Title of Invention

METHOD OF ALLOCATING RADIO RESOURCES IN A WIRELESS COMMUNICATION SYSTEM

Abstract A method of allocating radio resources in a wireless communication system is disclosed. A method of allocating radio resources from u network of a wireless communication system in accordance with a plurality of scheduling modes comprises transmitting first scheduling information to a user equipment to allocate radio resources to the user equipment in accordance with a first scheduling mode, the first scheduling information including a first user equipment identifier, and transmitting second scheduling information to the user equipment to allocate radio resources to the user equipment in accordance with a second scheduling mode, the second scheduling information including a second user equipment identifier.
Full Text METHOD OF ALLOCATING RADIO RESOURCES
IN A WIRELESS COMMUNICATION SYSTEM
[DESCRIPTION]
TECHNICAL FIELD
The present invention relates to a wireless communication system, and more
particularly, to a method of allocating radio resources in a wireless communication
system.
BACKGROUND ART
In a wireless communication system which uses multiple carriers, such as an
orthogonal frequency division multiple access (OFDMA) or a single carrier-frequency
division multiple access (SC-FDMA), radio resources are a set of continuous sub-
carriers and are defined by a time-frequency region on a two-dimensional sphere. A
time-frequency region is a rectangular form sectioned by time and sub-carrier
coordinates. In other words, one time-frequency region could be a rectangular form
sectioned by at least one symbol on a time axis and a plurality of sub-carriers on a
frequency axis. Such a time-frequency region can be allocated to an uplink for a specific
user equipment (UE), or an eNode B can transmit the time-frequency region to a
specific user equipment in a downlink. In order to define such a time-frequency region
on the two-dimensional sphere, the number of OFDM symbols and the number of
continuous sub-carriers starting from a point having an offset from a reference point
should be given.
An evolved universal mobile telecommunications system (E-UMTS) which is
currently being discussed uses 10 ms radio frame comprising 10 sub-frames. Namely,
one sub-frame includes two continuous slots. One slot has a length of 0.5 ms. Also,
one sub-frame comprises a plurality of OFDM symbols, and a part (for example, first
symbol) of the plurality of OFDM symbols can be used for transmission of L1/L2
control information.
FIG. 1 illustrates an example of a structure of physical channels used in the E-
UMTS. In FIG. 1, one sub-frame comprises an L1/L2 control information
transmission region (hatching part) and a data transmission region (non-hatching part).
FIG. 2 illustrates a general method of transmitting data in the E-UMTS. In the
E-UMTS, a hybrid auto repeat request (HARQ) scheme, which is one of data
retransmission schemes, is used to improve throughput, thereby enabling desirable
communication.
Referring to FIG. 2, the eNB transmits downlink scheduling information
(hereinafter, referred to as 'DL scheduling information') through DL L1/L2 control
channel, for example, a physical downlink control channel (PDCCH), to transmit data to
a user equipment in accordance with the HARQ scheme, The DL scheduling
information includes user equipment identifier (UE ID) or group identifier (group ID) of
user equipments, location and duration (resource assignment and duration of
assignment) information of radio resources allocated for transmission of downlink data,
modulation mode, payload size, transmission parameters such as MIMO related
information, HARQ process information, redundancy version, and new data indicator.
In order to notify that DL scheduling information is transmitted through the
PDCCH for what user equipment, the user equipment identifier (or group identifier), for
example, a radio network temporary identifier (RNTI) is transmitted. The RNTI can be
classified into a dedicated RNTI and a common RNTI, The dedicated RNTI is used
for data transmission and reception to and from a user equipment of which information
is registered with a eNB. The common RNTI is used if communication is performed
with user equipments, which are not allocated with dedicated RNTI as their information
is not registered with the eNB. Alternatively, the common RNTI is used for transmission
and reception of information used commonly for a plurality of user equipments, such as
system information. For example, examples of the common RNTI include RA-RNTI
and T-C-RNTI, which are used during a random access procedure through a random
access channel (RACH). The user equipment identifier or group identifier can be
transmitted in a type of CRC masking in DL scheduling information transmitted through
the PDCCH.
User equipments located in a specific cell monitor the PDCCH through the
L1/L2 control channel using their RNTI information, and receive DL scheduling
information through the corresponding PDCCH if they successfully perform CRC
decoding through their RNTI. The user equipments receive downlink data transmitted
thereto through a physical downlink shared channel (PDSCH) indicated by the received
DL scheduling information.
