Title of Invention

TRANSMIT POWER INITIALIZATION FOR SECONDARY REVERSE LINK CARRIERS IN A WIRELESS COMMUNICATION NETWORK

Abstract A method and apparatus provide for setting the initial transmit power of secondary reverse link carriers used by mobile stations in conjunction with primary reverse link carriers. In one or more embodiments, a mobile station sets the initial transmit power of a secondary reverse link carrier relative to the transmit power of the primary reverse link carrier as a function of initialization transmit power information transmitted to the mobile station, which directly or indirectly considers reverse link loading information. Additional considerations may include differences in active sets associated with the primary and secondary reverse link carriers and/or sector switching activity of the mobile station.
Full Text The present invention generally relates to wireless communications, and particularly
relates to initializing transmit powers for secondary reverse link carriers.
in some types of wireless communication networks, mobile stations are permitted to
transmit reverse (ink data on two or more reverse link carriers, which may be referred to as one
primary reverse fink carrier and one or more secondary reverse link carriers. By way of non-
limiting example, the 1x-EVDO standards currently in development include multi-carrier
provisions that allow for primary and secondary reverse link carriers.
ControiSing transmit power represents a fundamental challenge in CDMA-based
networks and other interference-limited communication systems, and such control
considerations extend to transmit power initialization. That is, while channel feedback may be
used between transmitters and receivers for ongoing transmit power control, such feedback
generally is unavailable at the outset of transmission.
The starting or initial transmit power of a primary reverse link carrier may be set by a
mobile station based on access probing procedures. However, access probing is not performed
once the primary reverse link carrier is established and therefore is not available for initializing
the transmit powers) of any secondary reverse link carriers) used by the mobile station.
One approach to initializing the transmit power of a secondary reverse link carrier is to
set its Initial transmit power to the current level of the primary reverse link carrier. However, to
the extent that conditions for the secondary reverse link carrier differ from those for the primary
reverse link carrier, this approach may result in initializing the secondary reverse link carrier
transmit power either too high, or too low. Initializing the transmit power too tow reduces
connection success, while initializing the transmit power too high needlessly increases
interference and wastes power at the mobile station.
SUMMARY
In one embodiment, a base station controller transmits initialization power offset
information for use by mobile stations in setting the initial transmit power used by them for
secondary reverse link carriers. Correspondingly, in one or more embodiments, a mobile station
is configured to initialize secondary reverse link carrier transmit power based on the initialization
power offset information.
With the above in mind, a method of initializing reverse link transmit power for secondary
reverse link carriers in a wireless communication network comprises determining initialization
power offset information for one or more secondary reverse link carriers as a function of reverse
2

link loading, and transmitting the initialization power offset information to a mobile station for use
in initializing secondary reverse link carrier transmit power.
Determining the initialization power offset information comprises, in one or more
embodiments, determining reverse link loading differences relating at least one secondary
reverse link carrier to a primary reverse link carrier associated with the mobile station. For
example, determining the initialization power offset information may comprise determining at
least one of reverse link loading differences relating one or more secondary reverse link carriers
to a primary reverse link carrier, determining active set differences relating one or more
secondary reverse link carriers to a primary reverse link carrier, and sector switching activity
involving the mobile station.
In the above and other embodiments, the initialization power offset information may
comprise explicit power offset information identifying at least one power offset to be used for
initializing secondary reverse link transmit power relative to a current transmit power of a
primary reverse link carrier associated with the mobile station. Alternatively, the initialization
power offset information may comprise Implicit power offset information indicating relative
reverse link loading information for one or more secondary reverse link carriers and a primary
reverse link carrier associated with the mobile station, such that the mobile station computes an
initial power offset to be used for a secondary reverse link carrier as a function of the reverse
link loading information.
Whether implicit or explicit information is transmitted, the initialization power offset
information may be sent in a traffic channel assignment message. However, it should be
understood that other mechanisms for providing initialization power information to mobile
stations are contemplated herein. For example, in one embodiment, a base station controller, or
a corresponding radio base station, is configured to transmit reverse link loading information,
such as by transmitting reverse link activity indicators. Correspondingly, a mobile station is
configured to use the reverse link loading information to determine initial transmit power offsets
for one or more reverse link secondary carriers relative to a primary reverse link carrier.
Of course, the present invention is not limited to the above features and advantages.
Indeed, those skilled in the art will recognize additional features and advantages upon reading
the following detailed description, and upon viewing the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
Fig. 1 is a block diagram of one embodiment of a wireless communication network
configured according to transmit power initialization as taught herein.
Fig. 2 is a block diagram of one embodiment of a base station controller that may be
used in the network of Fig. 1.
Fig. 3 is a logic flow diagram of one embodiment of processing logic for determining
initialization power offset information used in setting initial transmit powers of secondary reverse
link carrier(s) at a mobile station.
3

