketed graduated 250 mL cylinder having an internal diameter of 48 mm. The upper end of the rotating stirrer was connected to a variable-speed motor (not shown). The specific configuration of the rotating stirrer is illustrate in detail in FIGS. 5-7. The rotating stirrer employed in the dissolution rate tests was a Black & Decker paint stirrer made from a casting of oil resistant plastic. The stirrer head was formed of a 45 mm diameter disk made up of a central disk and an outer ring. The central disk was 20 mm in diameter and 1.5 mm thick and was centered on a hub that was 12 mm

in diameter and 12 mm thick. The hub was drilled in the center for attachment of the stirring head to a 4 mm diameter shaft. The shaft was threaded for 27 mm so that two small nuts held the stirring head to the shaft. The outer ring was 45 mm in diameter, 9 mm wide, and 1.5 mm thick. The outer ring was attached to the inner disk by 13 evenly spaced arcs 13 mm long and 1 mm thick. The outer disk resided 6 mm below the level of the inner disk. The arcs that attached the outer ring to the inner disk acted as paddles to stir the fluid in the test cylinder. The shaft that attached the stirring head to the stirring motor (not shown) was 300 mm long. It should be noted that dissolution rate test results may vary somewhat if different stirrer configurations are* used.
To conduct the dissolution rate test, the stirrer was positioned inside the cylinder and adjusted so that the bottom of stirrer head was about 5 millimeters from the bottom of the cylinder. The cylinder jacket was then filled with water recirculated from a recirculating water bath with controlled heating and cooling capability. The desired temperature was selected and the bath was allowed to reach that temperature. The jacketed graduated cylinder was filled with kerosene to the 200 mL line with the stirrer in place. The circulation of cooling fluid through the graduated cylinder jacket was initiated. The kerosene inside the graduated cylinder was stirred for sufficient time to allow the temperature to equilibrate at the set temperature, usually 10-15 minutes. The kerosene temperature was checked with a thermometer to insure that the kerosene was at the desired test temperature. The speed of the motor was adjusted to stir rapidly enough to form a vortex in the kerosene that reached to the 125 mL graduation in the cylinder.
An aliquot of pre-dissolved polymer containing the desired concentration of polymer was added to the kerosene while the vortex was formed. The pre-dissolved polymer was prepared by mixing the latex emulsion with a solvent having suitable solubility parameters to achieve full dissolution. The container with the emulsion and solvent was rolled overnight. In the case of an emulsion of poly-2-ethylhexylmeth-acrylate, a mixture of 20% isopropanol and 80% kerosene (v/v) allowed full dissolution of the polymer at room temperature within this time period. For example, a 3% solution of poly-2-ethylhexylmethacrylate was prepared by adding 7.83 grams of a 38.3% polymer emulsion into 92. 17 grams of 20% isopropanol and 80% kerosene (v/v) and followed by shaking to disperse the emulsion in an 8 ounce jar. The solvent system rapidly became

viscous. The jar was then placed onto a roller rotating at a slow speed and allowed to homogenize overnight.
Aliquots of the pre-dissolved polymer were added quickly (i.e., within about 5 seconds) to the stirred kerosene in the graduated cylinder to determine the amount of polymer required to achieve full vortex closure, defined as closure at the 175 ml mark in the graduated cylinder. In the case of the 38.3% poly-2-ethylhexylmethacrylate emulsion prepared in Example 1, it was determined that 200 ppm active polymer was needed to completely close the vortex.
Emulsions which had not been pre-dissolved had their dissolution rates measured using the same polymer concentration required for full vortex closure for the pre-dissolved polymer by the following procedure. An aliquot of the emulsion, either modified or unmodified, was added to the kerosene at the desired concentration and temperature. A timer was used to monitor and record tffe time that the vortex reached the 130, 135, 140, 145, 150, 155, 160, 165, 170, and 175 mL marks on the cylinder. However, the determination was stopped when the time exceeded 30 minutes.
The dissolution constant, k,was calculated by first determining the relative vortex, Rv, and then plotting the time required to reach the various vortex marks vs. the log of the relative vortex. The relative vortex is the decimal fraction of the full vortex at 125 mL. The foil vortex is the difference between 200 mL (the volume in the graduated cylinder) and the vortex at 125 mL (i.e., 75 mL).
Rv = (200 - actual vortex)/ full vortex
For example, when the actual vortex is 130 ml, the relative vortex is 0.833. The time required to reach the various vortex marks was plotted versus the log of the relative vortex. A data trendline was then developed and a regression was performed on the trendline. The slope of the trendline was multiplied by -2.303 to convert the data back to linear values. This was the dissolution rate constant, k, for a given temperature and concentration of active polymer.
The dissolution rate of the 38.3% poly-2-ethylhexylmethacrylate emulsion prepared in Example 1 was measured using the dissolution rate test at 500 ppm active