A scheduling mode can be classified into a dynamic scheduling mode and a
persistent or semi-persistent scheduling mode. The dynamic scheduling mode is to
transmit scheduling information to a specific user equipment through the PDCCH
whenever allocation of uplink or downlink resources is required for the specific user
equipment. The persistent scheduling mode means that the eNB allocates downlink or
uplink scheduling information to the user equipment statically during initial call
establishment such as establishment of a radio bearer.
In case of the persistent scheduling mode, the user equipment transmits or
receives data using scheduling information previously allocated to the eNB without
using DL scheduling information or UL scheduling information allocated from the eNB.
For example, if the eNB previously sets a specific user equipment to allow the user
equipment to receive downlink data through RRC signal and a radio resource "A" in
accordance with a transport format "B" and a period "C" during establishment of a
radio bearer, the user equipment can receive downlink data transmitted from the eNB
using information "A", "B" and "C". Likewise, even in case that the user equipment
transmits data to the eNB, the user equipment can transmit uplink data using a
previously defined radio resource in accordance with previously allocated uplink
scheduling information. The persistent scheduling mode is a scheduling mode that can
well be applied to a service of which traffic is regular, such as voice communication.
AMR codec used in voice communication, i.e., voice data generated through
voice codec has a special feature. Namely, voice data are classified into a talk spurt and
a silent period. The talk spurt means a voice data period generated while a person is
actually talking, and the silent period means a voice data period generated while a
person does not talk. For example, voice packets, which include voice data in the talk
spurt, are generated per 20ms, and silent packets (SID), which include voice data in the
silent period, are generated per 160ms.
If the persistent scheduling mode is used for voice communication, the eNB
will establish radio resources in accordance with the talk spurt. Namely, the eNB will
previously establish radio resources for transmitting and receiving uplink or downlink
data to and from the user equipment at an interval of 20ms during call establishment
using a feature that voice packets are generated per 20ms. The user equipment receives
downlink data or transmits uplink data using radio resources, which are previously
established per 20ms.
DISCLOSURE OF THE INVENTION
In the wireless communication system, communication can be performed in
such a manner that the dynamic scheduling mode and the persistent scheduling mode
are simultaneously applied to one user equipment. For example, if voice communication
according to a VoIP service is performed in accordance with an HARQ scheme, the
persistent scheduling mode is applied to initial transmission packets, and the dynamic
scheduling mode is applied to retransmission packets. Also, if the user equipment
simultaneously uses two or more services, the persistent scheduling mode can be
applied to one service and the dynamic scheduling mode can be applied to the other
service. In these cases, it is required that the user equipment should definitely identify
whether scheduling information transmitted thereto depends on what scheduling mode,
or whether the scheduling information is for initial transmission packets or
retransmission packets, or whether the scheduling information is for what service.
Accordingly, the present invention is directed to a method of allocating radio
resources in a wireless communication system, which substantially obviates one or
more problems due to limitations and disadvantages of the related art.
An object of the present invention is to provide a method of allocating radio
resources in a wireless communication system, in which radio resources can efficiently
be used in the wireless communication system.
Another object of the present invention is to provide a method of allocating
radio resources in a wireless communication system, in which a user equipment can
definitely identify scheduling information according to each scheduling mode in a
wireless communication system which allocates radio resources in accordance with a
plurality of scheduling modes.
In one aspect of the present invention, a network of a wireless communication
system transmits first scheduling information to a user equipment to allocate radio
resources to the user equipment in accordance with a first scheduling mode, the first
scheduling information including a first user equipment identifier, and transmits second
scheduling information to the user equipment to allocate radio resources to the user
equipment in accordance with a second scheduling mode, the second scheduling
information including a second user equipment identifier.
In another aspect of the present invention, when a user equipment receives
scheduling information including a user equipment identifier from a network, the user
equipment transmits uplink data or receives downlink data using radio resources
allocated in accordance with a first scheduling mode. When a second user equipment
identifier is included in the scheduling information, the user equipment transmits uplink
data or receives downlink data using radio resources allocated in accordance with a
second scheduling mode.