Fig. 4 is a logic flow diagram of one embodiment of processing logic for mobile station
reverse link transmit power initialization
Fig. 5 is a block diagram of one embodiment of a mobile station that is configured to
carry out transmit power initialization as taught herein.
Fig. 6 is a logic flow diagram of one embodiment of mobile station processing logic for
setting the initial transmit power of a reverse link secondary carrier.
Fig. 7 is a logic flow diagram of another embodiment of mobile station processing logic
for setting the initial transmit power of a reverse link secondary carrier.
DETAILED DESCRIPTION
Fig. 1 illustrates a wireless communication network 10 that is configured to support one
or more embodiments of secondary reverse link carrier transmit power initialization as taught
herein. By way of non-limiting example, the network 10 may be configured for CDMA-based
packet date communications according to the IxEVDO standards.
In operation, the network 10 communicatively couples mobile stations 12—one such
terminal Is illustrated for clarity—to one or more external data networks 14. Such networks may
include the Internet or other public or private packet data networks. Supporting these
communications, the illustrated network 10 comprises one or more radio base stations 16, and
on© or more base station controllers 18 to support the radio base stations 16. in turn, the
network 10 further includes a core network (CN) 20, which may include Packet Data Serving
Nodes, Authentication Servers, etc.
It should be understood that a single radio base station 16 and a single corresponding
base station controller 18 are illustrated for clarity; additional ones of these elements may be
present in an actual network, and other elements not illustrated herein may be present as well.
It should be further understood that other base station system architectures may be used to
support the secondary reverse link carrier transmit power initialization operations described
herein. For example, an alternative architecture consolidates base station controller and radio
transceiver resources into an integrated base station entity.
As for the illustrated base station architecture, Fig. 2 functionally illustrates one
embodiment of the base station controller 18 comprising one or more processing circuits 30,
including a power initialization controller 32. These circuits may be implemented in hardware,
software, or any combination thereof. For example, the base station controller 18 may include
one or more general- or special-purpose microprocessor circuits and associated program and
data memory, for carrying out communication processing. More particularly, a method and
apparatus for implementing secondary reverse link carrier transmit power initialization may be
implemented in the base station controller 18 by way of computer program instructions stored in
a computer-readable medium, and one or more corresponding microprocessors, or other logic
processing circuits, configured for execution of the computer program.
4

