Title of Invention

FIBER OPTIC SPLITTER MODULE

Abstract A telecommunications assembly includes a chassis and a plurality of fiber optic splitter modules mounted within the chassis. Each splitter module includes at least one fiber optic connector. Within an interior of the chassis are positioned at least one fiber optic adapter. Inserting the splitter module through a front opening of the chassis at a mounting location positions the connector of the splitter module for insertion into and mating with the adapter of the chassis. The adapters mounted within the interior of the chassis are integrally formed as part of a removable adapter assembly. A method of mounting a fiber optic splitter module within a telecommunications chassis is also disclosed.
Full Text FIBER OPTIC SPLITTER MODULE
Field
The present invention generally relates to fiber optic
telecommunications equipment. More specifically, the present invention relates to
fiber optic modules and chassis for holding fiber optic modules.
Background
In fiber optic telecommunications systems, it is common for optical
fibers of transmission cables to be split into multiple strands, either by optical
splitting of a signal carried by a single stranded cable or by fanning out the
individual fibers of a multi-strand cable. Further, when such systems are installed, it
is known to provide excess capacity in the installations to support future growth and
utilization of the fibers. Often in these installations, modules including splitters or
fanouts are used to provide the connection between transmission fibers and customer
fibers. To reduce the cost and complexity of the initial installation and still provide
options for future expansion, a module mounting chassis capable of mounting
multiple modules may be used in such an installation.
While the chassis may accept several modules, the initial installation
may only include fewer modules mounted in the chassis, or enough to serve current
needs. These chassis may be configured with limited access to one or more sides, or
may be mounted in cramped locations. In addition, some of these chassis may be
pre -configured with the maximum capacity of transmission cables to accommodate
and link to modules which may be installed in the future. Since it is desirable to
have access to components within the chassis for cleaning during the installation of a
new module, some provision or feature of the chassis will desirably permit a user to
access and clean the connectors of these pre-conneclorized and pre-installed
transmission cables.
It is also desirable for the chassis to be configured to ensure that
modules are installed correctly and aligned with other components within the chassis
to mate with the pre-connectorized and pre-installed transmission cables.

Summary
The present invention relates to a telecommunications assembly
including a chassis and a plurality of modules mounted within the chassis. The
modules include one or more fiber optic connectors. Within an interior of the
chassis at each mounting location are positioned corresponding fiber optic adapters.
Inserting the module through a front opening of the chassis at a mounting location
positions the one or more connectors of the module for insertion into and mating
with the adapters of the chassis. The adapters within the interior of the chassis are
integrally formed within a removable adapter assembly.
The present invention further relates to a method of mounting a
telecommunications module within a chassis.
Brief Description of the Drawings
The accompanying drawings, which are incorporated in and
constitute a part of the description, illustrate several aspects of the invention and
together wilh the detailed description, serve to explain the principles of the
invention. A brief description of the drawings is as follows:
FIG. 1 is a rear perspective view of a telecommunications assembly
with a plurality of fiber optic splitter modules installed within a chassis, with one of
the adapter assemblies exploded out of the telecommunications assembly;
FIG. 2 is a top view of the telecommunications assembly of FIG. 1;
FIG. 3 is a front view of the telecommunications assembly of FIG. 1;
FIG. 4 is a rear view of the telecommunications assembly of FIG. 1;
FIG. 5 is a loft side view of the telecommunications assembly of FIG.
1;
FIG. 6 is a right side view of the telecommunications assembly of
FIG. 1;
FIG. 7 is a close-up view of the telecommunications assembly of
FIG. 1 showing the adapter assembly exploded out of the telecommunications
assembly;
FIG. 8 is a front perspective view of one of the adapter assemblies of
FIG. 1;
FIG. 9 is a rear perspective view of the adapter assembly of FIG. 8;
FIG. 10 is a right side view of the adapter assembly of FIG. 8;

FIG. 11 is a left side view of the adapter assembly of FIG. 8;
FIG. 12 is a front view of the adapter assembly of FIG. 8;
FIG. 13 is a rear view of the adapter assembly of FIG. 8;
FIG. 14 is a lop view of the adapter assembly of FIG. 8;
FIG. 15 is a bottom view of the adapter assembly of FIG. 8;
FIG. 16 is a right side view of one of the fiber optic splitter modules
of FIG. 1, shown with an adapter assembly mounted thereon;
FIG. 17 is a left side view of the fiber optic splitter module and
adapter assembly of FIG. 16;
FIG. 18 is a front view of the fiberoptic splitter module and adapter
assembly of FIG. 16;
FIG. 19 is a rear view of the fiber optic splitter module and adapter
assembly of FIG. 16;
FIG. 20 is a front perspective view of the fiber optic splitter module
of FIG. 16, shown in isolation without an adapter assembly mounted thereon;
FIG. 21 is a rear perspective view of the fiber optic splitter module of
FIG. 20;
FIG. 22 is an exploded view of the fiber optic splitter module of FIG.
16, shown with the adapter assembly exploded from the fiber optic splitter module;
FIG. 23 is a left side view of the fiber optic splitter module of FIG.
20;
FIG. 24 is a right side view of the fiber optic splitter module of FIG.
20;
FIG. 25 is a front view of the fiberoptic splitter module of FIG. 20;
FIG. 26 is a roar view of the fiber optic splitter module of FIG. 20;
FIG. 27 is a top view of the fiber optic splitter module of FIG. 20;
FIG. 28 is a bottom view of the fiber optic splitter module of FIG. 20;
FIG. 29 is a right side view of the fiber optic splitter module of FIG.
20, shown without a cover exposing the interior features of the fiber optic splitter
module including routing of a fiber optic cable within the fiber optic splitter module;
FIG. 30 is a cross-sectional view taken along section line 30-30 of
FIG. 29;
FIG. 31 illustrates a fiber optic splitter module partially inserted
within the chassis of FIG. 1, the chassis including an adapter assembly mounted

