Title of Invention

TRANSPARENT ZEOLITE-POLYMER HYBRID MATERIAL WITH TUNABLE PROPERTIES

Abstract The invention is about the preparation of novel highly transparent zeolite-doped polymer and zeolites monolayers. External coating of the zeolite crystals by covalently linked functionalized alkoxysilane derivatives allows for an efficient dispersion of the nano zeolite particles into an organic liquid monomer; the following co -polymerisation process leads to a hard, insoluble and transparent material containing said zeolites. Optical properties such as colour, refractive index, Abbe number or photochromism can be fine tuned by simply changing zeolite loading, while transparency is maintained.
Full Text Clariant International Ltd 2006DE127 Dr. HU
Description
Transparent zeolite-polymer hybrid material with tunable properties
Embedding inorganic particles into organic matrice is a versatile method to add new
features to a defined material. These novel properties can, in turn, be used in the
development of devices such as infrared plastic light-emitting diodes for use in
telecommunications, dye nanostructured materials for optical data storage or for
improvement of chemical-physical properties of a polymer. For optical applications,
particles are inserted into a matrix while transparency is maintained. To reach this
goal several factors need to be considered. As light scattering strongly depends on
the particle size, aggregation must be prevented. Uncoated zeolite samples, for
example, show characteristic zeolite aggregates (white spots) of different sizes up to
a diameter of 400 nm. Such aggregates produce visible light scattering. On the other
hand, coated zeolite samples show only the structure of the polymer.
It was the object of the invention to provide novel highly transparent zeolite-polymer
hybrid material, a simple process for the preparation thereof as well as its use in the
making of optical devices.
The present invention provides a transparent zeolite-polymer hybrid material
comprising zeolite crystals dispersed in a polymer A, wherein
(i) the zeolite crystals have parallel channels and/or cavities inside the crystal
and a
crystal length of 20 to 7000 nm,
(ii) the channels and/or cavities of the zeolite crystals contain guest molecules,
clusters or ions,
(iii) the zeolite crystals are surface-coated with a polymerizable silane,
(iv) polymer A is a transparent organic polymer.

Preferably, polymer A is selected from the group consisting of polyolefmes,
polysiloxanes, polyacrylates, polymethacrylates, polyvinyls, polyesters,
polycarbonates, and polyurethanes.
Polymer A is obtainable by common polymerization processes of the respective
monomers by methods known to the skilled artisan.
Examples of polymer A or suitable starting products for manufacturing polymer A
include:
polyol(allyl carbonate) monomers, e.g., allyl diglycol carbonates such as diethylene
glycol bis(allyl carbonate), which monomer is sold under the trademark ©CR-39 by
PPG Industries, Inc.;
poly(urea urethane) polymers, which are prepared, for example, by the reaction of a
polyurethane prepolymer and a diamine curing agent, a composition for one of such
polymers being sold under the trademark ©TRIVEX by PPG Industries, Inc.;
polyol(meth)acryloyl terminated carbonate monomer; diethylene glycol
dimethacrylate monomers; ethoxylated phenol methacrylate monomers;
diisopropenyl benzene monomers; ethoxylated trimethylol propane triacrylate
monomers; ethylene glycol bismethacrylate monomers; poly(ethylene glycol)
bismethacrylate monomers; urethane acrylate monomers; poly(ethoxylated bisphenol
A dimethacrylate); poly(vinyl acetate); poly(vinyl alcohol); poly(vinyl chloride);
poly(vinylidene chloride); polyethylene; polypropylene; polyurethanes;
polythiourethanes; thermoplastic polycarbonates, such as the carbonate-linked resin
derived from bisphenol A and phosgene, one such material being sold under the
trademark ©LEXAN; polyesters, such as the material sold under the trademark
©MYLAR; poly(ethylene terephthalate); polyvinyl butyral; poly(methyl methacrylate),
such as the material sold under the trademark ©PLEXIGLAS, and polymers prepared
by reacting polyfunctional isocyanates with polythiols or polyepisulfide monomers,
either homopolymerized or co-and/or terpolymerized with polythiols, polyisocyanates,
polyisothiocyanates and optionally ethylenically unsaturated monomers or
halogenated aromatic-containing vinyl monomers. Also contemplated are copolymers
of such monomers and blends of the described polymers and copolymers with other
polymers, for example, to form block copolymers.
Especially preferred is a polymer made from diethylene glycol bis-allyl carbonate,
hereinafter called ©CR-39. CR-39 can be obtained by polymerizing the liquid
2