Regardless of the implementation details, Fig. 3 illustrates one embodiment of
processing logic for initializing the transmit power of a secondary reverse link carrier.
Processing begins with determining initialization power offset information (Step 100), and
continues with transmitting the initialization power offset information to a mobile station 12—
e.g., transmitting the information through a radio base station 16 having the mobile station's
current forward Ink serving sector.
The base station controller 18 may consider one or more data items in determining the
initialization power offset information. For example, the base station controller 18 can aggregate
reverse link load information for active sets of all of the involved reverse link carriers, i.e., a
primary reverse link carrier and one or more secondary reverse link carriers that are candidates
for use by the mobile station 12. The base station controller 18 then computes appropriate initial
transmit power offsets for the secondary carriers relative to the primary carrier. (According to a
non-limiting definition used herein, the term "carrier" represents a logically or physically distinct
communication channel. There may be one carrier per sector of a sectorized radio base
station 16—i.e., a carrier in each of sectors S1, S2, and S3—or there may be multiple carriers in
one sector, such as different carriers of different frequencies. Further, multiple carriers may be
defined using different spreading codes.)
With the above in mind, the action of determining the initialization power offset
information (Step 100) comprises, in one or more embodiments, determining reverse link
loading differences relating at least one secondary reverse link carrier to a primary reverse link
carrier associated with the mobile station. As such, the initial transmit power of a secondary
reverse link carrier at the mobile station 12 can be set in consideration of reverse link loading. In
at least one embodiment, such consideration is based on loading differences. More particularly,
determining the initialization power offset information comprises determining at least one of
reverse link loading differences relating one or more secondary reverse link carriers to a primary
reverse link carrier.
With this method, the mobile station 12 can be controlled, or otherwise configured, to
initialize transmit power for a secondary carrier at a level above a current transmit power of the
mobile station's primary reverse link carrier, if the reverse link loading associated with the
secondary reverse link carrier is higher than that associated with the primary reverse link carrier.
Conversely, the mobile station 12 can be controlled, or otherwise configured, to initialize
transmit power for a secondary carrier at a level below the current transmit power of the mobile
station's primary reverse link carrier, if the reverse link loading associated with the secondary
carrier is lower than that associated with the primary reverse link carrier.
By way of non-limiting example, the base station controller 18 may be configured to
receive sector-specific and/or carrier-specific reverse link loading estimates from the radio base
stations 16 operating under its control. As a non-limiting example, loading information may be
conveyed in the form of reverse activity bits (RABs), In turn, the radio base stations 16 may be
5

configured to generate loading estimates for delivery to the base station controller 18 on a
periodic basfs or on an as-needed basis, in one embodiment; reverse link loading estimates are
determined as a function of Rise-over-Thermal (RoT) measurements. In such embodiments, the
network 10 may be configured to use "silence periods" wherein transmission activity is
suspended periodically to provide quiet moments for more accurately measuring RoT at the
radio receivers of the radio base stations 16. (Of course, it should be understood that other
methods of measuring reverse link loading may be used, such as by tracking aggregate data
throughputs, or by tracking the number of type of users being supported by the network 10.
Further, load tracking may be done on a per-sector and/or per-earrier basis.)
However it is determined, the initialization power offset information may be transmitted to
a particular mobile station 12, or to groups of mobile stations 12, such as commonly to all
mobile stations 12 operating in a given radio base station sector. In one embodiment, the
initialization power offset information is transmitted as explicit offset information, i.e., computed
offset values that can be used by the mobile stations 12 in setting the relative power levels
initially used for their secondary reverse link carriers, In another embodiment, the initialization
power offset information is transmitted in the form of sector loading information, such that the
mobile stations 12 can compute offset values from the received information, tn other words, the
initialization power offset information can comprise pre-computed offset values, or can comprise
information relevant to the mobile stations' computations of offset values.
With the above examples in mind, it will be broadly understood that one or more
embodiments of a base station controller 18 as taught herein include one or more processing
circuits configured to determine initialization power offset information for one or more secondary
reverse link carriers as a function of reverse link loading, and transmit the initialization power
offset information to a mobile station for use in initializing secondary reverse link carrier transmit
power. The Information may be determined by determining reverse link loading differences
relating at least one secondary reverse link carrier to a primary reverse link carrier associated
with the mobile station.
As noted, the (initialization power offset) Information may comprise explicit power offset
information identifying at least one power offset to be used for initializing secondary reverse link
transmit power relative to a current transmit power of a primary reverse link carrier associated
with the mobile station 12. Alternatively, the information may comprise implicit power offset
information indicating relative reverse link loading information for one or more secondary
reverse link carriers and a primary reverse link carrier associated with the mobile station, such
that the mobile station 12 computes an initial power offset to be used for a secondary reverse
link carrier as a function of the reverse link loading information. In either case, the base station
controller 18 may be configured to transmit the initialization power offset information by
transmitting the power offset Information in a traffic channel assignment message. Generally, it
should be understood that the power offset information can be sent in essentially any type of
6