In Examples 3-5, various solvents and surfactants were incorporated into the latex emulsion prepared in Example 1 in order to determine the effect thereof on the dissolution rate of the emulsion polymer in a hydrocarbon.
Example 3
Toluene (104. 15 g) was added to a 600 ml beaker and the beaker placed under an overhead stirrer equipped with a 2 inch diameter 3-blade propeller. The stirrer was adjusted to 250 rpm and 41.675 grams of sorbitan sesquioleate (available as Lumisorb SSO from Lambent Technologies, Skokie, IL) was added and mixed for 10 minutes until it dissolved. A portion of the emulsion prepared in Example 1 (104. 175 g) was then added and the system mixed for 20 minutes. The composition had a density of 0.939 g/ml and a Brookfield LVDVII+ viscosity of 3700 mPa»s using a # 4 spindle at 12 rpm. The composition in terms of percent by weight was as follows:
Emulsion from Example 1 41.67%
Toluene 41.66%
Sorbitan sesquioleate 16.67%
The dissolution rate of this material was measured using the dissolution rate test described above The results show that the modified emulsion polymer had good dissolution properties which improve with increasing temperature.


Example 4
Toluene (104. 15 g) was added to a 600 ml beaker and the beaker placed under an overhead stirrer equipped with a 2 inch diameter 3-blade propeller. The stirrer was adjusted to 250 rpm. A quantity of the emulsion prepared in Example 1 (145.85 g) was then added and the system mixed for 20 minutes. The composition had a density of 6.937 g/ml. The Brookfield LVDVII+ viscosity was too high to be measured using this instrument at 12 rpm. The composition in terms of percent by weight was as follows:
Emulsion from Example 1 58.34%
Toluene 41.66%
Sorbitan sesquioleate 0%
The dissolution rate this material was measured using the dissolution rate test described above. Results show that the emulsion polymer had no dissolution at 20°C and 30°C and very low dissolution rates at temperatures up to 60°C.

Example 5 A quantity of the emulsion prepared in Example 1 (208.325 g) was added

to a 600 ml beaker and the beaker placed under an overhead stirrer equipped with a 2 inch diameter 3-blade propeller. The stirrer was adjusted to 250 rpm and 41.675 g of sorbitan sesquioleate was then added and the system mixed for 20 minutes. The composition had a density of 0.991 g/ml and the Brookfield LVDVII+ viscosity was too high to be measured using this instrument at 12 rpm. The mixture had a smooth, paste-like consistency. The composition in terms of percent by weight is as follows:
Emulsioti from Example 1 83.33%
Toluene . 0%
Sorbitan sesquioleate 16.67%
The dissolution rate this material was measured using the dissolution rate test described above. Results show that the emulsion polymer had no dissolution at 2 0°C and 3 0°C and very low dissolution rates at temperatures up to 60°C.

The three examples above (Examples 3,4 and 5) illustrate the dramatic improvement in dissolution rate realized by using both a surfactant and a solvent to modify the dissolution properties of the subject emulsion polymers in hydrocarbons. Much faster dissolution can be obtained by using both a surfactant and a solvent than can be obtained by the use of either class of additive singly. A plot of the dissolution rate factor, k, vs. the temperature of the hydrocarbon used (kerosene) is presented in FIG. 8.
Example 6
In this example, 75 g of acetone was added to a 600 mL beaker and the beaker placed under an overhead stirrer equipped with a 2 inch diameter 3-blade propeller. The stirrer was adjusted to 250 rpm and 50 g of sorbitan sesquioleate was

