Title of Invention

ROLLER-BELT CONVEYOR FOR ACCUMULATING AND MOVING ARTICLES LATERALLY ACROSS THE CONVEYOR

Abstract A conveyor (10) using a roller belt (12) with rollers (42) arranged to rotate on oblique axis (44) to urge articles toward a side guide (54). The conveyor includes an oblique-roller belt (12) supported on a carry way (38). Rollers (42) extend above an outer conveying surface of the belt without contacting the carry way. Each roller rotates on an axis (44) oblique to the direction of belt travel and intersects the side guide (54) downstream of the roller. A retractable stop (60) is movable to and from a blocking position along the carry way. In the blocking position, the stop blocks the conveyed articles from advancing in the direction of belt travel. The rollers underlying the blocked articles rotate as the belt runs by contact with the articles. The rotating rollers provide a force to the blocked articles directed toward the side guide (54) to push the articles against the side guide or other articles as they accumulate upstream of the stop.
Full Text ROLLER-BELT CONVEYOR FOR ACCUMULATING AND MOVING ARTICLES
LATERALLY ACROSS THE CONVEYOR
BACKGROUND
The invention relates to power-driven conveyors and, more particularly, to a conveyor using a conveyor belt with obliquely oriented rollers to accumulate and move articles laterally across the conveyor.
Many material-handling applications require that conveyed articles be accumulated and aligned single file or arranged in groups for downstream processing or inspection. One way to arrange articles single file against a side of the conveyor is with a conveyor belt having rollers with salient portions that extend beyond top and bottom surfaces of the belt. The rollers roll on supporting bearing surfaces beneath the bottom surface of the belt as it advances in a direction of belt travel. The rollers are arranged to rotate on axles oblique to the direction of beh travel. The rotation of the rollers on their oblique axles provides a sidewise component offeree directing conveyed articles atop the rollers toward a side guide flanking the belt. But, because contact between the rollers and the bearing surface is not fi*ictionless, roller wear accelerates and belt tension increases. Furthennore, because the rotation of the oblique rollers pushes the articles forward as well, accumulated articles would experience high back line pressm*e. Consequently, such a conveyor has shortcomings in applications requiring accumulation of aiticles in a single file or side by side.
SUMMARY
These shortcomings are overcome by a conveyor embodying features of the invention, in which a conveyor comprises a conveyor belt supported on a carryway flanked by a side guide. The carrjovay extends from an upstream end to a downstream end in a direction of belt travel. The conveyor belt includes rollers extending above an outer conveying surface of the belt at individual roller positions. The rollers, which do not contact the carryway, support conveyed articles. Each roller is arranged to rotate on an axis oblique to the direction of belt travel. Each axis intersects the side of the carryway at the side guide at a position downstream of the roller position. A retractable stop is movable to and from a blocking position along tlie carryway. In the blocking position, the stop blocks the advance of conveyed articles in the direction of belt travel and causes the rollers underlying the blocked articles to rotate as the belt nms. The oblique rollers provide a component of force to the blocked articles directed toward the side guide.

Anotlier version of a conveyor comprises a modular conveyor belt running along a carryway. The carryway extends from an upstream end to a downstream end in the direction of belt travel. A side guide extends along a first side of the carryway. Support surfaces extending in the direction of belt travel are spaced apart laterally on the carryway across spaces. The modular belt is constructed of a series of rows of belt modules connected together at hinges between successive rows into an endless belt loop. Cavities in the belt open onto outer and inner surfaces of the belt loop. Salient portions of rollers disposed m the cavities extend past the outer and inner surfaces of the belt loop. Each roller is arranged to rotate on an axis oblique to the direction of belt ti^avel. The axis intersects the first side of the carryway downstream of the roller's cavity. The carrj'Avay underlies a belt loop portion along which articles are conveyed atop the salient portions of the rollers extending past the outer surface of the belt. The carryway portion of the belt loop is supported on the support surfaces with the salient portions of the rollers extending past the irmer surface of the belt loop positioned in the spaces between support surfaces. A stop is movable between a first position and a second position. In the first position, the stop blocks the advance of conveyed articles along the carryway in the direction of belt travel. In the second position, the stop allows articles to advance in the direction of belt travel. In the first, blocking position, the stop causes the rollers in contact with the blocked articles to rotate as the rollers advance with the belt. The rollers rotating beneath the blocked aiticles provide a component of force directed to push the blocked articles toward the side guide.
In another aspect of the invention, a conveyor comprises an upstream conveyor section at a first end of the conveyor and a dov/nstream conveyor section at a second end of the conveyor receiving conveyed articles fi*om the upstream conveyor section. At least one conveyor belt advances in a direction of belt travel fi'om the first end to the second end along tlie upstream and downstream conveyor sections, fhe belt has rollers arranged to rotate on axes oblique to the direction of belt travel. Salient portions of the rollers extend past outer and irmer surfaces of the conveyor belt. Opposite first and second side guides flank the upstream and downstream conveyor sections. The upstream conveyor section includes roller bearing surfaces tliat underlie the conveyor belt. The roller bearing surfaces contact the salient portions of the rollers in rolling contact to rotate the rollers as the conveyor belt advances. In this way, articles supported atop the salient portions of the rollers are pushed toward the second side guide. A movable stop is positionable across the downstream conveyor section to block conveyed articles from passing the stop as the belt advances along