broadcast and/or unicast message type, and that the particular type(s) of messages used to
send such information may change according to network type, or for other reasons as needed
or desired.
in at least one embodiment, the base station controller 18 is configured to further
determine the initialization power offset information as a function of differences in active set
sizes associated with one or more secondary reverse link carriers and a primary reverse link
carrier associated with the mobile station 12, Wore generally, the base station controller can be
configured to determine the initialization power offset information by determining at least one of
reverse link loading differences relating one or more secondary reverse link carriers to a primary
reverse link carrier, determining active set differences relating one or more secondary reverse
link carriers to a primary reverse link carrier, and sector switching activity involving the mobile
station.
For example, if the active set of radio base station sectors associated with the primary
reverse link carrier is smaller than the active set associated with a given secondary reverse link
carrier that is a candidate for use by the mobile station 12, the initial transmit power offset set by
the mobile station 12 may be made smaller than it would be if active set size differences were
not considered. The reduction corresponds to the presumed diversity gain advantages
associated with the larger active set size of the secondary reverse link carrier.
With the above possibilities for different information types that may be considered when
setting the initial transmit power of a secondary reverse link carrier relative to a primary reverse
link carrier, Fig. 4 illustrates one embodiment of mobile station processing logic that
complements the transmission of the initialization power offset information. Processing "begins"
with the mobile station 12 receiving the initialization offset power information (Step 104). As
noted earlier, the received information may comprise computed offsets or the underlying
information to be used by the mobile station 12 in computing the appropriate offsets. Mobile
station processing continues with setting the initial transmit power of a secondary reverse link
carrier based on the received information (Step 106).
Notably, in the context of Fig. 4 and in other embodiments, the base stations 16 and/or
the base station controllers 18 may be configured to send per-sector transmit power offset
information for the secondary carriers, rather than per-mobiie offset information. Thus, the
mobile station 12 may be configured such that it chooses the offset(s) defined for the sector
which is the current serving sector. If the mobile station 12 performs a sector switch before the
initial reverse link acquisition is complete on the secondary carrier—that is, inner loop power
control by the network has not yet started—the processing circuits) in the mobile station 12
update the initial offset to be used for secondary carrier transmit power based on the offset
corresponding to the new serving sector.
Fig. 5 illustrates an embodiment of the mobile station 12 that is configured to carry out
the processing logic of Fig. 4, or variations of that logic. The illustrated mobile station 12
7

comprises a transmit/receive antenna 40, a switch/dupfexer 42, a transceiver circuit 44, such as
a CDMA-based radiofrequency transceiver circuit, a baseband processor circuit 46, a system
controller 48, input/output (I/O) circuits 50, and a user interface 52. it will be understood that
some elements may be added, deleted, or altered with respect to the diagram, depending upon
the intended use of the mobile station 12. On that point, the term "mobile station" as used herein
should be given broad construction. Non-limiting examples of mobile stations include cellular
handsets or other types of access terminal, pagers, Portable Digital Assistants (PDAs), palmtop
or laptop computers, or communication modules therein.
Of particular interest regarding the mobile station's functional illustration, one sees that
the baseband processor circuit 46, which actually may comprise multiple microprocessor and/or
other digital logic circuits, includes a power control circuit 60. The power control circuit 60 can
be configured to set the initial transmit power offset used for transmitting on a secondary
reverse Jink carrier from the mobile station 12 as a function of initialization power offset
information received by the mobile station 12. As noted, the information may comprise one or
more pre-computed offset values that relate one or more candidate secondary reverse link
carriers to a primary reverse link carrier currently in use at the mobile station 12. Alternatively,
the information may comprise reverse link loading information and/or active set size and sector
switching information that can be used by the power control circuit 60 to compute the
appropriate offsets.
fn either case, the mobile station 12 broadly comprises the transceiver circuit 44, which
is configured to receive initialization power offset information from a supporting wireless
communication network, and one or more processing circuits—e.g., the power control circuit
60—configured to set an initial transmit power of a secondary reverse link carrier relative to a
primary reverse link carrier as a function of the initialization power offset information. As noted,
the initialization power offset information may comprise reverse Sink loading information
associated with the primary and secondary reverse link carriers, such that the mobile station 12
considers reverse link loading differences relating a secondary reverse link carrier to a primary
reverse link carrier, when determining the Initial transmit power offset to be used for the
secondary reverse link carrier relative to a current transmit power of the primary reverse link
carrier. That is, the mobile station 12 can be broadly configured to compute an initial power
offset for a secondary reverse link carrier relative to a current transmit power of the primary
reverse link carrier as a function of the reverse link loading information.
Fig, 6 illustrates one embodiment of processing logic for Initializing the transmit power of
a secondary reverse link carrier as a function of reverse link loading. More particularly, the
illustrated processing logic determines the power offset to be used for initializing the secondary
reverse link carrier transmit power relative to the transmit power of a primary reverse link carrier.
Such processing can be performed in the base station controller 18 and/or in the mobile
station 12.
8