added and mixed for 10 minutes until il dissolved. A quantity of the emulsion prepared in Example 1 (125 g) was then added and the system mixed for 20 minutes. The composition had a density of 0.94 g/mL and a Brookfield LVDVH+ viscosity of 6700 mPa»s using a # 4 spindle at 12 rpm. The composition in terms of percent by weight was as follows:
Emulsion from Example 1 50%
Acetone 30%
Sorbitan sesquioleate 20%
The dissolution rate this material was measured using the dissolution rate test described above. Results show that the modified emulsion polymer had good dissolution properties which improve with increasing temperature.
■ i — t
This example illustrates how an alternate solvent can be used to achieve
faster dissolution properties at a lower temperature. This can be important in many
pipeline applications where the crude oil or refined products are transported at lower
temperatures.
Example 7
A quantity of polyethylene glycol (96.15 g) having a molecular weight of 200 (PEG-200) was added to a 600 mL beaker and the beaker placed under an overhead stirrer equipped with a 2 inch diameter 3-blade propeller. The stirrer was adjusted to 250 rpm and 57.7 g of polyisobutylene succinnic anhydride copolymer, diethanolamine salt (PIBSA) was added and the system mixed for 30 minutes until the PD3SA dissolved. Next, 96. 15 g of the emulsion prepared in Example 1 was added and the system mixed for

20 minutes. The composition had a density of 0.971 g/ml and a Brookfield LVDVII+ viscosity of 32000 mPa»s using a # 4 spindle at 6 rpm. The composition had a thick, paste-like consistency. The composition in terms of percent by weight was as follows:
Emulsion from Example 1 38.46%
PEG-200 38.46%
PIBSA 23.08%
The dissolution rate of this material was measured using the dissolution rate test described above. The results show that the modified emulsion polymer had good dissolution properties which improve with increasing temperature.

This example illustrates that the use of anon-flammable, less hazardous solvent than toluene or acetone can be used and enhanced dissolution properties over broad temperature ranges may still be achieved.
Example 8
In this example, 50 g of PEG-200 was added to a 600 mL beaker and the beaker placed under an overhead stirrer equipped with a 2 inch diameter 3-blade propeller. The stirrer was adjusted to 250 rpm and 12.5 g of an ethoxylated tallow amine (Rhodameen PN-430) and 37.5 g of polyisobutylene succinnic anhydride copolymer, diethanolamine salt were added and mixed for 20 minutes until dissolved. Next, 150 g of the emulsion prepared in Example 1 was then added and the system mixed for 20 minutes. The composition had a density of 1.0078 g/ml and a Brookfield LVDVII+ viscosity of 1120 mPa»s using a # 4 spindle at 30 rpm. The composition in terms of percent by weight was as follows:

Emulsion from Example 1 60%
PEG-200 20%
Rhodameen PN-430 5%
PfflSA 15%
The dissolution rate of this materia] was measured using the dissolution rate test described above. The results show thai the modified emulsion polymer had good dissolution properties which improve with increasing temperature.

This example illustrates the use of more than one low HLB surfactant to achieve an enhanced dissolution rate over the emulsion alone and allows the use of a lower concentration of solvent and low HLB surfactants to achieve a given dissolution rate at certain temperatures.
Example 9
In this example, 60 g of PEG-200, 60 g of tripropylene glycol methyl ether and 6 g of 1-hexanol were added to a 1000 mL beaker and the beaker placed under an overhead stirrer equipped with a 3 inch diameter 3-blade^ropelIer. The stirrer was adjusted to 250 rpm. Next, 30 g of an ethoxylated tallow amine (Rhodameen PN-430) and 90 g of polyisobutylene succinnic anhydride copolymer, diethanolamine salt were added and mixed for 30 minutes until dissolved. Then, 354 g of the emulsion prepared in Example 1 was added and the system mixed for 20 minutes. The composition had a density of 0.9979 g/ml and a Brookfield LVDVTI+ viscosity of 3071 mPa«s using a # 4 spindle at 30 rpm. The composition in terms of percent by weight was as follows:
9

Emulsion from Example 1 59%
PEG-200 10%
Tripropylene glycol methyl ether 10%
1-hexanol 1%
Rhodameen PN-430 5%
PIBSA 15%
The dissolution rate of this material was measured using the dissolution rate test described above. Results show that the modified emulsion polymer had good dissolution properties which improve with increasing temperature.