the downstream conveyor section. The downstream conveyor section includes a belt-supporting surface underlying the conveyor belt out of contact with the salient portions of the rollers extending past the inner surface of the conveyor belt. This lack of contact allows the rollers in the downstream conveyor section in contact with a blocked article to rotate opposite to the rotation of the rollers in the upstream conveyor section to push the blocked articles in the downstream conveyor section toward the first side guide with reduced back line pressure.
Another version of a conveyor has opposite first and second sides. Rollers are embedded in at least one conveyor belt advancing in a du'ection of belt travel through an upstream conveyor section and a downstream conveyor section. The rollers are an*anged to rotate on generally parallel axes oblique to the direction of belt travel Bearing surfaces underUe the rollers in the upstream conveyor section in rolling contact to rotate tlie rollers in a first direction as the conveyor belt advances along the upstream portion. The rotation of the rollers pushes conveyed articles toward the second side of the conveyor. A belt-supporting surface supports the belt in the downstream conveyor section without contacting the rollers. A stop extends laterally across the downstream conveyor section between the first and second sides of tlie conveyor to block conveyed articles from advancing with the belt past the stop. The rollers in the downstream conveyor section rotate in a second direction opposite to the first direction by contact with blocked articles. This opposite rotation pushes the blocked articles toward the first side of the conveyor.
BRIEF DESCRIPTION OF THE DRAWINGS
These features and aspects, as well as advantages, of the invention are better understood by referring to the following description, appended claims, and accompanying drawings, in which:
FIG. 1 is an isometric view of a conveyor embodying features of the invention;
FIG. 2 is a cross section of a portion of the conveyor of FIG. 1 taken along lines 2-2 of FIG. 1;
FIGS. 3A~-3E are top views of the conveyor of FIG. 1 illustrating its operation;
FIGS. 4A-4F are top views of the conveyor of FIG. 1 illustrating its operation when configured as a palletizer;
FIGS. 5A-5B are side elevation schematic views of the conveyor of FIG. 1 operating as a palletizer as in FIGS. 4A-4F;

FIG. 6 is a cross section of the conveyor of FIG. 4A taken along lines 6-6 of FIG. 4A; and
FIG. 7 is a side elevation view of another version of a portion of a conveyor as in FIG. 1 operating as a palletizer.
DETAILED DESCRIPTION
FIG, 1 shows a conveyor 10 embodying features of the invention including a conveyor belt 12, such as a modular roller-top conveyor belt. The conveyor belt shown is a modular conveyor belt made up of belt modules 14 arranged in a series of rows 16. The rows are connected together by hinge pins 17 at hinge joints 18 that allow the belt to articulate about drive and idler sprockets 20 at each end of the conveyor. The belt forms an endless loop trained around a drive shaft 22 and an idler shaft 24. The shafts are supported at their ends in bearing blocks 26 mounted on a conveyor fi'ame (not shown for simplicity). A motor 28 is coupled to the drive shaft 22 to drive the belt. As the motor's output shaft 30 rotates as shown by arrow 32, the belt advances in a direction of belt travel 34.
A portion of the belt loop, in particular the upper, article-conveying portion 36 in FIG. 1, is supported on a carry way 38 (FIG. 2). The belt returns from the drive sprockets via a retumway 40 beneath the carryway. Shoes, drums, or rollers may be used in the returnway to reduce sag in the belt.
The belt includes a plurality of rollers 42, preferably arranged in longitudinal lanes parallel to the direction of belt travel. The rollers are arranged to rotate on axes 44 oblique to the direction of belt travel. For example, the axes may be 30°, 45°, or 60° from the direction of belt travel. In the examples shown, the rollers are mounted in cavities 46 that open onto an outer, article-conveying surface 48 and an opposite inner surface 49 of the belt loop. One suitable belt is the Series 400 Angled Roller'^^ belt manufactured and sold by Intralox, L.L.C. of Hai-ahan, Louisiana, U.S.A. The Intralox belt is made of a thermoplastic polymer such as polypropylene, polyethylene, acetal, or composite materials in an injection-molding process. The rollers 42, as shovm in FIG. 2, are generally cylindrical in shape and mounted in the cavities on axles 50. Bores 52 through the rollers receive the axles. The rollers are free to rotate on the axles, which define axes of rotation for the rollers. The ends of the axles are embedded in tlie body of the belt module 14.
As shown in FIG. 1, a side guide 54, mounted on supports 55, bounds one side 56 of the belt along the carryway 38. The carryway extends in the direction of belt travel 34 from