thereon, the fiber optic splitter module shown in a position prior to the connectors of
the splitter module having contacted a shield located within the chassis;
FIG. 32 illustrates the fiber optic splitter module of FIG. 31, shown in
a position within the chassis with the connectors of the fiber optic splitter module
making initial contact with the shield located within the chassis;
FIG. 33 illustrates the fiber optic splitter module of FIG. 31, shown in
a fully inserted position within the chassis;
FIG. 34 is a side cross-sectional view of the fiber optic splitter
module of FIG. 32 within the chassis, taken through the center of the fiber optic
splitter module;
FIG. 35 is a side cross-sectional view of the fiber optic splitter
module of FIG. 33 within the chassis, taken through the center of the fiber optic
splitter module;
FIG. 36 illustrates a front perspective view of the chassis of FIG. 1
with a fiber optic splitter module mounted thereon, shown in combination with a
dust cap/test tool exploded off the chassis, the dust cap/test tool being used as a test
tool;
FIG. 37 illustrates a front perspective view of the chassis of FIG. 36,
shown in combination with the dust cap/test tool exploded off the chassis, the dust
cap/test tool being used as a dust cap;
FIG. 38 illustrates the dust cap/test tool of FIG. 36 shown in
combination with an exploded view of the adapter assembly of FIG. 8;
FIG. 39 is a front perspective view of the dust cap/test tool of FIG. 36
shown with the adapter assembly mounted thereon and shown with one of the
testing connectors of the dust cap/test tool exploded off the dust cap/test tool;
FIG. 40 is a rear perspective view of the dust cap/test tool of FIG. 36,
shown without the testing connectors of the dust cap/test tool;
FIG. 41 is a front perspective view of the dust cap/test tool of FIG.
40;
FIG. 42 is a right side view of the dust cap/test tool of FIG. 40;
FIG. 43 is a left side view of the dust cap/test tool of FIG. 40;
FIG. 44 is a rear view of the dust cap/test tool of FIG. 40;
FIG. 45 is a top view of the dust cap/test tool of FIG. 40;

FIG. 46 is a bottom front perspective view of a grip extension
according to the invention;
FIG. 47 is a bottom rear perspective view of the grip extension of
FIG. 46;
FIG. 48 is a bottom view of the grip extension of FIG. 46;
FIG. 49 is a top view of the grip extension of FIG. 46;
FIG. 50 is a right side view of the grip extension of FIG. 46;
FIG. 51 is a left side view of the grip extension of FIG. 46; and
FIG. 52 is a rear view of the grip extension of FIG. 46;
Detailed Description
Reference will now be made in detail to exemplary aspects of the
present invention which are illustrated in the accompanying drawings. Wherever
possible, the same reference numbers will be used throughout the drawings to refer
to the same or similar parts.
FIGS. 1-7 illustrate a telecommunications assembly 10 that includes a
telecommunications chassis 12 and a plurality of fiber optic splitter modules 14
adapted to be mounted within chassis 12. Fiber optic splitter modules 14 are
configured to be slidably inserted within chassis 12 and be optically coupled to
adapter assemblies 16 mounted within chassis 12. Adapter assemblies 16 mounted .
within chassis 12 form connection locations between connectors terminated to an
incoming fiber optic cable and connectors of splitter modules 14 as will be discussed
in further detail below.
Still referring to FIGS. 1-7, chassis 12 includes a top wall 18 and a
bottom wall 20 extending between a pair of opposing transverse sidewalls, 22, 24.
Chassis 12 includes an opening 26 through a rear side 28 of chassis 12 and an
opening 30 through a front side 32 of chassis 12. Fiber optic splitter modules 14 are
inserted into chassis 12 through front opening 30. Adapter assemblies 16 are
inserted through and mounted adjacent rear opening 26 of chassis 12. Sidewalls 22,
24, each include a cut-out 34 extending from front opening 30 toward rear side 28.
Splitter modules 14 mounted within chassis 12 are visible through cut-out 34.
Sidewalls 22, 24 of chassis 12 also define an inset portion 36 at rear side 28 of
chassis 12 to facilitate access to adapter assemblies 16.

In FIG. 1, chassis 12 is shown with eight fiber optic splitter modules
14 mounted thereon. It should be noted that in other embodiments, the chassis may
be sized to hold a larger or a smaller number of splitter modules.
Still referring to FIGS. 1-7, chassis 12 includes a plurality of
mounting locations 38 for slidably receiving splitter modules 14. Each mounting
location 38 defines a slot 40 adjacent top wall 18 and a slot 42 adjacent bottom wall
20 of chassis 12. Slots 42 adjacent bottom wall 20 are visible in FIG. 1. Slots 40
adjacent top wall 18 are illustrated in FIGS. 36 and 37. Slots 40, 42 extend from
front 32 of chassis 12 to rear 28 of chassis 12. Slots 40, 42 are configured to receive
mounting flanges 44, 46 of splitter modules 14 as shown in FIGS. 36 and 37 to align
modules 14 with other components within chassis 12 (e.g., adapters of the adapter
assemblies) to mate with pre-connectorized and/or pre-installed transmission cables.
Slots 40 defined underneath top wall 18 of chassis 12 are deeper than
slots 42 defined at bottom wall 20 of chassis 12. The depth of slots 40, 42 are
configured to accommodate the different sized flanges 44, 46 that are defined at top
and bottom walls of splitter modules 14. In this manner, slots 40, 42 and mounting
flanges 44, 46 of fiber optic splitter modules 14 provide a keying system to ensure
that modules 14 are inserted into chassis 12 in the correct orientation.
Slots 40 underneath top wall 18 of chassis 12 are defined between a
plurality of bulkheads 48 (please sec FIGS. 36 and 37). Bulkheads 48 extend from
front 32 of chassis 12 to rear 28 of chassis 12. At front end 32 of chassis 12, each
bulkhead 48 defines a downwardly extending front lip 50 (FIG. 35) which interlocks
with a resiliently deformable latch 52 (e.g., cantilever ami) of splitter module 14 to
hold splitter module 14 in place within chassis 12, as will be discussed in further
detail below.
Referring to FIGS. 1 and 7, at rear end 28 of chassis 12, each
bulkhead 48 defines a rear face 54 with a fastener hole 56 for receiving a fastener 58
(e.g., a thumbscrew) of an adapter assembly 16 for mounting adapter assembly 16 to
chassis 12. In the embodiment shown, fastener hole 56 is threaded to receive a
screw-type fastener. It shouid be noted that in other embodiments, other types of
fastening structures may be used to mount adapter assembly 16 to rear 28 of chassis
12.