According to the present invention, the wireless communication system can
efficiently use radio resources. Also, in the wireless communication system which
allocates radio resources in accordance with a plurality of scheduling modes, a user
equipment can definitely identify scheduling information according to each scheduling
mode.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a diagram illustrating an example of a structure of a physical channel
used in an E-UMTS (Evolved-Universal Mobile Telecommunications System);
FIG. 2 is a diagram illustrating a general method of transmitting data in an E-
UMTS;
FIG. 3 is a diagram illustrating a network structure of an E-UMTS;
FIG. 4 is a schematic view illustrating an E-UTRAN (Evolved Universal
Terrestrial Radio Access Network);
FIG. 5A and FIG. 5B are diagrams illustrating a structure of a radio interface
protocol between a user equipment (UE) and E-UTRAN, in which FIG. 5A is a
schematic view of a control plane protocol and FIG. 5B is a schematic view of a user
plane protocol; and
FIG. 6 is a flow chart illustrating a procedure of a method of transmitting data
in accordance with one embodiment of the present invention.
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, structures, operations, and other features of the present invention
will be understood readily by the preferred embodiments of the present invention,
examples of which are illustrated in the accompanying drawings. Embodiments
described later are examples in which technical features of the present invention are
applied to an E-UMTS (Evolved Universal Mobile Telecommunications System).
FIG. 3 illustrates a network structure of an E-UMTS. An E-UMTS is a system
evolving from the conventional WCDMA UMTS and its basic standardization is
currently handled by the 3GPP (3rd Generation Partnership Project). The E-UMTS can
also be called an LTE (Long Term Evolution) system.
Referring to FIG. 3, an E-UTRAN includes eNocle Bs (hereinafter, referred to
as 'eNode B' or 'eNB'), wherein respective eNBs are connected with each other through
X2 interface. Also, each of eNBs is connected with a user equipment (UE) through a
radio interface and connected with EPC (Evolved Packet Core) through SI interface.
The EPC includes a mobility management entity/system architecture evolution
(MME/SAE) gateway.
Layers of a radio interface protocol between a UE and a network can be
classified into a first layer L1, a second layer L2 and a third layer L3 based on three
lower layers of OSI (open system interconnection) standard model widely known in
communication systems. A physical layer belonging to the first layer L1 provides an
information transfer service using a physical channel. A radio resource control
(hereinafter, abbreviated as 'RRC') located at the third layer plays a role in controlling
radio resources between the UE and the network. For this, the RRC layer enables
RRC messages to be exchanged between the UE and the network. The RRC layer can
be distributively located at network nodes including Node B, an AG and the like or can
be independently located at either the Node B or the AG.
FIG. 4 is a schematic view illustrating an E-UTRAN (UMTS terrestrial radio
access network). In FIG. 4, a hatching part represents functional entities of a user plane,'
and a non-hatching part represents functional entities of a control plane.
FIG. 5A and FIG. 5B illustrate a structure of a radio interface protocol between
the UE and the E-UTRAN, in which FIG. 5A is a schematic view of a control plane
protocol and FIG. 5B is a schematic view of a user plane protocol. Referring to FIG. 5A
and FIG. 5B, a radio interface protocol horizontally includes a physical layer, a data link
layer, and a network layer, and vertically includes a user plane for data information
transfer and a control plane for signaling transfer. The protocol layers in FIG. 5A and
FIG. 5B can be classified into L1 (first layer), L2 (second layer), and L3 (third layer)
based on three lower layers of the open system interconnection (OSI) standard model
widely known in the communications systems.
The physical layer as the first layer provides an information transfer service to
an upper layer using physical channels. The physical layer (PHY) is connected to a
medium access control (hereinafter, abbreviated as 'MAC') layer above the physical
layer via transport channels. Data are transferred between the medium access control
layer and the physical layer via the transport channels. Moreover, data are transferred
between different physical layers, and more particularly, between one physical layer of a
transmitting side and the other physical layer of a receiving side via the physical
channels. The physical channel of the E-UMTS is modulated in accordance with an
orthogonal frequency division multiplexing (OFDM) scheme, and time and frequency
are used as radio resources.