This example illustrates the use of more than one low HLB surfactant and more than one solvent to achieve an enhanced dissolution rate over the emulsion alone and allows the use of a lower concentration of solvent and low HLB surfactants to achieve a given dissolution rate at certain temperatures.
FIG. 9 is a plot of dissolution rate vs temperature for Examples 7. 8 and 9. This comparison of the dissolution rates of the various systems illustrates that the use of »sre tfiM one solvent and or low HLB surfactant can be used to achieve similar dissolution properties. In the case of Example 7, much higher additive concentrations were needed using a single surfactant and solvent to achieve only marginal improvements in dissolution rates. By using multiple surfactants and/or solvents to enable the use of a lower concentration of additives one can also achieve a mixture with a lower viscosity.
Example 10
In this example, 104. 15 g of toluene was added to a 600 mL beaker and the

beaker placed under an overhead stirrer equipped with a 2 inch diameter 3-blade propeller. The stirrer was adjusted to 250 rpm and 4 1.675 g of sorbitan sesquioleate was added and the system mixed for 10 minutes until dissolved. Next, 104.175 g of the emulsion prepared in Example 1 was added and mixed for 20 minutes. The composition had a density of 0.939 g/ml and a Brookfield LVDVD+ viscosity of 3700 mPa»s using a # 4 spindle at 12 rpm. The composition in terms of percent by weight was as follows:
Emulsion from Example 1 41.67%
Toluene 41.66%
Sorbitan sesquioleate 16.67%
The mixture prepared above was injected into the two inch Engineering Loop Re-circulation Test apparatus described in Example 2 in a sufficient amount to yield a concentration of 3 ppm of poly-2-ethylhexylmethacrylate (w/w) based on the weight of the #2 diesel fuel. After injection, the pressure of the test loop quickly began to drop. A pressure drop equal to 10.75% DR was measured in 600 seconds (10 minutes).
Example 11
In this example, 104. 15 g of toluene was added to a 600 mL beaker and the beaker placed under an overhead stirrer equipped with a 2 inch diameter 3-blade propeller. The stirrer was adjusted to 250 rpm and 145.85 g of the emulsion prepared in Example 1 was then added and mixed for 20 minutes. The composition had a density of 0.937 g/ml and the Brookfield LVDVH+ viscosity was too high to be measured using this instrument at 12 rpm. The composition in terms of percent by weight is as follows:
Emulsion from Example 1 58.34%
Toluene 41.66%
Sorbitan sesquioleate 0%
The mixture prepared above was injected into the two inch Engineering Loop Re-circulation Test apparatus as described in Example 2 in a sufficient amount to yield a concentration of 3 ppm ofpoly-2-ethylhexylmethacrylate (w/w) based on the weight of the #2 diesel fuel. During the 3 hour test no significant drag reduction was measured.

Example 12
In this example, 208.325 g of the emulsion prepared in Example 1 was added to a 600 mL beaker and the beaker placed under an overhead stirrer equipped with a 2 inch diameter 3-blade propeller. The stirrer was adjusted to 250 rpm and 4 1.675 g of sorbitan sesquioleate was then added and mixed for 20 minutes. The composition had a density of 0.991 g/ml and the Brookfield LVDVII+ viscosity was too high to be measured using this instrument at 12 rpm. The mixture had a smooth, paste-like consistency. The composition in terms of percent by weight was as follows:
Emulsion from Example 1 58.34%
Toluene 0%
Sorbitan sesquioleate 16.67%
The mixture prepared above was injected into the two inch Engineering Loop Re-circulation Test apparatus as described in Example 2 in a sufficient amount to yield a concentration of 3 ppm of poly-2-ethylhexyhnethacrylate (w/w) based on the weight of the #2 diesel fuel. During a 3 hour test, no significant drag reduction was measured.
FIG. 10 is a plot of the drag reduction in the 2-inch Engineering Loop Re-circulation Test for Examples 2,10, 11 and 12. In this plot of % Drag reduction vs circulation time, the injection into the recirculating fluid occurred at 100 seconds. During the next 120 seconds the modified emulsions were injected at a higher concentration (21.5 ppm polymer for the modified and 35.8 ppm for the unmodified emulsion) and at a rate proportional to the flow of one pass of the diesel fuel through the loop calculated as:
Initial concentration (ppm) = injection rate/ (injection rate + loop rate)
This equilibrated with the balance of the diesel fuel in the storage tank so that within about 300 seconds total elapsed time the polymer was at the equilibrium concentration described (i.e. 3 ppm polymer for the modified emulsions and 5 ppm for the unmodified emulsion). The equilibrium concentration was calculated as:
Equilibrium concentration (ppm) = mass polymer / mass diesel