Adjacent rear end 28, each bulkhead 48 also includes a horizontal slot
60 and a vertical slot 62 that complement the shape of adapter assembly 16 to
slidably receive adapter assembly 16.
FIGS. 8-15 illustrate adapter assembly 16 according to the invention.
Adapter assemblies 16 form connection locations between the connectors terminated
to an incoming fiber optic cable and the connectors of splitter modules 14 mounted
within chassis 12.
Referring to FIGS. 8-15, adapter assembly 16 includes two integrated
adapters 64 formed as a part of a unitary housing 66. In other embodiments, other
number of adapters are also possible. Each adapter 64 of adapter assembly 16
includes a front end 68 and a rear end 70. Front end 68 of each adapter 64 receives a
connector of fiber optic splitter module 14 and rear end 70 receives a connector
terminated to an incoming fiber optic cable.
Adapter assembly housing 66 includes a chassis-mounting slide 72
extending from a top 74 of housing 66, which is received within chassis 12 through
rear end 28. Slide 72 defines a horizontal portion 76 and a vertical portion 78.
Horizontal portion 76 is configured to be slidably received within horizontal slot 60
of bulkhead 48 and vertical portion 78 is configured to be slidably received within
vertical slot 62 of bulkhead 48.
Chassis-mounting slide 72 includes a pair of flanges 80 for
supporting a fastener 58 for securing adapter assembly 16 to chassis 12. As
discussed earlier, fastener 58 is positioned within an opening 56 defined by rear face
54 of bulkheads 48 located underneath top wall 18 of chassis 12. Fastener 58 is
preferably a captive fastener. In the embodiment of the adapter assembly shown in
the FIGS., fastener 58 is a thumbscrew. In other embodiments, other types of
fasteners may be used.
Fastener 58 is rotated to threadingly couple the adapter assembly 16
to the bulkheads 48. Fastener 58 is also configured such that it is able to provide
adapter assembly 16 with a predetermined amount of horizontal float relative to the
chassis 12 once mounted thereon. As illustrated in FIGS. 8-14, the fastener 58 of .
the adapter assembly 16 includes a flange 81. The fastener 58 is able to move
horizontally within the flanges 80 relative to the adapter assembly housing 66. As
shown in FIG. 35, once mounted to the chassis 12, the adapter assembly housing 66
is able to float or move horizontally with respect to the fastener 58 between flange

81 and the rear face of the bulkhead 48. For example, in FIG. 35, adapter assembly
16 is shown to be able to move or float a distance of A toward the rear end of chassis
12. In this manner, when a splitter module 14 is slidably pulled out of chassis 12
during disengagement, adapter assembly 16 is able to horizontally float a distance A
towards splitter module 14 as the engaged connector 118 of splitter module 14 pulls
on adapter 64 of adapter assembly 16. In this manner, adapter assembly 16 is
provided with a certain amount of horizontal float when being engaged to and
disengaged from splitter module 14.
As shown in an exploded view of adapter assembly 16 in FIG. 38,
elements of each adapter 64 are positioned through a side opening 82 into adapter
recesses 84 formed within the adapter assembly housing 66. The elements for each
adapter 64 include a ferrule alignment sleeve 86 and a pair of inner housing halves
88. These elements are placed within recesses 84 in manner similar to that shown in
commonly-owned U.S. Patent No. 5,317,663, issued May 20, 1993, entitled ONE-
PIECE SC ADAPTER, the disclosure of which is incorporated herein by reference.
A panel 90 closes opening 82 and secures the elements within each adapter 64.
Adapters 64 shown are for SC style connectors, although other types, styles and
formats of adapters may be used within the scope of the present disclosure and
connectors to mate with these alternative adapters.
In FIGS. 16-19, adapter assembly 16 is shown mounted to a fiber
optic splitter module 14, outside of chassis 12.
FIGS. 20-30 illustrate one of the fiber optic splitter modules 14
according to the invention. Referring to FIGS. 20-30, the fiber optic splitter module
14 includes a splitter module housing 92. Splitter module housing 92 includes a
main housing portion 94 and a removable cover 96. Main housing portion 94
includes a first transverse sidewall 98 extending between a top wall 100, a bottom
wall 102, a rear wall 104, and a front wall 106. Removable cover 96 defines a
second transverse wall 108 of splitter module housing 92 and closes off the open
side of module main housing 94.
Cover 96 is mounted to main housing portion 94 by fasteners (not
shown) through fastener mounts 110 defined on main housing portion 94. Cover 96
extends beyond first transverse sidewall 98 to form a top mounting flange 44 and a
bottom mounting flange 46 of splitter module 14. Referring to FIGS. 23, 25, and 26,
as discussed previously, bottom flange 46 of splitter module housing 92 and the

corresponding slot 42 on chassis 12 are smaller in size than top flange 44 and the
corresponding top slot 40 on chassis 12. Bottom slot 42 is sized so that, while
bottom flange 46 may be received within slot 42, the larger top flange 44 will not fit.
This ensures that modules 14 are positioned within front opening 30 in a particular
desired orientation. Similar flanges are described in commonly-owned U.S. Patent
No. 5,363,465, issued November 8, 1994, entitled FIBER OPTIC CONNECTOR
MODULE, the disclosure of which is incorporated herein by reference. In this
manner, fiber optic modules 14 are oriented correctly to be coupled to adapter
assemblies 16 mounted adjacent rear 28 of chassis 12 at each mounting location 38.
Rear wall 104 of main housing portion 94 includes a curved portion
112 configured to provide bend radius protection to cables within interior 114. Rear
wall 104 of main housing 92 also includes an inset portion 116. A pair of fiber optic
connectors 118 positioned at inset portion 116 protrude rearwardly from rear wall
104 formating with fiber optic adapters 64 of adapter assemblies 16 mounted within
chassis 12.
As shown in FIGS. 5 and 6, front wall 106 of module main housing
94 is angled with regard to front opening 30 of chassis 12, which may aid in the
direction of cables exiting module 14 toward a desired location. In other
embodiments, front walls 106 could be made generally parallel to front 32 of chassis
12 within the scope of the present disclosure.
Each module 14 includes two cable exits 120 extending from front
wall 106 of module main housing 94. As shown in FIG. 22, cable exits 120 are
slidably mounted to main housing 94 of module 14 and captured by cover 96 of
module 14 when cover 96 is mounted to main housing 94. Cable exits 120 define a
protruding rear lip 122 that is slidably inserted into slots 124 defined around front
apertures 126 for accommodating cable exits 120. Cover 96 also includes slits 128
that receive rear lips 122 of the cable exits 120 to capture cable exits 120. Cable
exits 120 permit telecommunications cables within module 14 to be directed outside
of module 14. Cable exits 120 are preferably sized thin enough to fit within the
profile of the fiber optic splitter module 14, as shown in FIG. 25, to preserve the
density of the telecommunications assembly 10.
Main housing 94 includes an integrally formed flexible latch 52 (i.e.,
cantilever arm) that is adapted to engage a portion of chassis 12 to hold module 14