The medium access control (hereinafter, abbreviated as 'MAC') layer of the
second layer provides a service to a radio link control (hereinafter, abbreviated as
'RLC') layer above the MAC layer via logical channels. The RLC layer of the second
layer supports reliable data transfer. In order to effectively transmit data using IP
packets (e.g., IPv4 or IPv6) within a radio-communication period having a narrow
bandwidth, a PDCP layer of the second layer (L2) performs header compression to
reduce the size of unnecessary control information.
A radio resource control (hereinafter, abbreviated as 'RRC') layer located on a
lowest part of the third layer is defined in the control plane only and is associated with
configuration, reconfiguration and release of radio bearers (hereinafter, abbreviated as
'RBs') to be in charge of controlling the logical, transport and physical channels. In
this case, the RB means a service provided by the second layer for the data transfer
between the UE and the UTRAN.
As downlink transport channels carrying data from the network to the UEs,
there are provided a broadcast channel (BCH) carrying system information, a paging
channel (PCH) carrying paging message, and a downlink shared channel (SCH)
carrying user traffic or control messages. The traffic or control messages of a
downlink multicast or broadcast service can be transmitted via the downlink SCH or an
additional downlink multicast channel (MCH). Meanwhile, as uplink transport
channels carrying data from the UEs to the network, there are provided a random access
channel (RACH) carrying an initial control message and an uplink shared channel (UL-
SCH) carrying user traffic or control message.
As logical channels located above the transport channels and mapped with the
transport channels, there are provided a broadcast control channel (BCCH), a paging
control channel (PCCH), a common control channel (CCCH), a multicast control
channel (MCCH), and a multicast traffic channel (MTCH).
In the E-UMTS system, an OFDM is used on the downlink and a single carrier
frequency division multiple access (SC-FDMA) on the uplink. The OFDM scheme
using multiple carriers allocates resources by unit of multiple sub-carriers including a
group of carriers and utilizes an orthogonal frequency division multiple access
(OFDMA) as an access scheme.
FIG. 6 is a flow chart illustrating a procedure of a method of transmitting data
in accordance with one embodiment of the present invention. According to the
embodiment of FIG. 6, the user equipment (UE) receives SRB packets in accordance
with a dynamic scheduling mode while receiving voice data (VoIP packets) in
accordance with a persistent scheduling mode. Hereinafter, description will be made
only if necessary for understanding of the embodiment of the present invention, and
description of a general procedure required for communication between a network and a
UE will be omitted.
Referring to FIG. 6, the eNode-B (eNB) allocates two UE identifiers to the UE
[S61]. Examples of the two UE identifiers include a C-RNTI and an SPS-C-RNTI
(Semi-Persistent Scheduling RNTI). However, the two UE identifiers will not be limited
to the above examples. For example, temporary C-RNTI and RA-RNTI may be used as
the two UE identifiers. The two UE identifiers can be allocated to the UE by the
network during random access procedure, call establishment procedure, or radio bearer
(RB) establishment procedure, etc. Also, the two UE identifiers may be allocated
simultaneously or individually.
The eNB transmits first scheduling information to the UE to allocate radio
resources for transmission and reception of voice data [S62]. The first scheduling
information can include uplink scheduling information and downlink scheduling
information. The first scheduling information includes the SPS-C-RNTI to indicate that
the scheduling information is allocated in accordance with the persistent scheduling
mode. The SPS-C-RNTI can be included in the first scheduling information in a type of
CRC (Cyclic Redundancy Check) masking in at least part of the first scheduling
information. The first scheduling information is set to have a format (first format)
different from that of scheduling information according to the dynamic scheduling
mode. The UE decodes the first scheduling information in accordance with the first
format, and if the SPS-C-RNTI is included in the first scheduling information, the UE
recognizes that the first scheduling information is scheduling information according to
the persistent scheduling mode. The first scheduling information includes information
associated with a location of radio resources allocated to the UE, an allocation period,
and an allocation interval, etc. The UE transmits uplink data or receives downlink data
using the radio resources allocated at an allocation period for an allocation interval in
accordance with the first scheduling information.
The eNB transmits an initial transmission VoIP packet V1 to the UE on the
PDSCH in accordance with the first scheduling information [S63]. The initial
transmission VoIP packet V1 means a voice packet which is not a retransmission packet,
when the HARQ scheme is used. If the UE fails to successfully receive the initial
transmission VoIP packet V1, i.e., if the UE fails to decode the initial transmission VoIP
packet V1, the UE transmits NACK to the eNB on a physical uplink control channel
(PUCCH) [S64]. The UE receives the initial transmission VoIP packet V1 or transmits
NACK (or ACK) using the first scheduling information.