an upstream end 58, at which articles are fed onto the conveyor, to a downstream end 59, from wliich articles are transferred off the conveyor. A stop 60 at the downsti'eam end of the conveyor is movable from a fu:st position blocking conveyed articles, as shown in FIG. 1, to a second unblocking position allowing arranged articles to pass. An elevator 62 is shown in this example for raising and lowermg opposite ends of a stop barrier, as indicated by double-headed aiTow 64. In the raised, unblocking position, the stop barrier is elevated high enough above the outer belt surface along the carryway to avoid articles passing below. Tlie stop could be realized in other ways. One example is a gate that swings from a blocking position across the carryway to an unblocking position alongside tlie carryway.
As shown in FIG. 2, the beh is supported in the carryway on support surfaces, such as metal rails or plastic wearstrips 66, moimted on a conveyor pan 68 or other structure. Tlie wearstrips, which are preferably made of a wear-resistant, low-friction material such as UHMW (ultra-high molecular weight) plastic, are laid out along the carryway longitudinally in the direction of beh travel and spaced laterally across spaces 70 between consecutive wearstrips. (Spaces may also exist between the lateral outermost wearstrips and the sides of the belt.) The inner surface 49 of the belt rides on bearing surfaces 72 on the wearstrips. Salient portions 74 of the rollers extend from the belt cavities past the outer and imier surfaces of the belt. Articles are conveyed along the carryway atop the salient portions of the rollers extending past the outer, conveying surface. The salient portions of the rollers extending past the iimer surface of the belt are positioned in the spaces 70 between adjacent wearstrips. In this way, the rollers do not contact any conveyor structure under the belt along the carryway and are free to rotate or remain stationary.
The operation of the conveyor is illustrated step by step in FIGS. 3A-3E with the stop 60 in the blocking position. The carryway extends in the direction of belt travel 34 from the upstream end 58 to the downstream end 59. The rollers 42 rotate on oblique axes 44, each of which intersects the side guide 54 at a point 76 downstream of the roller's position 78. In FIG. 3 A, articles A, B, and C are being conveyed along the carryway in tlie direction of belt travel atop the rollers. The rollers, which do not contact the cavryv/ay or its weai'Strips, are not rotating significantly, and the articles travel with the beh. In FIG. 3B, lead article A meets the stop 60 blocking its further passage along the carryway. Trailing articles B and C continue to advance with the running belt toward article A. With article A blocked, the rollers beneath it rotate as they encounter the article's bottom suiface. Because article A is prevented from advancing in the direction of belt travel, it causes the rollers beneath it to rotate in the