Processing begins with determining whether reverse link (RL) loading is higher for a
candidate secondary reverse link Garner than for the mobile station's primary reverse link carrier
(Step 100). If so, the transmit power offset is set, directly or indirectly, such that the initial
transmit power used for transmissions on the secondary reverse link carrier will be higher than
the primary reverse link carrier (Step 112).
Conversely, if the relative reverse link loading is lower {Step 114), processing continues
with setting the transmit power offset, directly or indirectly, such that the initial transmit power
used for transmissions on the secondary reverse link carrier wiif be lower than the primary
reverse link carrier (Step 116). If the relative reverse link loading is the same, or approximately
the same, processing continues with setting the transmit power offset, directly or indirectly, such
that the initial transmit power used for transmissions on the secondary reverse link carrier will be
the same, or approximately the same, as that used for the primary reverse link carrier.
In the above processing context, it will be understood that "higher" and "lower"
comparisons may be based on comparing specific values, or may be based on range or
threshold comparisons. For example, if the reverse link loading estimates associated with a
secondary reverse link carrier of interest and a primary reverse link carrier are within 5% of each
other, for example, they may be considered the same and the initial power offset can be set
accordingly, e.g., to a zero offset. If the reverse link loading is higher for the secondary reverse
link carrier by more than 5%, the initial power offset can be set to a positive non-zero offset
relative to the primary reverse link carrier transmit power. Conversely, if the reverse link loading
is lower for the secondary reverse link carrier by more than 5%, the initial power offset can be
set to a negative non-zero offset relative to the primary reverse link carrier transmit power.
Further, in the above context, directly setting the initial power offset may comprise
performing the reverse link loading and/or other comparisons relating the primary and
secondary reverse link carriers within the base station controller 18, and transmitting explicit
power offset information to the mobile station 12. Conversely, indirectly setting the initial power
offset may comprise sending comparison results, or the underlying values for comparison, to the
mobile station 12, such that the mobile station 12 computes the initial power offset. In either
case, the information may be transmitted to the mobile station 12 via traffic channel assignment
messaging.
In another embodiment of implicitly providing initial power offset information to the
mobile station 12, RABs or other reverse link load indicators are transmitted by the network 10
in one or more radio sectors. The toad indicators may be configured to indicate sector loading
without regard to a particular carrier, or may be configured to indicate loading for the available
carriers In each sector.
In any case, the mobile station 12 can be configured to use the transmitted load
indicators according to, for example, the processing logic of Fig. 7. The illustrated processing
includes the mobile station 12 receiving RABs or other reverse link load indicators from the
9

network 10 (Step 120). Processing continues with the mobile station 12 using the received
indicators, which may be periodically or continually updated by the network 10 to reflect
changing conditions, to determine relative reverse link loading for a primary reverse Hnk carrier
and one or more secondary reverse link carriers of interest (Step 122). Processing continues
with the mobile station 12 setting the initial transmit power tor a selected secondary reverse link
carrier based on the reverse link loading information (Step 124). For example, the mobile
station 12 may offset the initial transmit power of the secondary reverse link carrier above the
current transmit power of the primary reverse link carrier if the secondary reverse link carrier is
associated with a heavier reverse link load than the primary reverse link carrier.
Of course, the present invention is not limited to such embodiments and, indeed, is not
limited by the foregoing discussion, or by the accompanying drawings. Rather, the present
invention is limited only by the following claims and their legal equivalents.
10