within front opening 30 of chassis 12. Flexible latch 52 also deflects to permit
withdrawal of module 14 from chassis 12.
Still referring to FIGS. 20-30, latch 52 of module 14 includes a finger
grip tab 130, a front latching tab 132 and a rear latching tab 134. Front latching tab
132 and rear latching tab 134 define a recess 136 thereinbetween. Rear latching tab
134 includes a ramped face 138 that causes latch 52 to elastically deflect down when
module 14 is being inserted into chassis 12. Rear latching tab 134 also includes a
square face 140 that opposes a square face 142 of front latching tab 132.
Front lip 50 of bulkhead 48 at mounting location 38 of chassis 12 is
captured in recess 136 between the two latching tabs 132, 134 to hold module 14 in
place within chassis 12. During insertion, as front lip 50 of bulkhead 48 clears
ramped rear tab 134 and is captured in recess 136 between the two latching tabs 132,
134, latch 52 flexes back upwardly. Recess 136 between the two tabs 132, 134 of
latch 52 allows for a certain amount of horizontal float for splitter module 14 within
chassis 12, as will be discussed in further detail below.
The removal of module 14 from chassis 12 is performed by pressing
latch 52 downwardly to clear the square face 140 of rear tab 134 from lip 50 and
sliding module 14 away from chassis 12. Module 14 includes a fixed grip tab 144
opposing and adjacent to flexible latch 52 to aid removal of module 14 from chassis
12. Fixed grip tab 144 is formed as a part of front wall 106 of module 14. Fixed
grip tab 144 is preferably positioned on module 14 opposite latch 52 so that a user
may apply opposing force on latch 52 and fixed grip tab 144 to securely grasp
module 14 and remove it from chassis 12. Fixed grip tab 144 is preferably
positioned on modulo 14 close enough to latch 52 so that a user may be apply the
force with two adjacent fingers of the hand.
FIG. 22 shows an exploded view of fiber optic splitter module 14
illustrating the internal components of module 14. Fiber optic splitter module 14 is
shown in FIG. 22 with adapter assembly 16 exploded from module 14.
Within interior 114 of main housing 94, splitter module 14 includes a
first radius limiler 146 adjacent curved portion 122 of rear wall 104 of main housing
94. Splitter module 14 includes a second radius limiter 148 adjacent front wall 106
of housing 94 near cable exits 120. Connectors 1 18 of splitter module 14 are
slidably inserted into opposing slots 154 formed in apertures 156 at the rear wall
104. Connectors 118 project out from rear wall 104 at inset portion 116 of rear wall

104. Outer housings 150 of connectors 11S include transverse flanges 152 that are
received within the opposing slots 154 formed in apertures 156 that accommodate
the connectors 118. Once slidably inserted, connectors 118 are captured within
housing 92 by cover 96.
Adjacent bottom wall 102 of main housing 94 within interior 114 is
an optical component 158 such as a fiber optic splitter or a fan-out. Optical
component 158 is held against the interior of bottom wall 102 by a clamp 160 (i.e.,
bracket). Clamp 160 is mounted to a clamp mount 162 defined on splitter module
main housing 94 with fasteners (not shown). In the embodiment of the housing 94
shown in the FIGS., clamp mount 162 includes two pairs of mounting holes 164,
166. Either the upper set of holes 164 or the lower set of holes 166 are utilized
depending upon the size of the clamp that will be used to hold optical component
158 against bottom wall 102. It should be noted that different optical components
may have different thicknesses and may require the use of different sized clamps for
holding the optical components in place. In certain embodiments, two optical
components that are stacked on top of another may be used, in which case, a smaller
clamp would be used to hold the two optical components in place.
Optical component 158 is offset from the interior side of first
transverse sidewall 98 by a set of cable management structures 168. In the
embodiment of the module 14 illustrated, the set of cable management structures
168 are elongate structures 170 defining cable management slits 172 therein
between. When optical component 158 is held in place, cables can be routed
through slits 172 between optical component 158 and the interior of first transverse
wall 98 (please sec FIGS. 29 and 30).
Splitter module main housing 94 also includes integrally formed
crimp holders 174 (e.g., slots) adjacent front wall 106 of housing 94 underneath
second radius limiter 148. Crimp elements 176 crimped to the ends of cables that
are split by optical component 158 are slidably received into crimp holders 174 as
shown in FIGS. 22 and 29. Crimp elements 176 define square flanges 175 between
which is defined a recessed portion 177. The crimp holders 174 include
complementary structure to the crimp elements such that once the crimp elements
176 are slidably inserted into the crimp holders 174, the crimp elements 176 are
prevented from moving in a longitudinal direction due to the flanges 175. Once
slidably inserted, crimp elements 176 are held in place by cover 96 that is mounted