direction indicated by arrow 80. The direction 80 is perpendicular to the roller axis and has a first component opposite the direction of belt travel and a second component directed toward the side guide. The component opposite the direction of belt travel generally matches the speed of the belt and allows articles to accumulate with low backline pressure against each other and the stop. The component directed toward the side pushes article A against the side guide 54, as shown in FIG. 3C. As article B catches up to blocked article A and is, in turn, blocked by it, the rollers start to rotate under article B as they pass beneath it. The rotation of the rollers under article B urges it toward the side guide, too, as article C is still being conveyed along. Eventually, as shown in FIG. 3D, article C bumps into leading article B, Prevented from advancing in the direction of belt travel, article C causes the rollers to rotate as they pass below^ which applies a component of force toward the side guide. As shown in FIG. 3E, articles A, B, and C are registered against the side guide and accumulated under low pressure against the stop. Once the stop is moved to its unblocking position, the articles will advance in tlie direction of belt travel along the side of the conveyor.
The accumulation and registration capabilities of the conveyor make it especially suitable for grouping articles before palletizing. As shown in FIG. 4A, the accumulation and registration conveyor 10 receives a conveyed article D from an upstream conveyor belt 82 across a gap 84, which may be partly filled by a transfer plate. The upstream conveyor belt could be, as shown in FIG. 4A, identical in construction to the belt 14 in the downstream conveyor. But the upstream belt is operated differently fi'om the downstream belt. As shown in FIG. 6, the rollers 42 in the upstream belt 82 extend past its inner surface 49 and its outer surface 48 and ride on supporting bearing surfaces 86, such as UHMW wearstrips, in rolling contact. As the belt advances, the rollers rotate on the bearing surfaces and propel aiticles toward the left side against a left side guide 88, as indicated by the arrow in FIG. 4A. Article D continues along the left side of the downstream conveyor along the extended side guide. When article D hits the stop 60, its forward progress is stopped, which causes the fi*ee rollers under it to rotate opposite to the direction of rotation of the rollers in the upsti'eam conve}'ors and push article D laterally along the stop in the direction of the arrow in FIG. 4B toward the right side guide. Eventually article D registers against the right side rail and the stop, as shown in FIG. 4C. Subsequent articles, such as article E in FIG. 4D, are moved toward the left side guide by the upstream conveyor and, once blocked, are moved toward the right on the downstream conveyor. Aiticle E follows the same general path as article D, but comes to a fiill stop beside article D. FIG. 4E shows the formation of a packed group of articles in tvv^o

rows. Because the final article in the leading TOW, article F, does not leave enough room between itself and the left side guide, the following article, article G, is pushed bj^ the rollers across the belt to the right side guide along the rear of the leading row of articles. The process continues until a group 89 of articles of a predetermined size and shape is formed. Then the stop is retracted from its blocking position to an unblockuig position, and the group is advanced b)^ the downstream conveyor, as shown in FIG. 4F onto a palletizer table 90, for example. As also shown in FIG. 4F, each row could be arranged with articles in different orientations by an upstream process that presents the articles in the correct orientation to the conveyor.
FIGS. 5A-5B illustrate the formation of a pallet of articles on the palletizer table 90. As soon as the group of products for the bottom layer of the pallet to be formed is transfeixed completely from the conveyor 10 to the table, the table is lowered, as indicated by an*ow 92 in FIG. 5B, to level at which the tops of the article in the bottom layer 89 ai'e generally level with the outer surface of the conveyor belt. Then a second layer 89' is formed and transferred onto the top of the first layer, and the table is lowered again for a third layer, and so on, until a pallet of predetermined size is formed. After the pallet is removed, the table is elevated to its original position to receive the next bottom layer, as indicated by two-headed arrow 93 in FIG. 5A.
The palletizing conveyor shown in the example of FIGS. 4A—4F uses an upstream conveyor belt 82 and a separately driven downstream conveyor belt 12. But, as shown in FIG. 7, the two-belt system can be replaced by a single oblique-roller belt 94 with retractable roller bearing surfaces 95. The bearing surfaces may be vertically raised and lowered into and out of contact with the rollers as indicated by arrows 98. Individually actuated roller bearing surface selectively positioned along the carryway under the belt can program the belt to have different characteristics along its length. For example, with the bearing surfaces in a raised position engaging the rollers, conveyed articles are urged toward one side of the belt in that section. With the bearing surfaces in a lowered, non-engaging position and a stop 60 in place at the end of tliat section, blocked articles can be pushed toward the other side of the belt. To complement the prograramability of the belt along its length, the stop may translate along the belt as indicated by arrow 99 to accumulate articles at various positions along the lengtli of the carryway.
Although the invention has been described in detail with reference to preferred versions, other versions are possible. For example, the belt shown has rollers that extend from