When the UE receives the initial transmission VoIP packet V1 or transmits
NACK (or ACK), the persistent scheduling mode is used. However, the dynamic
scheduling mode is used for transmission of a retransmission VoIP packet by the eNB.
Accordingly, after transmitting the NACK to the eNB, the UE should first receive
scheduling information to receive the retransmission packet. To this end, the UE
monitors the PDCCH of the L1/L2 control channel.
In FIG, 6, the eNB transmits second scheduling information to the UE on the
PDCCH [S65]. The second scheduling information is to allocate uplink and downlink
channel resources in accordance with the dynamic scheduling mode, and can include
downlink (DL) scheduling information and uplink (UL) scheduling information. The
second scheduling information includes the C-RNTI to indicate that the second
scheduling information is allocated in accordance with the dynamic scheduling mode.
The C-RNTI can be included in the second scheduling information in a type of
CRC(CycIic Redundancy Check) masking in at least part of the second scheduling
information. The second scheduling information is set to have a format (second format)
different from that of the scheduling information according to the persistent scheduling
mode, i.e., the first scheduling information. The UE decodes the second scheduling
information in accordance with the second format, and if the C-RNTI is included in the
second scheduling information, the UE recognizes that the second scheduling
information is scheduling information according to the dynamic scheduling mode. The
second scheduling information includes a HARQ process identifier.
The eNB transmits an initial transmission SRB packet S1 to the UE in
accordance with the second scheduling information [S66]. The initial transmission SRB
packet S1 means SRB packet which is not a retransmission packet, when the HARQ
scheme is used. If the UE fails to successfully receive the initial transmission SRB
packet S1, i.e., if the UE fails to decode the initial transmission SRB packet S1, the UE
transmits NACK to the eNB on the PUCCH [S67]. The UE receives the initial
transmission SRB packet S1 or transmits the NACK (or ACK) using the second
scheduling information.
The eNB transmits third scheduling information to the UE on PDCCH to
transmit a retransmission packet V2 for the initial transmission VoIP packet V1, wherein
the third scheduling information includes the SPS-C-RNTI [S68]. If the UE receives the
third scheduling information which includes the SPS-C-RNTI, the UE receives the
retransmission VoIP packet V2, which is transmitted from the eNB, using the third
scheduling information [S69]. The UE combines the received retransmission VoIP
packet V2 with the initial transmission VoIP packet V1 in accordance with the HARQ
scheme to recover a VoIP packet [S70]. If the UE successfully recovers the VoIP packet,
the UE transmits ACK to the eNB [S71]. The VoIP packet means a data packet intended
to be transmitted from the eNB to the UE. The VoIP packet is divided into the initial
transmission VoIP packet V1 and the retransmission VoIP packet V2 based on the VoIP
packet and then transmitted to the UE in accordance with the HARQ scheme.
The third scheduling information can include information related to a
transmission timing point when the eNB transmits the initial transmission VoIP packet
V1. For example, the third scheduling information can include information indicating a
transport time interval (TTI) where the initial transmission VoIP packet V1 is
transmitted. The UE can easily recognize that the retransmission VoIP packet V2 is a
retransmission packet for the initial transmission VoIP packet, in accordance with the
information related to the timing point when the eNB transmits the initial transmission
VoIP packet V1 included in the third scheduling information.
The eNB transmits fourth scheduling information to the UE on PDCCH to
transmit a retransmission packet S2 for the initial transmission SRB packet S1, wherein
the fourth scheduling information includes the C-RNTI [S72]. If the UE receives the
fourth scheduling information which includes the C-RNTI, the UE receives the
retransmission SRB packet S2, which is transmitted from the eNB, using the fourth
scheduling information [S73], The UE combines the received retransmission SRB
packet S2 with the initial transmission SRB packet S1 in accordance with the HARQ
scheme to recover an SRB packet [S74]. If the UE successfully recovers the SRB packet,
the UE transmits ACK to the eNB [S75]. The SRB packet means a data packet intended
to be transmitted from the eNB to the UE. The SRB packet is divided into the initial
transmission SRB packet S1 and the retransmission SRB packet S2 based on the SRB
packet and then transmitted to the UE in accordance with the HARQ scheme. The
fourth scheduling information includes the same HARQ process identifier as that
included in the second scheduling information.