monomer diethylene glycol bis-allyl carbonate with 3 to 6 w/w % of di-benzoyl
peroxide as an initiator. The two allyl groups allow a cross-linking polymerization
giving a hard, insoluble and transparent material.
The amount of the zeolite crystals dispersed in polymer A is preferably 0.1 to 40 %
by volume, e.g. 0.5 to 25 % by volume, relative to the total volume of the hybrid
material.
In the present invention zeolites are understood as alumo-silicates containing free
hydroxyl groups and having parallel channels and/or cavities inside the crystal and a
crystal length of 20 to 7000 nm, preferably 30 to 3000 nm.
Zeolite L is of particular interest. Zeolite L is a cylindrically shaped, porous
aluminosilicate with a crystal length in the range of 30 to 7000 nm and featuring
hundreds thousands of strictly parallel channels. The diameter of the channel
opening is about 0.7 nm and the largest free diameter is about 1.3 nm, making
zeolite L an ideal host material for the supramolecular organisation of monomeric
dyes.
The guest species loaded into the zeolite cavities are protected from the environment
while still offering their optical characteristics to the hybrid material. For example,
photochromic and/or remarkable photoluminescence properties can be achieved
through insertion into zeolites of organic compounds, especially derived from organic
dyes and pigments, e.g. biphenyls, terphenyls, quaterphenyls, tetracenes, perylenes,
triphendioxazines, acridines, stilbenes, azobenzenes, oxazolyl benzenes, styryl
benzenes, fluorenone, isoviolanthrones, C.I. Solvent Orange 63, C.I. Solvent Yellow
98, 43, 44, C.I. Solvent Green 5, thioindigo compounds, and spiropyrans,
naphthopyrans, carotenoids, carotenes, xanthenophylles, flavines, pyronines,
oxazines, thionines, resorufine, methylviologen, carbocyanines, or inorganic
compounds such as silver halides, e.g. silver chloride, silver sulfide, titanium dioxide,
silicon dioxide, silicon nitride, lead sulfide.
Incorporation of high refractive index (Rl) components, like TiO2, SiO2, SiN, Ag2S,
PbS, Si-clusters, in zeolite channels might lead to an increase in the Rl of organic
glass lenses based on polymer A. These results provide a promising method for
developing optical devices such as lenses, special mirrors, filters, polarizer, grids,
optical storage, monitors, window panes, float glass.
3

The amount of the guest molecules or ions in the zeolite crystals is judiciously 3 to 6
weight % (M/M), relative to the weight of the unloaded zeolite. Loadings up to 10 %
can be achieved.
The present invention also provides a process of preparing a transparent zeolite-
polymer hybrid material as described above, comprising
(i) loading zeolite crystals with guest molecules or ions,
(ii) coating the surface of the loaded zeolite crystals with a polymerizable silane,
(iii) dispersing the coated zeolite crystals in a liquid monomer, as specified above,
and
(iv) polymerizing the polymerizable silane and the liquid monomer to form a
polymer A wherein said zeolite crystals are dispersed.
Like the Russian nested dolls principle, the general process of the invention is based
on the insertion of optically active compounds (dyes, high refractive index elements,
elements providing high or negative Abbe' numbers) inside coated zeolites crystals,
themselves incorporated inside polymer A (Fig. 1). Furthermore, such a matrix offers
protection to zeolites preventing oxygen and water interaction. Thus, even sensitive
dyes like xanthene dyes or thioxanthones can be used in the development of stable
materials.
Before loading the zeolite crystals with the desired guest molecule, it is judiciously
preferred to control the environmental conditions, such as pH, counter ions, water or
gas content, by partially or fully exchanging the zeolite counter ions.
Solid state acidity therefore can be tuned by exchanging the zeolite counter ions.
Surprisingly a strong modulating effect in the series Na > K > Cs on solid state acidity
was found which allows to buffer the strong acidity of a sodium zeolite by exchange
with Cs+ ions. Acid sensitve dyes may serve as indicators.
Zeolite particles usually have low dispersion stabilization in the liquid monomer,
which leads to rapid sedimentation. It was found that this drawback can be overcome
by modifying hydroxyl groups on the surface of the zeolite crystals with a silane
containing at least one terminal olefinic double bond or containing a leaving group
such as a halide or an alkoxy. Examples for such silanes are:
4

Trivinylethoxysilane: CH3CH2OSi(CH=CH2)3,
Methacryloxymethyltrimethoxysilane:


3-(Diethoxymethylsilyl)propylmethacrylate:

Allyltriethoxysilane:
6


Triallyloxyvinylsilane:

Triacetoxy(vinyl)silane:

i Trimethoxy(7-octen-1 -yl)silane:

7

3-(Trimethoxysilyl)propyl methacrylate:

Most preferred silane as coating material is trivinyl-ethoxysilane and
methacryloxymethyltrimethoxysilane which can advantageously be used for coating
the zeolite and introducing it in both ©CR-39 and poiymethylmethacrylate.
For a good coating of the entire surface of zeolite, loaded zeolite crystals and the
polymerizable silane are combined in an inert organic solvent, such as toluene,
benzene, xylene, ethers and esters, and treated at a temperature between 10 and
200°C, preferably between 20 and 150°C. The necessary amount of the silane
relative to the zeolite crystals can be estimated by the specific surface area of the
zeolite material. A rough guideline would be to estimate the demand to 2-4 mg /m2
corresponding to 0.5 up to 10 monolayers of silane.
High transparency of polymer A has to be maintained upon incorporation of zeolites.
Due to its organic nature, the liquid monomer to form polymer A is not able to well
solubilise inorganic compounds such as zeolites. Zeolite surface modification with
silane derivatives, as described in the foregoing, diminishes aggregation and
8

improves the dispersibility of zeolites in the liquid monomer. Said silanes render the
zeolite particles organophiliic in the outer region while preserving intact the inorganic
host channels and cavities.
The coating covalently linked to zeolite crystals plays two roles. Firstly, it increases
interactions with the liquid monomer allowing a more efficient dispersion of the
crystals. Secondly, the polymerisation suppresses entirely microphase separation. As
a result, coated zeolites gave rise to highly transparent doped polymer.
After dispersion of the coated zeolite crystals in the liquid monomer, the mixture is
polymerized according to the procedures commonly used for the respective pure
polymer. During this step, (co)polymerization of the polymerizable silane as well as
(co)polymerization of the liquid monomer take place.
Since the outer surface modification has no impact on the conditions found inside
of the zeolite L, their channels and/or cavities can be loaded with a wide array of
guest species prior to this step. Optical characteristics of the guests, such as colour,
photochromism, Abbe number or refractive index, can be used to tune the properties
of the hybrid material.
Another embodiment of this invention is the preparation of transparent oriented
zeolite monolayers on substrates like organic and inorganic glasses, which strongly
scatter visible light if no precautions are taken. This phenomenon disappears
completely when the monolayers are covered with for example CR39, giving rise to
transparent, unidirectional zeolite containing material.
To build zeolite monolayers, a glass surface is chemically activated with silane
derivatives, such as 3-chIoropropyltrimethoxysilane. Then, zeolites are reacted
through hydroxyl groups on the functionalised glass surface leading, after washing, to
compact monolayers. These are finally covered with liquid monomers as specified
above and hardened to give rise to transparent material containing unidirectional
zeolite monolayers covered with polymer A. In this embodiment, a modification of
zeolite surface is not necessary, as aggregates are washed from the glass plate prior
to polymer coverage and microphase separation does not play a big role in the
monolayer.
9

Another possibility is to use glues with a high refractive index like cyanoacrylates
such as methyl-2-cyanoacrylate. The glue covers the monolayer, and another sheet
of glass or hard polymer can be stacked on. The glue can be a derivate of acrylics,
epoxy, polyurethane.
As the size of the channels enforce a preferential direction of the incorporated dyes,
two different functions can be envisaged. By using the stop-cock principle as
described in WO 02/36490 A1, a transparent mono-directional light emitting material
can be obtained. By selecting an appropriate dye, total internal reflection can take
place, thus transferring harvested light to a specific place of the material for energy
conversion.
For example, UV-Vis absorption spectrum of a xanthene loaded zeolite L monolayer
measured before ©CR-39 coverage does not reveal the characteristic absorption
bands of the dye, light scattering being too strong thus impeding the measurement by
rendering the sample optically opaque. Examination of absorption spectra of CR39,
xanthene -loaded zeolite monolayer and xanthene -loaded zeolite monolayer covered
with ©CR-39 on glass substrate, in comparison to monolayer covered with polymer
demonstrates this effect: Only the polymer covered monolayer allows to observe the
xanthene absorption band around 580 nm.
Examples
Disc-shaped zeolites were synthesized according to the procedure in Monatshefte
fur Chemie 136, 77-89 (2005).
Nanosized zeolite L and Hostasol Red GG were obtained from Clariant Produkte
(Deutschland) GmbH.
Example 1: Pre-treatment of zeolite crystals to control internal aciditiy
0.1 g of nano zeolite L were suspended in 10 ml of a caesium nitrate (1 mmol/l)
solution. The suspension was left stirring at 60°C for 12 h. After centrifugation, the
exchanged material was washed twice with deionized water and dried in an oven at
80°Cfor12h.
10