cavities through the belt's thickness past the outer and inner belt surfaces. But it would be possible to use a belt in which the rollers do not extend past the inner surface of the belt. With such a belt, different canyway bearing configurations could be used. Instead of lineai* wearstrips, chevron wearstrips or a continuous carryway pan would be possible. Another oblique-roller belt that could be used with almost any carryway configuration would be one in which the rollers are mounted completely above the outer belt surface. Alternatively, the rollers could pop up out of the belt cavities to engage conveyed articles along the carry\vay. In all these versions, the rollers could, instead of rotating about fixed axles, include integral stubs that define axes of rotation. The ends of the stubs could be rotatably received in belt recesses that would allow the rollers to rotate. A yet another example, the roDer bearing surfaces underlying rollers could be static surfaces, such as on wearstrips or wearsheets, or rotatable surfaces, such as provided by rollers rotatable on axes in the direction of belt travel So, as these few examples suggest, the scope of the claims is not meant to be limited to the versions described in detail. What is claimed is:








CLAIMS
1. A conveyor for translating conveyed articles toward a side guide, the conveyor
comprising:
a carryway extending from an upstream end to a downstream end in a direction of belt
travel and having a side guide along a first side; a conveyor belt supported on the carryway for running in the direction of belt travel,
the conveyor beh including:
an outer conveying surface;
a plurality of rollers extending above the outer conveying surface at individual roller positions without contact with the carryway to support conveyed articles, each roller arranged to rotate on an axis oblique to the direction of belt travel and intersecting the first side of the carryway downstream of the roller's position; a retractable stop movable to and from a blocking position along the carryway
blocking the advance of conveyed articles in the direction of belt travel and
causing the rollers underlying the blocked articles to rotate as the belt nuis and
thereby provide a component of force to the blocked articles directed toward the
side guide at the first side of the carryway.
2. A conveyor as in claim 1 wherein the retractable stop is further movable along the carryway in the direction of belt travel.
3. A conveyor as in claim 1 further comprising a second side guide at a second side of the conveyor opposite the first side and an infeed conveyor feeding articles onto the conveyor belt at the upstream end of the carryway along the second side guide.
4. A conveyor comprising:
a carryway extending firom an upstream end to a downstream end in a direction of belt travel and having a first side guide along a first side and a plurality of support surfaces extending in the direction of belt travel and spaced apart laterally across spaces;
a modular conveyor belt including a series of rows of belt modules connected together at hinges between successive rows into an endless belt loop, the conveyor belt further having an outer surface and an inner surface and fonxiing cavities opening onto the outer surface and the inner surface, the conveyor belt fiirther including:

a plurality of rollers disposed the cavities witli salient portions of the rollers extending past the outer and inner surfaces of the belt loop, each roller arranged to rotate on an axis oblique to the direction of belt travel and intersecting the first side of the canyway downstream of the roller's cavity;
wherein a portion of the conveyor belt loop, along which articles ai-e conveyed atop tlie salient portions of tlie rollers extending past the outer surface, is underlain by the carr}^way and supported on the support surfaces with the salient portions of the rollers extending past the inner surface of the belt loop positioned in the spaces between the support surfaces;
a stop movable between a first position blocking the advance of conveyed articles along the carryway in the direction of belt travel and a second position allowing articles to advance with tlie belt in the direction of belt travel;
wherein the stop in the first position causes the rollers in contact with the blocked articles to rotate as the rollers advance with the belt and thereby provide a component offeree to the blocked articles directed to push the blocked articles toward the first side guide.
5. A conveyor as in claim 4 wherein the stop is further movable along the canyway in the direction of belt travel.
6. A conveyor as in claim 4 further comprising a second side guide at a second side of the conveyor opposite the first side and an infeed conveyor feeding articles onto the conveyor belt at the upstream end of the carryway along the second side guide.
7. A conveyor comprising:
an upstream conveyor section extending from a first end of the conveyor toward a second end of the conveyor; and
a downstream conveyor section receiving conveyed articles &om the upstream conveyor section and extending to the second end of tlie conveyor;
at least one conveyor belt advancing in a direction of belt travel from the first end to the second end along the upsti*eam and downstream conveyor sections and having rollers arranged to rotate on axes oblique to the direction of belt travel with salient portions of the rollers extending past outer and inner surfaces of the conveyor belt;
opposite first and second side guides flanking at least portions of the upstream and do\vnstream conveyor sections;