to splitter module main housing 94. In the embodiment shown, there are nine crimp
holding slots 174, each one being able to accommodate up to four crimp elements
176. Other numbers are possible. Other complementary shapes between the crimp
elements and the crimp holding slots are also possible to provide a slidable fit and to
prevent axial movement of the crimp elements once inserted therein the crimp
holders.
FIG. 29 shows fiberoptic splitter module 14 without a cover 96
exposing the interior features of fiber optic splitter module 14 including routing of a
fiber optic cable within fiber optic splitter module 14. FIG. 30 illustrates a cross-
sectional view taken along section line 30-30 of FIG 29.
As shown in FIG. 29, a first cable 178 extends from connector 118
toward optical component 158, mounted within module housing 92. Optical
component 158, as previously discussed, may be a splitter or a fan-out or another
type of optical component. In the embodiment shown, optical component 158 is a
fiber optic splitter that splits the signal of a single strand to a plurality of secondary
signals. In another embodiment, first cable 178 may be a multi-strand fiber cable
with a plurality of strands of optical fiber and optical component may be a fanout to
separate the individual strands into each of a plurality of second cables.
First cable 178, as it extends toward optical component 158, is
inserted through slits 172 (see FIGS. 22, 29, and 30) located between optical
component 158 and the inner side of first transverse sidewall 98 'of module housing
94 and looped around first radius limiter 146 and then around second radius limiter
148 before being received by optical component 158. Second cables 180 extend
from optical component \5S and are looped again all the way around first radius
limiter 146 before heading toward crimp holders 174. From crimp holders 174,
cables (not shown) crimped lo the other ends of the crimps 176 exit the module
through module exits 120.
An outside cable (not shown) may extend to rear end 70 of an adapter
64 of adapter assembly 16 and be terminated by a connector (not shown in FIG. 29)
that is optically connected to connector 118 of module 14 through adapter 64 once
module 14 is inserted within chassis 12. It should be noted that the routing of the
fiber optic cables within module 14 as shown in FIGS. 29 and 30 is only one
example and other ways of routing the cables within the module are possible.

The embodiment of the fiber optic splitter module 14 shown in the
FIGS. is configured such that it can accommodate reduced bend radius fiber. A
reduced bend-radius fiber may have a bend radius of about 15 mm whereas a non-
reduced bend-radius fiber may have a bend radius of about 30 mm.
Similar fiber optic splitter modules are described in commonly-
owned U.S. Patent Application Ser. Nos. 10/980,978 (filed November 3, 2004,
entitled FIBER OPTIC MODULE AND SYSTEM INCLUDING REAR
CONNECTORS); 11/138,063 (filed May 25, 2005, entitled FIBER OPTIC
SPLITTER MODULE); 11/138,889 (filed May 25, 2005, entitled FIBER OPTIC
ADAPTER MODULE); and 11/215,837 (filed August 29, 2005, entitled FIBER
OPTIC SPLITTER MODULE WITH CONNECTOR ACCESS), the disclosures of
which are incorporated herein by reference.
The insertion of a splitter module 14 into chassis 12 is illustrated in
FIGS. 31-35. Referring to FIGS. 31-35, insertion of fiber optic module 12 into front
opening 30 of chassis 12 begins the mating of module 14 to chassis 12 and to
adapters 64 of adapter assembly 16. Top flanges engage 44 top slots 40 and bottom
flanges 46 engages bottom slots 42 of chassis 12 as module 14 is inserted.
Still referring to FIGS. 31-35, chassis 12 includes a flexible shield
182 in each mounting location 38. Shield 182 is adapted to prevent protection
against accidental exposure to light. Shield 182 is positioned in front end 68 of each
adapter 64 of adapter assembly 16. Before a splitter module 14 is placed in an
associated mounting location 3S, if a connectorized cable that is connected to an
adapter 64 of adapter assembly 16 is illuminated and transmitting light signals,
shield 182 will prevent accidental exposure to these signals which might damage
eyes or other sensitive organs, or nearby communications equipment. The insertion
of splitter module 14 pushes shield 182 out of the way as illustrated in FIGS. 31-33.
Shield 182 is deflected by module 14 as module 14 is inserted
through front opening 30 so that connectors 118 of module 14 can mate with
adapters 64 of adapter assemblies 16. Shield 182 is preferably made of a resilient
deformable material that will return to the position when module 14 is withdrawn
from mounting location 38.
For example, in FIG 31, a fiberoptic splitter module 14 is shown
partially inserted within chassis 12 prior to connectors 118 of splitter module 14
having contacted shield 182 of chassis 12. In FIG. 32, fiber optic splitter module 14

is shown in a position within chassis 12 with connectors 11 8 of fiber optic splitter
module 14 making initial contact with shield 182 of chassis 12 to move shield 182
out of the way (a side cross-sectional view is shown in FIG. 34). In FIG. 33, fiber
optic splitter module 14 is shown in a fully inserted position within chassis 12,
having moved shield 182 out of the way (a side cross-sectional view is shown in
FIG. 35).
Shield 182 is configured such that shield 182 does not engage the
ferrule 184 of connector 118 of splitter module 14 when connector 118 contacts
shield 182 to move it out of the way. Instead, outer connector housing 150 pushes
shield 182 out of the way.
Shield 182 may be connected to chassis 12 by fasteners, or,
alternatively, shield 182 may be formed integrally with chassis 12 or mounted by
spot-welding or other fastening techniques.
As shield 182 is fully deflected, further insertion of module 14 brings
connectors 118 into contact with adapters 64 and connectors 118 are received within
front ends 68 of adapters 64. Latch 52 is deflected inwardly as module 14 is inserted
and then flexes back so that front lip 50 of bulkhead 48 is captured in recess 136.
Module 14 is now in position to process and transmit signals from cable through
first cable 178, optical component 158 and second cable 180 within module interior
114.
Referring to FIG. 35, as noted above, recess 136 between the two tabs
132, 134 of latch 52 provides a certain amount of horizontal float for the splitter
module 14 within chassis 12. Front lip 50 of bulkhead 48 is allowed to move a
distance of D as indicated in FIG. 35 before it makes contact with square face 140 of
rear tab 134. Splitter module 14 is configured such that, when splitter module 14 is
pulled away from front 32 of chassis 12, distance D front lip 50 of bulkhead 48
travels before contacting square face 140 of rear tab 134 is less than the horizontal
float (i.e., distance A) provided for adapter assembly 16, as discussed before.
In this manner, splitter module 14 provides a form of protection from
accidentally disengaging connectors 118 of the module from adapter assemblies 16
at rear 28 of chassis 12. The size of recess 136 of module 14 is configured such that
the horizontal float of splitter module 14 is interrupted before the adapter assembly
16 can be pulled far enough toward the front of chassis 12 to stop its horizontal