In the embodiment of FIG. 6, the first scheduling information to the fourth
scheduling information can further include identification information that can identify
whether the data packet transmitted from the eNB to the UE in accordance with the first
scheduling information to the fourth scheduling information is the initial transmission
packet or the retransmission packet. The identification information can be included in
the first scheduling information to the fourth scheduling information in such a manner
that a specific field of the first scheduling information to the fourth scheduling
information is set to a value which is a previously determined. For example, a first
retransmission packet, a second retransmission packet, and a third retransmission packet
can be identified in such a manner that specific values such as 1, 2 and 3 are set in a
redundancy version (RV) field included in the first scheduling information to the fourth
scheduling information. In addition to the RV field, other field included in the first
scheduling information to the fourth scheduling information, for example, at least one
of HARQ process ID field, format field, MCS field, NDI (New data indicator) field,
TPC field, "Cyclic shift for DMRS" field, "TX antenna" field, and CQI request field is
set to a specific value, whereby the set value can be used as the identification
information.
The aforementioned embodiments are achieved by combination of structural
elements and features of the present invention in a predetermined type. Each of the
structural elements or features should be considered selectively unless specified
separately. Each of the structural elements or features may be carried out without being
combined with other structural elements or features. Also, some structural elements
and/or features may be combined with one another to constitute the embodiments of the
present invention. The order of operations described in the embodiments of the
present invention may be changed. Some structural elements or features of one
embodiment may be included in another embodiment, or may be replaced with
corresponding structural elements or features of another embodiment. Moreover, it will
be apparent that some claims referring to specific claims may be combined with another
claims referring to the other claims other than the specific claims to constitute the
embodiment or add new claims by means of amendment after the application is filed.
The embodiments of the present invention have been described based on data
transmission and reception between an eNB and a UE. A specific operation which has
been described as being performed by the eNB may be performed by an upper node of
the eNB as the case may be. In other words, it will be apparent that various operations
performed for communication with the UE in the network which includes a plurality of
network nodes along with the eNB may be performed by the eNB or network nodes
other than the eNB. The eNB may be replaced with terms such as a fixed station, base
station, Node B, eNode B, and access point. Also, the UE may be replaced with terms
such as mobile station (MS) and mobile subscriber station (MSS).
The embodiments according to the present invention may be implemented by
various means, for example, hardware, firmware, software, or their combination. If the
embodiment according to the present invention is implemented by hardware, the
embodiment of the present invention may be implemented by one or more application
specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal
processing devices (DSPDs), programmable logic, devices (PLDs), field programmable
gate arrays (FPGAs), processors, controllers, microcontrollers, microprocessors, etc.
If the embodiment according to the present invention is implemented by
firmware or software, the method of transmitting and receiving data in the wireless
communication system according to the embodiment of the present invention may be
implemented by a type of a module, a procedure, or a function, which performs
functions or operations described as above. A software code may be stored in a memory
unit and then may be driven by a processor. The memory unit may be located inside or
outside the processor to transmit and receive data to and from the processor through
various means which are well known.
It will be apparent to those skilled in the art that the present invention can be
embodied in other specific forms without departing from the spirit and essential
characteristics of the invention. Thus, the above embodiments are to be considered in
all respects as illustrative and not restrictive. The scope of the invention should be
determined by reasonable interpretation of the appended claims and all change which
comes within the equivalent scope of the invention are included in the scope of the
invention.
INDUSTRIAL APPLICABILITY
The present invention can be used in a wireless communication system such as
a mobile communication system or a wireless Internet system.
[CLAIMS]
1. A method of allocating radio resources to a user equipment of a wireless
communication system in accordance with a plurality of scheduling modes, the method
comprising:
receiving scheduling information from a network;
transmitting uplink data or receiving downlink data using radio resources
allocated in accordance with a first scheduling mode, when a first user equipment
identifier is included in the scheduling information; and
transmitting uplink data or receiving downlink data using radio resources
allocated in accordance with a second scheduling mode, when a second user equipment
identifier is included in the scheduling information.
2. The method of claim 1, wherein the first and second user equipment
identifiers are allocated from the network.