WE CLAIM:
1. A method of initializing reverse link transmit power for secondary reverse link carriers in
a wireless communication network, the method comprising;
determining initialization power offset information for one or more secondary reverse link
carriers as a function of reverse link loading; and
transmitting the initialization power offset information to a mobile station for use in
initializing secondary reverse link carrier transmit power.
2. The method of claim 1, wherein determining the initialization power offset information
comprises determining reverse link loading differences relating at least one secondary reverse
link carrier to a primary reverse link carrier associated with the mobile station.
3. The method of claim 1, wherein determining the initialization power offset information
comprises determining at least one of reverse Sink loading differences relating one or more
secondary reverse link carriers to a primary reverse link carrier, determining active set
differences relating one or more secondary reverse link carriers to a primary reverse link carrier,
and sector switching activity Involving the mobile station.
4. The method of claim t, wherein the initialization power offset information comprises
explicit power offset information Identifying at least one power offset to be used for initializing
secondary reverse link transmit power relative to a current transmit power of a primary reverse
Sink carrier associated with the mobile station.
5. The method of claim 1, wherein the initialization power offset information comprises
implicit power offset information indicating relative reverse link loading information for on© or
more secondary reverse link carriers and a primary reverse link carrier associated with the
mobile station, such that the mobile station computes an initial power offset to be used for a
secondary reverse link carrier as a function of the reverse link loading information.
6. The method of claim 1, comprising further determining the initialization power offset
information as a function of differences In active set sizes associated with one or more
secondary reverse link earners and a primary reverse link carrier associated with the mobile
station.
11

7. The method of claim 1, wherein determining initialization power offset information for one
or more secondary reverse fink carriers as a function of reverse link loading comprises
determining per-sector offset information, such that the mobile station initializes secondary
reverse link carrier transmit power as a function of the per-sector offset information relative to
the mobile station's serving sector.
8. The method of claim 1, wherein transmitting the initialization power offset information
comprises transmitting tie power offset information in a traffic channel assignment message.
9. The method of claim 1, wherein transmitting the initialization power offset information
comprises transmitting the power offset information in a broadcast or unicast message,
10. A base station controller comprising one or more processing circuits configured to:
determine initialization power offset information for one or more secondary reverse link
carriers as a function of reverse link loading; and
transmit the initialization power offset information to a mobile station for use in initializing
secondary reverse link carrier transmit power.
11. The base station controller of claim 10, wherein the base station controller is configured
to determine the initialization power offset information by determining reverse link loading
differences relating at least one secondary reverse link carrier to a primary reverse link carrier
associated with the mobile station.
12. The base station controller of claim 10, wherein the base station controller is configured
to determine the initialization power offset information by determining at least one of reverse link
loading differences relating one or more secondary reverse link carriers to a primary reverse link
carrier, determining active set differences relating one or more secondary reverse link carriers to
a primary reverse link carrier, and sector switching activity involving the mobile station.
13. The base station controller of claim 10, wherein the initialization power offset information
comprises explicit power offset information identifying at least one power offset to be used for
initializing secondary reverse link transmit power relative to a current transmit power of a
primary reverse link carrier associated with the mobile station.
12

14. The base station controller of claim 10, wherein the initialization power offset Information
comprises implicit power offset information indicating relative reverse link loading information for
one or more secondary reverse link carriers and a primary reverse link carrier associated with
the mobile station, such that the mobile station computes an initial power offset to be used for a
secondary reverse link carrier as a function of the reverse link loading information,
15. The base station controller of claim 10, wherein the base station controller is configured
to further determine the initialization power offset information as a function of differences in
active set sizes associated with one or more secondary reverse link carriers and a primary
reverse link carrier associated with the mobile station.
16. The base station controller of claim 10, wherein the base station controller is configured
to determine the initialization power offset information by determining per-sector offset
information, such that the mobile station initializes secondary reverse link carrier transmit power
as a function of the per-sector offset information relative to the mobile station's serving sector.
17. The base station controller of claim 10, wherein the base station controller is configured
to transmit the initialization power offset information by transmitting the power offset information
in a traffic channel assignment message.
18. A mobile station comprising:
a transceiver circuit configured to receive initialization power offset information from a
supporting wireless communication network; and
one or more processing circuits configured to set an initial transmit power of a secondary
reverse link carrier relative to a primary reverse link carrier as a function of the
initialization power offset information.
19. The mobile station of claim 18, wherein the initialization power offset information
comprises reverse link loading information associated with the primary and secondary reverse
link carriers.
20. The mobile station of claim 18, wherein the mobile station is configured to compute an
initial power offset for a secondary reverse link carrier relative to a current transmit power of the
primary reverse link carrier as a function of the reverse link loading information.
13