movement and accidentally disengage connectors 1 18 of module 14 from adapters
64.
FIGS. 36-45 illustrate a dust cap/test tool 190 configured for use with
adapter assembly 16 of telecommunications assembly 10. Dust cap/test tool 190
includes a body 192 with a front end 194 and a rear end 196. Dust cap/lest tool 190
includes a pair of connectors 118 protruding out from front end 194. As shown in
FIG. 39, the pair of connectors I 18 are slidably inserted into connector holders 193
of the body 192 of dust cap/test tool 190. Connector holders 193 include slots 195
for receiving flanges of outer housings of connectors 118, as in housing 94 of splitter
module 14. Dust cap/test tool 190 also includes a pair of dust plugs 198 protruding
out from rear end 196. Dust cap/test tool 190 includes a top wall 200 and a bottom
wall 202 and a first transverse side 204 and a second transverse side 206. The top
and the bottom walls 200, 202 include top and bottom flanges 208, 210,
respectively, for slidable insertion into chassis 12 similar to fiber optic splitter
module 14. First transverse side 204 includes a radius limiter 212 for guiding cables
terminated to connectors 118 of dust cap/test tool 190. There is a first grip 214
integrally formed with body 192 at front end 194. There is a second grip 216
defined at the end of the radius limiter 212 integrally formed with body 192 at rear
end 196 of dust cap/test tool 190.
As shown in FIGS. 36 and 37, dust cap/test tool 190 is slidably
insertable within chassis 12 and usable in two different ways. In FIG. 36, dust
cap/test tool 190 is shown being used as a test tool to test the optical signals input
into the adapter assemblies 16. Since adapter assemblies 16 are located at rear end
28 of chassis 12 and front ends 68 of adapters 64 of adapter assemblies 16 are
located in the interior of chassis 12 at rear 28, it becomes difficult to access to the
connections for testing or other purposes. The pair of connectors 118 on front end
194 of dust cap/test tool 190 are designed to be coupled to adapters 64 of adapter
assembly 16 when dust cap/test tool 190 is slidably inserted into chassis 12. In this
manner, the connections at adapter assemblies 16 can be tested without having to
uncouple adapter assemblies 16 from chassis 12 and without having to reach into
chassis 12.
As shown in FIG. 37, dust cap/test tool 190 can also be flipped
around 180° and used as a dust cap to seal the interior oFadapters 64 from
contaminants. If a splitter module 14 is not inserted within one of the mounting

locations 38 of chassis 12, dust cap/test tool 190 can act as a placeholder and be
slidably inserted within chassis 12. The dust plugs 198 include recessed portions
199 for receiving protruding tabs 89 of arms 91 of housing halves at the interior of
an adapter 64. The recessed portions 199 help retain the dust plugs 198 within the
adapters 64.
In FIG. 38, dust cap/ test tool 190 is shown in combination with an
adapter assembly 16 exploded off. In FIG. 39, dust cap/ test tool 190 is shown with
an adapter assembly 16 mounted thereon and shown with one of the testing
connectors 118 of dust cap/test tool 190 exploded off dust cap/test tool 190.
FIGS. 46-52 illustrate a grip extension 218 adapted for use with
connectors 118 coupled to rear 70 of adapters 64 of adapter assembly 16. Grip
extension 218 is designed to add length to the outer housing 150 of a connector 118
to facilitate access to individual connectors 118 in dense environments such as the
telecommunications assembly 10. Grip extension is preferably first mounted over a
cable before the cable is terminated to a connector 118. Once the connector 118 is
terminated to the cable, grip extension 218 is slid over the boot portion 220 of the
connector and mounted to the outer housing 150 of connector 118 as shown in FIG.
7.
Referring to FIGS. 46-52, grip extension 218 includes an elongate
body 222 with four cantilever arms extending from a front portion 224 of the body
222. Two of the opposing cantilever arms 226, 228 include protruding labs 230 for
engagement with the gripping surface 232 of outer housing 150 of connectors 118.
Two of the other opposing cantilever arms 234, 236 include slits 238 for engaging
the flanges 240 defined on connector outer housings 1 50. With the four cantilever
arms 226, 22S, 234, 236, the grip extensions 218 arc snap-fit onto connector
housings 150. The rear portion 242 of the grip extension body 222 includes a top
side 244, an open bottom side 246 and two transverse sides 248, 250 that taper in
going in a direction from the front 224 to the back 242. Top and bottom sides 244,
246 include grip structures 252 to facilitate pulling on grip extensions 218 to remove
connectors 118.
The above specification, examples and data provide a complete
description of the manufacture and use of the invention. Since many embodiments
of the invention can be made without departing from the spirit and scope of the
invention, the invention resides in the claims hereinafter appended.

What is claimed is:
1. A telecommunications assembly, comprising:
a chassis including a top, a bottom, a front opening, a rear opening, and first
and second transverse sides extending between the front and rear openings,
the chassis defining a plurality of mounting locations;
a module configured to be slidably received within the chassis through the
front opening at one of the mounting locations, the module removable from
the chassis through the front opening; and
an adapter assembly defining at least one adapter, the adapter assembly
configured to be slidably received within the chassis through the rear
opening at one of the mounting locations, the adapter assembly removable
from the chassis through the rear opening;
the module including at least one connector adapted to be coupled to the .
adapter of the adapter assembly when the module is inserted into the chassis.
2. A telecommunications assembly according to claim 1, wherein the chassis
includes a flexible shield for blocking light off a front end of an adapter of
the adapter assembly, the shield movable between an operating position and
a non-operating position, the shield configured to be moved from the
operating position to the non-operating position by the module when the
module is slidably inserted within the chassis.
3. A telecommunications assembly according to claim 2, wherein a connector
of the module contacts the shield to move it from the operating position to
the non-operating position when the module is inserted within the chassis.
4. A telecommunications assembly according to claim 1, wherein each
mounting location includes a front catch forming a snap fit connection with
the slidable module for retaining the module within the chassis.
5. A telecommunications assembly according to claim 1, wherein the module
includes a predetermined amount of horizontal float within the chassis once