This plot illustrates the rapid rate of drag reduction of an emulsion modified with both toluene and sorbitan sesquioleate (Example 10) compared to the emulsion modified with either toluene alone (Example 11) or sorbitan sesquioleate alone (example 12) at an equilibrium polymer concentration of 3 ppm. Additionally the drag reduction performance of an unmodified emulsion at an equilibrium polymer concentration of 5 ppm is illustrated. The plot shows that the emulsion modified with both toluene and sorbitan sesquioleate exhibited rapid development of drag reduction properties in this test loop while the unmodified and the materials modified with either toluene or sorbitan sesquioleate singly did not develop any measurable drag reduction.
The preferred forms of the invention described above are to be used as illustration only, and should not be used in a limiting sense to interpret the scope of the present invention. Obvious modifications to the exemplary embodiments, set forth above, could be readily made by those skilled in the art without departing from the spirit of the
present invention.
The inventors hereby state their intent to rely on the Doctrine of Equivalents to determine and assess the reasonably fair scope of the present invention as it pertains to any apparatus not materially departing from but outside the literal scope of the invention as set forth in the following claims.


CLAIMS
1. A method comprising the steps of:
(a) transporting a latex drag reducer through a fluid conduit having a length of at least about 500 feet, said drag reducer comprising a continuous phase and a plurality of particles of a high molecular weight polymer dispersed in die continuous phase; and
(b) introducing the transported drag reducer into fluid originating from a subterranean formation.

2. The method according to claim l. said continuous phase of said drag reducer comprising at least one high HLB surfactant and at least one low HLB surfactant.
3. The method according to claim 2, said at least one high HLB surfactant having an HLB number of at least about 8.
4. The method according to claim 3, said at least one high HLB surfactant comprising one or more high HLB surfactants selected from the group consisting of high HLB alkyl sulfates, alkyl ether sulfates, dialkyl sulfosuccinates, alkyl phosphates, alkyl aryl sulfonates, sarcosinates, sorbitan esters, PEG fatty acid esters, ethoxylated glycerine esters, ethoxylated fatty amines, ethoxylated sorbitan esters, block ethylene oxide/ propylene oxide surfactants, alcohol/fatty acid esters, ethoxylated alcohols, ethoxylated fatty acids, alkoxylated castor oils, glycerine esters, linear alcohol ethoxylates, and alkyl phenol ethtoylates.
5. The method according to claim 2, said at least one low HLB surfactant having an HLB number of less than about 6.
6. The method according to claim 5, said at least one low HLB surfactant comprising one or more low HLB surfactants selected from the group consisting of low HLB sorbitan esters, PEG fatty acid esters, ethoxylated glycerine esters, ethoxylated fatty amines, ethoxylated sorbitan esters, block ethylene oxide/propylene oxide surfactants, "alcohol/fatty acid esters, ethoxylated alcohols, ethoxylated fatty acids, alkoxylated castor m oils, glycerine esters, polyethylene glycols, linear alcohol ethoxylates, alkyl phenol ethoxylates and oil soluble polymeric emulsifiers.