Example 2: Zeolite surface modification with alkoxysilanes
Trivinylethoxysilane (0.4 ml) was added to a suspension of zeolite L (0.100 g) in
toluene (4 ml). The mixture was refluxed for 16 h at 110 °C. After centrifugation, the
residue was washed once with toluene, and dried at 80°C for 12 h.
Yield: Quantitative
Example 3: Copolymerisation of liquid monomer with surface modified zeolite
crystals
1 ml of the liquid monomer diethylene glycol bis allyl carbonate was added to a glass
mold containing from 1 to 5% w/w of surface treated nano sized zeolite L (Example
2). After vortex mixing for 30 s the mixture was sonicated at 60°C for 30 min. Di-
benzoyl peroxide (0.030 g) was added and the mixture was sonicated again at 65°C
until gel formation took place. The sample was left in the oven at 80°C for 48h.
Example 4: Preparation of hybrid material with ©Hostasol Red GG loaded zeolite L
Zeolite L nanocrystals were first exchanged with Cs+ according to the procedure in
Example 1, before loading them with Hostasol Red GG. The organic dye was
inserted via a gas phase adsorption process. 0.73 mg of a Hostasol Red GG was
added to 100 mg of zeolite L in a glass ampoule. This mixture was dried at 110 °C for
16 h, at a pressure of 6 x 10-2 mbar. The ampoule was then sealed off under
vacuum and the insertion took place in a rotating oven for 24 h at 250 °C. The
product was washed with dry toluene in order to remove dyes adsorbed to the outer
surface of the zeolites. The surface of the cleaned crystals was then modified with
trivinylethoxysilane by the method mentioned above in Example 2.
60 mg of the dried, loaded and modified material was finely divided to give a fine
powder, suspended in 6 ml of toluene, and sonicated for 30 min. For the
copolymerisation step, 1 ml of diethylene glycol bis allyl carbonate was added to the
suspension. Toluene was evaporated at 65°C under vacuum (6 x 10-2 mbar) and
sonication. 0.030 g of di-benzoyl peroxide was added and the mixture was sonicated
at 65°C until gel formation could be observed. The sample was then hardened in an
oven at80oCfor48 h.
11

Example 5: Preparation of hybrid material with oxonine loaded zeolite L
The nanosized zeolite L crystals were first exchanged with K+ in order to reduce the
internal acidity. This was carried out in a similar way as described in Example 1. 300
mg of the K+ -exchanged zeolite L were placed in a flask and suspended in 400 ml of
water. 3 ml of an aqueous oxonine solution (c = 6*10-5 M) were added. The
suspension was refluxed for 90 min, cooled to room temperature and centrifuged.
The loaded zeolite was washed three times with 1-butanol. The surface of the
cleaned crystals was then modified with trivinylethoxysilane by the method described
in Example 2. 100 mg of the dried, loaded and modified material were reduced to a
fine powder and added to 1 ml of diethylene glycol bis allyl carbonate. The mixture
was vortex mixed for 30 s and sonicated for 30 min at 60°C. 0.030 g of di-benzoyl
peroxide were added and the mixture was sonicated at 65°C until gel formation could
be observed. The sample was then hardened in an oven at 80°C for 48 h.
Example 6: Zeolite monolayers coated with polymer A
A glass plate (2 cm diameter, 2 mm width) was washed in a Caro's acid (mix of
hydrogen perxoxide with sulfuric acid) for 3h at 110°C, rinsed extensively with
deionized water and placed into a flask containing toluene (10 ml). Then,
3-chloropropyltrimethoxysilane (0.4 ml) was added and the mixture was refluxed for
3h under inert atmosphere.
A suspension of disk-like zeolite L (15 mg) in toluene (10 ml) was sonicated for 20
minutes. Then, the glass plate was added to the zeolite suspension and sonicated for
another 30 minutes. The glass plate was sonicated in toluene for some seconds to
remove physisorbed zeolites.
The prepared monolayer is now loaded with guest compounds. The loading
procedure is identical to those described under example 4 and 5.
A mixture of liquid monomer diethylene glycol bis allyl carbonate (0.5 ml) and di-
benzoyl peroxide (0.030 g) was heated at around 80°C until the solution was viscous.
One face of the glass plate was covered with that viscous solution and left in the
oven for 48h.
12