mounted therein, wherein the module is able to be moved horizontally a
predetermined distance within the chassis once mounted therein.
6. A telecommunications assembly according to claim 1, wherein each
mounting location includes a rear face with an opening for receiving a
mounting fastener of the adapter assembly for retaining the adapter assembly
within the chassis.
7. A telecommunications assembly according to claim 6, wherein the adapter
assembly includes a predetermined amount of horizontal float relative to the
chassis once mounted therein, wherein the adapter assembly is able to be
moved horizontally a predetermined distance relative to the chassis once
mounted therein.
8. A telecommunications assembly according to claim 1, wherein the chassis is
configured to accommodate eight modules and eight adapter assemblies.
9. A fiber optic adapter assembly, comprising:
a housing defining a plurality of integrally formed adapters, the housing
defining a top, a bottom, and first and second transverse sides extending
between the top and the bottom, the housing including a mounting slide at
the top of the housing for slidably guiding the adapter assembly into a piece
of telecommunications equipment;
the mounting slide including a horizontal guide portion and a vertical guide
portion, the mounting slide including a flange for holding a mounting
fastener, the mounting fastener extending in a direction going from a front of
the housing to a rear of the housing, the mounting fastener being rotatable
relative to the housing about a longitudinal axis of the mounting fastener and
being movable relative to the housing in a direction extending between the
front and the rear of the housing;
each adapter of the housing including a front opening for receiving a first
fiber optic connector, a rear opening for receiving a second fiber optic
connector adapted to mate with the first fiber optic connector, and a side

opening for receiving a ferrule alignment sleeve and inner housing halves;
and
the housing including a panel dosing off the side openings of the adapters
for holding the ferrule alignment sleeve and the inner housing halves within
the adapters.
10. A fiber optic adapter assembly according to claim 9, wherein the mounting
fastener is a thumbscrew.
11. A fiber optic adapter assembly according to claim 9, wherein the adapter
assembly includes two integrally formed adapters.
12. A method of using a telecommunications chassis comprising a top, a bottom,
a front opening, a rear opening, and first and second transverse sides
extending between the front and rear openings, the chassis defining a
plurality of mounting locations, the method comprising the steps of:
(a) slidably inserting an adapter assembly defining at least one fiber
optic adapter into the chassis through the rear opening at one of
the mounting locations; and
(b) slidably inserting a module including a fiber optic splitter and at
least one fiber optic connector into the chassis through the front
opening at one of the mounting locations to couple the fiber optic
connector to an adapter of the adapter assembly at the rear of the
chassis.
13. A grip extension for use with a fiber optic connector including a housing
with top and bottom sides including protruding flanges, first and second
transverse sides including grip surfaces, a front connection side, and a rear
fiber optic cable termination side with a flexible boot, the grip extension
comprising:

an elongate body including an open front end, an open rear end, a top side, a
bottom side, and first and second transverse sides extending between the
front and rear ends;
the first and second transverse sides defining two opposing flexible
cantilever arms adjacent the front end, the top and bottom sides defining two
opposing flexible cantilever arms adjacent the front end;
the two cantilever arms defined by the transverse sides including inwardly
protruding tabs for engaging the grip surfaces of the transverse sides of the
connector housing;
the two cantilever arms defined by the top and bottom sides including slots
for receiving the protruding flanges of the top and bottom sides of the
connector housing; and
the grip extension including grip surfaces adjacent the rear end, wherein the
grip extension is configured to be coupled to the connector housing with a
snap fit connection and wherein the grip extension is configured to
accommodate the flexible boot of the connector through the open rear end.
14. A grip extension according to claim 13, wherein the bottom side includes an
open portion for accommodating downward bending of the boot of the
connector when the grip extension is coupled to the connector housing.
15. A grip extension according to claim 13, wherein all of the cantilever arms
adjacent the front end flex out to receive the connector housing.
16. A combination dust cap/test tool for use with a telecommunications
assembly, comprising:
a body including a front end, a rear end, a top side, a bottom side, and first
and second transverse sides, the body defining a longitudinal guide flange
adjacent the top side and a longitudinal guide flange adjacent the bottom
side;
at least one fiber optic connector holder provided adjacent the front end;
at least one fiber optic dust plug adapted to be received within a fiber optic
adapter provided adjacent the rear end;

wherein the combination dust cap/test tool can be slidably inserted into a
telecommunications chassis in one of two different orientations, wherein in a
first orientation, the front end is inserted into the chassis first, and wherein in
a second orientation, the rear end is inserted into the chassis first.
17. A combination dust cap/test tool according to claim 16, wherein the body
includes a finger grip adjacent the front end and a finger grip adjacent the
rear end.
18. A combination dust cap/test tool according to claim 16, wherein the body
defines a cable management structure extending from the connector holder
adjacent the front end toward the dust plug adjacent the rear end.
19. A combination dust cap/test tool according to claim 16, wherein the body is
generally rectangular and the connector holder and the dust plug being
positioned in diagonal corners of the rectangular body.
20. A combination dust cap/test tool according to claim 16, wherein the
connector holder accommodates two fiber optic connectors and wherein the
dust cap/test tool includes two dust plugs.
21. A combination dust cap/test tool according to claim 16, wherein connectors
are slidably insertable and removable from the connector holder of the body.
22. A combination dust cap/test tool according to claim 16, wherein the dust
plugs are integrally formed with the body.
23. A telecommunications module, comprising:
a housing including a main housing portion defining a first transverse wall, a
front wall, a rear wall, a top wall, and a bottom wall, cooperatively defining
an interior;
the main housing including at least one fiber optic connector extending from
the rear wall toward an outside of the module;

the main housing including at least one cable exit extending from the front
wall of the module toward the outside of the module;
the module including an optical component located within the interior of the
module adjacent the bottom wall of the main housing;
the module including a first cable management structure located within the
interior of the module for guiding cables extending between the connector
and the optical component;
the module including a second cable management structure located within
the interior of the module for guiding cables extending between the optical
component and the cable exit; and
the housing of the module including a cover portion for mounting to the
main housing portion for closing off the interior of the main housing portion.
24. A telecommunications module according to claim 23, further including
mounting guide flanges extending from the top and bottom walls of the main
housing, the flange at the top wall being a different size than the flange at the
bottom wall.
25. A telecommunications module according to claim 23, wherein the optical
component includes a fiber optic splitter that splits a single incoming signal
into a plurality of same outgoing signals.
26. A telecommunications module according to claim 23, wherein the rear wall
of the main housing includes a curved portion and wherein the first cable
management structure includes a spool positioned adjacent, the curved
portion.
27. A telecommunications module according to claim 23, further including a
third cable management structure defining channels located between an
interior side of the first transverse wall and the optical component.
28. A telecommunications module according to claim 27, wherein the optical
component is offset from the interior side of the first transverse wall by third
cable management structure.