wherein the upstream conveyor section includes roller bearing surfaces underlying the conveyor belt and contacting the salient portions of the rollers extending past the inner surface of the conveyor belt in rolling contact to rotate the rollers as the conveyor belt advances to push articles supported atop the salient portions of the rollers toward the second side guide;
a movable stop positionable across the downstream conveyor section to block
conveyed articles from passing the stop as the belt advances along the downstream conveyor section;
wherein the downstream conveyor section includes a belt-supporting surface
underlying Hie conveyor belt out of contact with the salient portions of tlie rollers extending past the inner surface of the conveyor belt to allow the rollers in the dov^Tistream conveyor section in contact with a blocked article to rotate opposite to the rotation of the rollers in the upstream conveyor section to push the blocked aiticles in the downstream conveyor section toward the first side guide with reduced back line pressure.
8. A conveyor as in claim 7 wherein the movable stop is movable along tlie canyway in the du'ection of belt travel
9. A conveyor as in claim 7 wherein tlie at least one conveyor belt comprises a first belt in the upstream conveyor section and a second belt in the downstream conveyor section.
10. A conveyor as in claim 7 wherein the at least one conveyor belt comprises a single bek advancing through both the upstream and downstream conveyor sections.
11. A conveyor as in claim 7 wherein the roller bearing surfaces are movable from a first position contacting the rollers to a second position out of contact with the rollers.
12. A conveyor as in claim 7 further comprising roller bearing surfaces in the downstream convevor section movable into and out of contact with rollers in the downstream conveyor section.
13. A conveyor having opposite first and second sides comprising:
rollers embedded in at least one conveyor belt advancing in a direction of belt travel through an upstream conveyor section and a doAATistream conveyor section, the rollers arranged to rotate on generally parallel axes oblique to the direction of belt travel;

bearing surfaces underlying the rollers in the upstream conveyor section in rolling
contact to rotate the rollers in a first direction as the conveyor belt advances along
the upstream portion to push conveyed articles toward the second side of the
conveyor; a belt-supporting surface supporting the belt in the downstream conveyor section
without contacting the rollers; a stop extending laterally across the downstream conveyor section between the first
and second sides of the conveyor to block conveyed articles from advancing with
the belt past the stop; wherein the rollers in the dovmstream conveyor section rotate in a second direction
opposite to the first direction by contact with blocked articles to push the blocked
articles toward the first side of the conveyor.
14. A conveyor as in claim 13 wherein the stop is movable along the can-yu'ay in the
direction of belt travel.
15. A conveyor as in claim 13 wherein the at least one conveyor belt comprises a first belt
in the upstream conveyor section and a second belt in the downstream conveyor
section.
16. A conveyor as in claim 13 wherein the at least one conveyor belt comprises a single
belt advancing tlirough both the upstream and downstream conveyor sections.
17. A conveyor as in claim 13 wherein the bearing surfaces are movable from a first
position contacting the rollers to a second position out of contact with the rollers.
18. A conveyor as in claim 13 further comprising bearing surfaces in the downsti^eam
conveyor section movable into and out of contact with rollers in the downstream
conveyor section.

Documents:

http://ipindiaonline.gov.in/patentsearch/GrantedSearch/viewdoc.aspx?id=Ksl7VArF0a9uW1QRRQfrTw==&loc=egcICQiyoj82NGgGrC5ChA==


Patent Number 269778
Indian Patent Application Number 5001/CHENP/2007
PG Journal Number 45/2015
Publication Date 06-Nov-2015
Grant Date 05-Nov-2015
Date of Filing 06-Nov-2007
Name of Patentee LAITRAM, L.L.C.
Applicant Address 220 LAITRAM LANE, HARAHAN LOUISIANA 70123.
Inventors:
# Inventor's Name Inventor's Address
1 RIDDICK DAVID, W 13 PALMER DRIVE, LULING, LOUISIANA 70070.
2 LALLY, BRETT, A 3241 MICHIGAN AVENUE, METAIRIE, LOUISIANA 70003, USA.
3 COSTANZO, MARK 525 FLORIDA STREET, RIVER RIDGE, LOUISANA 70123, USA.
PCT International Classification Number B65G47/28
PCT International Application Number PCT/US2006/017113
PCT International Filing date 2006-05-03
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 10/908,326 2005-05-06 U.S.A.