21. The mobile station of claim 18, wherein the mobile station is configured to compute the
initial transmit power offset such that the initial transmit power used for a secondary reverse link
carrier is higher than a current transmit power of the primary reverse link carrier if the secondary
reverse link carrier is more heavily loaded than the primary reverse link carrier, and is
configured to compute the initial transmit power offset such that the initial transmit power used
for a secondary reverse link carrier is lower than a current transmit power of the primary reverse
link carrier if the secondary reverse link carrier is more lightly loaded than the primary reverse
link carrier.
22. The mobile station of claim 18, wherein the initialization power offset information
comprises per-sector offset information, and wherein the one or more processing circuits are
configured to update the initial transmit power if the mobile station changes serving sectors
before inner loop power control of the secondary reverse link carrier begins.
23. A mobile station method comprising:
receiving initialization power offset information from a supporting wireless
communication network; and
setting an initial transmit power of a secondary reverse link carrier relative to a primary
reverse link carrier as a function of the initialization power offset information.
24. The method of claim 23, wherein the initialization power offset information comprises
reverse (Ink loading information associated with the primary and secondary reverse link carriers.
25. The method of claim 23, wherein setting the initial transmit power of the secondary
reverse link carrier comprises computing an initial power offset for a secondary reverse link
carrier relative to a current transmit power of the primary reverse link carrier as a function of the
reverse link loading information.
26. The method of claim 23, wherein receiving the initialization power offset information
comprises receiving per-sector offset information, and wherein the method further comprises
updating the initial transmit power to reflect a changed serving sector if the mobile station
changes serving sectors before inner loop power control of the secondary reverse link carrier by
the network has begun.
14

27. A mobile station comprising:
a transceiver circuit configured to receive reverse link loading information; and
one or more processing circuits configured to set an initial transmit power of a secondary
reverse link carrier relative to a primary reverse fink carrier as a function of the
reverse link loading information.
28. The mobile station of claim 27, wherein the reverse link loading information indicates
reverse link loading differences relating the primary reverse link carrier to one or more
secondary reverse link carriers that are candidates for use by the mobile station.


A method and apparatus provide for setting the initial transmit power of secondary
reverse link carriers used by mobile stations in conjunction with primary reverse link
carriers. In one or more embodiments, a mobile station sets the initial transmit power of a
secondary reverse link carrier relative to the transmit power of the primary reverse link
carrier as a function of initialization transmit power information transmitted to the mobile
station, which directly or indirectly considers reverse link loading information. Additional
considerations may include differences in active sets associated with the primary and
secondary reverse link carriers and/or sector switching activity of the mobile station.

Documents:

http://ipindiaonline.gov.in/patentsearch/GrantedSearch/viewdoc.aspx?id=2lCjCtWlYAoYemE7aL3JoA==&loc=wDBSZCsAt7zoiVrqcFJsRw==


Patent Number 271389
Indian Patent Application Number 1095/KOLNP/2008
PG Journal Number 09/2016
Publication Date 26-Feb-2016
Grant Date 18-Feb-2016
Date of Filing 14-Mar-2008
Name of Patentee TELEFONAKTIEBOLAGET LM ERICSSON (PUBL)
Applicant Address PATENT UNIT, SE-164 83 STOCKHOLM
Inventors:
# Inventor's Name Inventor's Address
1 CHEN, WANSHI 8730 COSTA VERDE BLVD, #2407 SAN DIEGO, CA 92122
2 VANNITHAMBY, RATH 22-10615 DABNEY DRIVE, SAN DIEGO, CA 92126
3 TSAI, SHIAU-HE SHAWN 7335 CALLE CRISTOBAL #156 SAN DIEGO, CA 92126
4 SOONG, ANTHONY 1967 ELDORADO DRIVE SUPERIOR, CO 80027
PCT International Classification Number H04B 7/005
PCT International Application Number PCT/US2006/022588
PCT International Filing date 2006-06-09
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 60/708,742 2005-08-16 U.S.A.
2 11/372,575 2006-03-10 U.S.A.