29. A telecommunications module according to claim 23, wherein the housing
includes a flexible cantilever arm extending from the front wall of the main
housing for providing a snap fit connection with a piece of
telecommunications equipment.
30. A telecommunications module according to claim 23, wherein the rear wall
includes an inset portion and wherein the connector is located at the inset
portion of the rear wall.
31. A telecommunications module according to claim 23, wherein the front wall
is disposed at an angle lo the top and bottom walls of the main housing.
32. A telecommunications module according to claim 23, wherein the main
housing includes crimp holders located adjacent the cable exits for holding
crimped ends of cables going from the optical component toward the cable
exits.
33. A telecommunications module, comprising:
a housing including a main housing portion defining a first transverse wall, a
front wall, a rear wail, a top wall, and a bottom wall cooperatively defining
an interior;
the main housing including at least one fiber optic connector extending from
the rear wall toward an outside of the module;
the main housing including at least one cable exit extending from the front
wall of the module toward the outside of the module;
the module including an optical component located within the interior of the
module adjacent the bottom wall of the main housing;
the housing of the module including a cover portion for mounting to the
main housing portion to close off the interior of the main housing portion;
and
the main housing portion of the module including crimp holders located
adjacent the cable exits for holding crimped ends of cables going from the

optical component toward the cable exit, the crimp holders configured to
slidably receive crimped ends of cables in a slacked arrangement in a
direction extending generally from the cover to the first transverse side of the
main housing portion.
34. A telecommunications module according to claim 33, further including a
cable management structure located within the interior of the module for
guiding cables going from the connector to the cable exit.
35. A telecommunications module according to claim 33, wherein the crimp
holders define slots for receiving crimped ends of cables.
36. A telecommunications module according to claim 35, wherein the crimp
holders define nine slots.
37. A telecommunications module according to claim 36, wherein each slot
accommodates four crimp elements.
38. A telecommunications module according to claim 33, wherein the optical
component includes a fiber optic splitter that splits a single incoming signal
into a plurality of same outgoing signals.
39. A telecommunications module according to claim 33, wherein the housing
includes a flexible cantilever arm extending from the front wall of the main
housing for providing a snap fit connection with a piece of
telecommunications equipment.
40. A telecommunications module according to claim 33, wherein the rear wall
includes an inset portion, the connector being located at the inset portion of
the rear wall.
41. A telecommunications module according to claim 33, wherein the front wall
is disposed at an angle to the top and bottom walls of the main housing.

42. A telecommunications module, comprising:
a housing including a main housing portion defining a first transverse wall, a
front wall, a rear wall, a top wall, and a bottom wall cooperatively defining
an interior;
the main housing including at least one fiber optic connector extending from
the rear wall toward an outside of the module;
the main housing including at least one cable exit extending from the front
wall of the module toward the outside of the module;
the module including an optical component located within the interior of the
module adjacent the bottom wall of the main housing;
the housing of the module including a cover portion for mounting to the
main housing portion to close off the interior of the main housing portion;
and
the module including a flexible cantilever arm extending from the front wall
of the main housing toward the outside of the module for providing a snap fit
with a telecommunications equipment, the module also including a fixed grip
tab extending from the front wall of the main housing toward the outside of
the module adjacent the flexible eantilever arm.
43. A telecommunications module according to claim 42, wherein the cantilever
arm includes a ramped tab for causing deflection of the arm when the module
is inserted into a piece of telecommunications equipment.
44. A telecommunications module according to claim 42, wherein the cantilever
arm generally lies in line with the connector of the module going in a
direction from the front wall to the rear wall of the module.

A telecommunications assembly includes a chassis and a plurality of fiber optic splitter modules mounted within the chassis. Each splitter module includes at least one fiber optic connector. Within an interior of the chassis are positioned at least one fiber optic adapter. Inserting the splitter module through a front opening of the chassis at a mounting location positions
the connector of the splitter module for insertion into and mating with the adapter of the chassis. The adapters mounted within the interior of the chassis are integrally formed as part of a removable adapter assembly. A method of mounting a fiber optic splitter module within a telecommunications chassis is also
disclosed.

Documents:

http://ipindiaonline.gov.in/patentsearch/GrantedSearch/viewdoc.aspx?id=wClRZZRT3/mMy6WTuOxNNg==&loc=wDBSZCsAt7zoiVrqcFJsRw==


Patent Number 272331
Indian Patent Application Number 3149/KOLNP/2008
PG Journal Number 14/2016
Publication Date 01-Apr-2016
Grant Date 30-Mar-2016
Date of Filing 31-Jul-2008
Name of Patentee ADC TELECOMMUNICATIONS, INC.
Applicant Address 13625 TECHNOLOGY DRIVE EDEN PRAIRIE, MINNESOTA
Inventors:
# Inventor's Name Inventor's Address
1 ZIMMEL, STEVEN C. 5516 12TH AVENUE SOUTH, MINNEAPOLIS, MINNESOTA 55417
2 NHEP, PONHARITH 9013 WEST 137TH STREET, SAVAGE, MINNESOTA 55378
3 SMITH, TREVOR D. 17860 LIV LANE, EDEN PRAIRIE, MINNESOTA 55346
PCT International Classification Number G02B 6/44
PCT International Application Number PCT/US2007/003035
PCT International Filing date 2007-02-06
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 11/354,297 2006-02-13 U.S.A.