7. The method according to claim 1, said polymer having a weight average
molecular weight of at least about 1 x 106 g/moL
8. The method according to claim 1, said particles having a mean particle size
of less than about 1000 run.
9. The method according to claim I, at least about 95% of said particles
having particle sizes of between about 10-500 nm.
10. The method according to claim 1, said drag reducer continuous phase
being aqueous.
11. The method according to claim 10, said drag reducer further comprising at
least one solvent dispersed in said continuous phase.
12. The method according to claim ll, said at least one solvent being selected
from the group consisting of aromatic solvents, partially and fully hydrogenated solvents,
glycols, glycol ethers, esters, nitrogen containing solvents, aliphatic and aromatic
alcohols, ketones, sulfur containing solvents, tetrahydrofuran, alkyl halides, and
combinations thereof.
13. The method according to claim 1, said high molecular weight polymer
being formed from the polymerization of one or more monomers selected from the group
consisting of:






during step (b) said flowline comprising a hydrocarbon-containing fluid.
18. The method according to claim 1,
said fluid conduit being a subsea umbilical line,
said umbilical line being at least about 1000 feet long and comprising a plurality of chemical injection conduits,
said drag reducer being transported through at least one of said conduits having a maximum inside diameter of about 2.5 inches or less.
19. The method according to claim 1, said drag reducer exhibiting a pressure drop of less than about 5 psi per foot during step (a).
20. The method according to claim l,
said fluid being carried in a flowline during step (b), step (b) including providing at least about a 2% drag reduction in the flow line.
21. The method according to claim 1, said drag reducer continuous phase comprising a polar organic liquid.
22. A method of reducing the drag forces associated with transporting a hydrocarbon-containing fluid through a subsea flowline, said method comprising the steps of:

(a) transporting a latex drag reducer from a control facility to an injection point in the subsea flowline via a subsea umbilical line, said control facility and said injection point being separated by a distance of at least 1,000 feet, said drag reducer comprising a continuous phase including at least one high HLB surfactant and at least one low HLB surfactant and a plurality of particles of a high molecular weight polymer dispersed in the continuous phase; and
(b) introducing the transported drag reducer into the flowline at the injection point.
23. The method according to claim 22, said at least one high HLB surfactant
having an HLB number of at least about 8.

24. The method according to claim 23, said at least one high HLB surfactant comprising one or more high HLB surfactants selected from the group consisting of high HLB alkyl sulfates, alkyl ether sulfates, dialkyl sulfosuccinates, alkyl phosphates, alkyl aryl sulfonates, sarcosinates, sorbitan esters. PEG fatty acid esters, ethoxylated glycerine esters, ethoxylated fatty amines, ethoxylated sorbitan esters, block ethylene oxide/ propylene oxide surfactants, alcohol/fatty acid esters, ethoxylated alcohols, ethoxylated fatty acids, alkoxylated castor oils, glycerine esters, linear alcohol ethoxylates, and alkyl phenol ethoxylates.
25. The method according to claim 22, said at least one low HLB surfactant having an HLB number of less than about 6.
26. The method according to claim 25, said at least one low HLB surfactant comprising one or more low HLB surfactants selected from the group consisting of low HLB sorbitan esters, PEG fatty acid esters, ethoxylated glycerine esters, ethoxylated fatty amines, ethoxylated sorbitan esters, block ethylene oxide/propylene oxide surfactants, alcohol/fatty acid esters, ethoxylated alcohols, ethoxylated fatty acids, alkoxylated castor oils, glycerine esters, polyethylene glycols, linear alcohol ethoxylates, alkyl phenol ethoxylates and oil soluble polymeric emulsifiers.
27. The method according to claim 22, said polymer having a weight average molecular weight of at least about 1 x 106g/mol.
28. The method according to claim 22, said particles having a mean particle size of less than about 1000 nm.
29. The method according to claim 22, at least about 95% of said particles having particle sizes of between about 10-500 nm.
30. The method according to claim 22, said drag reducer continuous phase being aqueous.
31. The method according to claim 30, said drag reducer further comprising at least one solvent dispersed in said continuous phase.
*
32. The method according to claim 3 1, said at least one solvent being selected