Patent Claims: 2006DE127
1) A transparent zeolite-polymer hybrid material, comprising zeolite crystals
dispersed in a polymer A, wherein
(i) the zeolite crystals have parallel channels and/or cavities inside the crystal
and a crystal length of 20 to 7000 nm,
(ii) the channels and/or cavities of the zeolite crystals contain guest molecules,
clusters or ions,
(iii) the zeolite crystals are surface-coated with a polymerizable silane,
(iv) polymer A is a transparent organic polymer.
2) The zeolite-polymer hybrid material as claimed in claim 1, wherein polymer A
is selected from the group consisting of polyolefines, polysiloxanes, polyacrylates,
poiymethacrylates, polyvinyls, polyesters, polycarbonates, and polyurethanes.
3) The zeolite-polymer hybrid material as claimed in claim 1 or 2, wherein
polymer A is made from diethylene glycol bis-allyl carbonate.
4) The zeolite-polymer hybrid material as claimed in any of claims 1 to 3, wherein
the amount of the zeolite crystals dispersed in polymer A is from 0.1 to 40 % by
volume, relative to the total volume of the hybrid material.
5) The zeolite-polymer hybrid material as claimed in any of claims 1 to 4, wherein
the guest molecules or ions are selected from the group consisting of organic dyes,
organic pigments, silver halides, silver sulfide, titanium dioxide, silicon dioxide, silicon
nitride, silicon clusters and lead sulfide.
6) The zeolite-polymer hybrid material as claimed in any of claims 1 to 5, wherein
the polymerizable silane is a silane containing at least one leaving group from the
group consisting of alkoxy and halides, and/or contains at least one terminal olefinic
double bond.
13

7) The zeolite-polymer hybrid material as claimed in any of claims 1 to 6, wherein
the polymerizable silane is trivinyl-ethoxysilane or methacryloxymethyl-
trimethoxysilane.
8) A process of preparing a transparent zeolite-polymer hybrid material as
claimed in any of claims 1 to 7, comprising
(i) loading zeolite crystals with guest molecules, clusters or ions,
(ii) coating the surface of the loaded zeolite crystals with a polymerizable silane,
(iii) dispersing the coated zeolite crystals in a liquid monomer or oligomer, and
(iv) polymerizing the polymerizable silane and the liquid monomer or oligomer to
form a polymer A wherein said zeolite crystals are dispersed.
9) The process of claim 8, wherein before loading the zeolite crystals with the
guest molecule, cluster or ion, counter ions of the zeolite are partially or fully
exchanged with alkali cations.
10) Use of a transparent zeolite-polymer hybrid material as claimed in any of
claims 1 to 7 for developing optical devices such as lenses, eye glasses, special
mirrors, filters, polarizer, grids, optical storage, monitors, window panes, float glass,
or for coating of organic and inorganic surfaces for anti-reflection properties or light
wavelength transformation.

14

The invention is about the preparation of novel highly transparent zeolite-doped
polymer and zeolites monolayers.
External coating of the zeolite crystals by covalently linked functionalized
alkoxysilane derivatives allows for an efficient dispersion of the nano zeolite particles
into an organic liquid monomer; the following co -polymerisation process leads to a
hard, insoluble and transparent material containing said zeolites. Optical properties
such as colour, refractive index, Abbe number or photochromism can be fine tuned
by simply changing zeolite loading, while transparency is maintained.

Documents:

http://ipindiaonline.gov.in/patentsearch/GrantedSearch/viewdoc.aspx?id=jQMjNNc7v3+Yv7rkes/JPw==&loc=wDBSZCsAt7zoiVrqcFJsRw==


Patent Number 269290
Indian Patent Application Number 753/KOL/2007
PG Journal Number 42/2015
Publication Date 16-Oct-2015
Grant Date 14-Oct-2015
Date of Filing 15-May-2007
Name of Patentee CLARIANT INTERNATIONAL LTD.
Applicant Address ROTHAUSSTRASSE 61 4132 MUTTENZ 1
Inventors:
# Inventor's Name Inventor's Address
1 DR. ANDRÉ DEVAUX HESSSTRASSE 43, 3097 LIEBEFELD
2 DR. STEPHANE SUAREZ VEREINSWEG 5, 3012 BERN
3 DR. ANDREAS KUNZMANN DÖRFLI 9, 5603 STAUFEN
4 DR. HANS JOACHIM METZ ROEDERICHSTRASSE 32, 60489 FRANKFURT AM MAIN
5 PROF. DR. GION CALZAFERRI FREIESTRASSE 3, 3012 BERN
PCT International Classification Number A61F13/15; A61L15/18; A61F13/15
PCT International Application Number N/A
PCT International Filing date
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 06013435.0 2006-06-29 EPO