wherein RJ5 is H, a C1-C30 alkyl, aryl, cycloalkyl, or heterocyclic radical.
34. The method according to claim 33, said monomer being 2-ethylhexyl methacrylate.
35. The method according to claim 22, said drag reducer having a hydrocarbon dissolution rate constant of at least about 0.004 min-1 in kerosene at 20°C.
36. The method according to claim 22, said drag reducer having a hydrocarbon dissolution rate constant of at least about 0.01 min"1 in kerosene at 40°C.
37. The method according to claim 22, said umbilical line having a maximum inside diameter of about 2.5 inches or less.
38. The method according to claim 37, said drag reducer exhibiting a pressure drop of less than about 5 psi per foot during step (a).
39. The method according to claim 37, step (b) including providing at least about a 2% drag reduction in the flowline.
40. The method according to claim 22,
said umbilical line including a plurality of chemical injection conduits each having a maximum inside diameter of about 2.5 inches or less,
step (a) including transporting the drag reducer through at least one of the chemical injection conduits.
41. The method according to claim 40; and
(c) simultaneously with step (a), transporting a flow assurance

chemical other than the drag reducer through the umbilical line.
42. The method according to claim 41, said flow assurance chemical being at least one chemical selected from the group consisting of hydrate inhibitors, corrosion inhibitors, paraffin inhibitors, asphaltene inhibitors, scale inhibitors, biocides, hydrogen sulfide inhibitors, demulsifiers, oxygen scavengers, and combinations thereof.
43. A method of reducing drag in aflowline carrying a hydrocarbon-containing fluid, said method comprising the steps of:

(a) transporting a drag reducer through a fluid conduit having a length of at least about 500 feet, said drag reducer comprising a latex emulsion including a quantity of particles of a drag reducing polymer formed by an emulsion polymerization reaction, said polymer having a weight average molecular weight of at least about 1 x-106 g/mol, said particles having a mean particle size of less than about 1000 nm, said latex emulsion having been modified by the addition of at least one low HLB surfactant; and
(b) introducing the transported drag reducer into the hydrocarbon-containing fluid.

44. The method according to claim 43, said at least one low HLB surfactant having an HLB number of less than about 6.
45. The method according to claim 44, said at least one low HLB surfactant comprising one or more low HLB surfactants selected from the group consisting of low HLB sorbitan esters, PEG fatty acid esters, ethoxylated glycerine esters, ethoxylated fatty amines, ethoxylated sorbitan esters, block ethylene oxide/propylene oxide surfactants, alcohol/fatty acid esters, ethoxylated alcohols, ethoxylated fatty acids, alkoxylated castor oils, glycerine esters, polyethylene glycols, linear alcohol ethoxylates, alkyl phenol ethoxylates and oil soluble polymeric emulsifiers.
46. The method according to claim 43, said drag reducer further comprising at least one high HLB surfactant having an HLB number of at least about 8.
47. The method according to claim 46, said at least one high HLB surfactant

comprising one or more high HLB surfactants selected from the group consisting of high HLB alkyl sulfates, alkyl ether sulfates, dialkyl sulfosuccinates, alkyl phosphates, alkyl aryl sulfonates, sarcosinates, sorbitan esters, PEG fatty acid esters, ethoxylated glycerine esters, ethoxylated fatty amines, ethoxylated sorbitan esters, block ethylene oxide/ propylene oxide surfactants, alcohol/fatty acid esters, ethoxylated alcohols, ethoxylated fatty acids, alkoxylated castor oils, glycerine esters, linear alcohol ethoxylates, and alkyl phenol ethoxylates.
48. The method according to claim 43, at least about 95% of said particles
having particle sizes of between about 10-500 nm.
49. The method according to claim 43, said drag reduce comprising a
continuous phase including at least one component selected from the group consisting of
water, a polar organic liquid, and mixtures thereof.
50. The method according to claim 49, said drag reducer further comprising at
least one solvent dispersed in said continuous phase.
5 1. The method according to claim 50, said at least one solvent being selected
from the group consisting of aromatic solvents, partially and fully hydrogenated solvents, glycols, glycol ethers, esters, nitrogen containing solvents, aliphatic and aromatic alcohols, ketones, sulfur containing solvents, tetrahydrofiiran, alkyl halides, and combinations thereof.
52. The method according to claim 43, said polymer being formed from the
polymerization of one or more monomers selected from the group consisting of:






dissolution rate constant of at least about 0.01 min"1 in kerosene at 40°C.
56. The method according to claim 43,
said fluid being carried in a flowline during step (b), step (b) including providing at least about a 2% drag reduction in the flowline.
57. The method according to claim 43,
said fluid conduit being a subsea umbilical line,
said umbilical line including a plurality of chemical injection conduits each having a maximum inside diameter of about 2.5 inches or less,
step (a) including transporting the drag reducer through at least one of the chemical injection conduits.
58. The method according to claim 57; and
(c) simultaneously with step (a), transporting a flow assurance
chemical other than the drag reducer through the umbilical line.
59. The method according to claim 58, said flow assurance chemical being at
least one chemical selected from the group consisting of hydrate inhibitors, corrosion
inhibitors, paraffin inhibitors, asphaltene inhibitors, scale inhibitors, biocides, hydrogen
sulfide inhibitors, demulsifiers, oxygen scavengers, and combinations thereof.
60. The method according to claim l, said fluid conduit being a subsea
umbilical line.
61. The method according to claim 1, said fluid being carried in a flowline
during step (b).
62. The method according to claim 43, said hydrocarbon containing fluid
being carried in a flowline during step (b).


Documents:

1818-ASSIGNMENT.pdf

1818-CHENP-2007 ASSIGNMENT 29-01-2014.pdf

1818-CHENP-2007 CORRESPONDENCE OTHERS 29-01-2014.pdf

1818-CHENP-2007 FORM-6 29-01-2014.pdf

1818-CHENP-2007 POWER OF ATTORNEY 29-01-2014.pdf

1818-CHENP-2007 CORRESPONDENCE OTHERS 30-10-2014.pdf

1818-CHENP-2007 POWER OF ATTORNEY 30-10-2014.pdf

1818-CHENP-2007 AMENDED CLAIMS 11-03-2015.pdf

1818-CHENP-2007 AMENDED PAGES OF SPECIFICATION 11-03-2015.pdf

1818-CHENP-2007 CORRESPONDENCE OTHERS 01-07-2014.pdf

1818-CHENP-2007 EXAMINATION REPORT REPLY RECEIVED 11-03-2015.pdf

1818-chenp-2007-abstract.pdf

1818-chenp-2007-claims.pdf

1818-chenp-2007-correspondnece-others.pdf

1818-chenp-2007-description(complete).pdf

1818-chenp-2007-drawings.pdf

1818-chenp-2007-form 1.pdf

1818-chenp-2007-form 3.pdf

1818-chenp-2007-form 5.pdf

1818-chenp-2007-pct.pdf

Form 3.pdf

Form 6.pdf

LUBRIZOL GPA.pdf

Petition for Form3.pdf

Petition for POR.pdf


Patent Number 266134
Indian Patent Application Number 1818/CHENP/2007
PG Journal Number 15/2015
Publication Date 10-Apr-2015
Grant Date 07-Apr-2015
Date of Filing 30-Apr-2007
Name of Patentee Lubrizol Speciality Products, Inc.
Applicant Address 2000 West Sam Houston Parkway South,3rd floor, Houston,Texas 77042-3615,USA
Inventors:
# Inventor's Name Inventor's Address
1 MILLIGAN STUART, N., 3925 OVERCAST ROAD, PONCA CITY , OKLAHOMA 74604, USA
2 SMITH , KENNETH, W., 302 N ,MAIN TONKAWA , OKLAHOMA 74653, USA
3 BURDEN, TIMOTHY, L., 2400 CHAPEL HILL ROAD, PONCA CITY , OKLAHOMA 74604, USA
4 JOHNSTON,RAY, L., 800 MICHAEL LANE PONCA CITY OKLAHOMA 74604 USA
5 ANDERSON , VINCENT, S., 2833 INDIAN HILLS ROAD, PONCA CITY OKLAHOMA 74604 USA
6 HARRIS, WILLIAM, F., 130 ELMWOOD AVENUE , PONCA CITY , OKLAHOMA 74601, USA
PCT International Classification Number C12N 15/82
PCT International Application Number PCT/IL2006/001045
PCT International Filing date 2005-12-19
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 11/026,892 2004-12-30 U.S.A.