3. The method of claim 1, wherein the first scheduling mode is a persistent
scheduling mode, and the second scheduling mode is a dynamic scheduling mode.
4. The method of claim 1, wherein the first user equipment identifier is an SPS-
C-RNTI, and the second user equipment identifier is a C-RNTI.
5. The method of claim 1, wherein the scheduling information is received on a
PDCCH.
6. The method of claim 1, wherein the scheduling information has different
formats in accordance with a user equipment identifier included therein.
7. The method of claim 6, wherein the scheduling information includes an
HARQ process identifier, when the second user equipment identifier is included in the
scheduling information.
8. The method of claim 6, wherein the scheduling information includes
information associated with a timing point when transmission or reception of an initial
packet is performed in accordance with the first scheduling mode, when the first user
equipment identifier is included in the scheduling information.
9. The method of claim 6, wherein the scheduling information includes
information associated with a timing point when transmission or reception of a previous
retransmission packet is performed in accordance with the first scheduling mode, when
the first user equipment identifier is included in the scheduling information.
10. A method of allocating radio resources from a network of a wireless
communication system in accordance with a plurality of scheduling modes, the method
comprising:
transmitting first scheduling information to a user equipment to allocate radio
resources to the user equipment in accordance with a first scheduling mode, the first
scheduling information including a first user equipment identifier; and
transmitting second scheduling information to the user equipment to allocate
radio resources to the user equipment in accordance with a second scheduling mode, the
second scheduling information including a second user equipment identifier.
11. The method of claim 10, wherein the first and second user equipment
identifiers are previously allocated to the user equipment.
12. The method of claim 10, wherein the first scheduling mode is a persistent
scheduling mode, and the second scheduling mode is a dynamic scheduling mode.
13. The method of claim 10, wherein the first user equipment identifier is an
SPS-C-RNTI, and the second user equipment identifier is a C-RNTI.
14. The method of claim 10, wherein the first scheduling information and the
second scheduling information are transmitted on a PDCCH.
15. The method of claim 10, wherein the first scheduling information and the
second scheduling information have different formats.
16. The method of claim 15, wherein the second scheduling information
includes an HARQ process identifier.
17. The method of claim 15, wherein the second scheduling information
includes information associated with a timing point when transmission or reception of
an initial packet is performed in accordance with the first scheduling mode.
18. The method of claim 15, wherein the second scheduling information
includes information associated with a timing point when transmission or reception of a
previous retransmission packet is performed in accordance with the first scheduling
mode.

A method of allocating radio resources in a wireless
communication system is disclosed. A method of allocating radio
resources from u network of a wireless communication system in
accordance with a plurality of scheduling modes comprises transmitting
first scheduling information to a user equipment to allocate radio
resources to the user equipment in accordance with a first scheduling
mode, the first scheduling information including a first user equipment
identifier, and transmitting second scheduling information to
the user equipment to allocate radio resources to the user equipment
in accordance with a second scheduling mode, the second scheduling
information including a second user equipment identifier.

Documents:

http://ipindiaonline.gov.in/patentsearch/GrantedSearch/viewdoc.aspx?id=YyT3Ycue3FuxgYmSCSWIhA==&loc=wDBSZCsAt7zoiVrqcFJsRw==


Patent Number 277927
Indian Patent Application Number 4245/KOLNP/2009
PG Journal Number 51/2016
Publication Date 09-Dec-2016
Grant Date 06-Dec-2016
Date of Filing 08-Dec-2009
Name of Patentee LG ELECTRONICS INC.
Applicant Address 20, YEOUIDO-DONG, YEONGDEUNGPO-GU, SEOUL 150-721 REPUBLIC OF KOREA
Inventors:
# Inventor's Name Inventor's Address
1 LEE, YOUNG DAE LG INSTITUTE HOGYE 1(IL)-DONG, DONGAN-GU, ANYANG-SI, GYEONGGI-DO 431-080 REPUBLIC OF KOREA
2 CHUN, SUNG DUCK LG INSTITUTE HOGYE 1(IL)-DONG, DONGAN-GU, ANYANG-SI, GYEONGGI-DO 431-080 REPUBLIC OF KOREA
3 PARK, SUNG JUN LG INSTITUTE HOGYE 1(IL)-DONG, DONGAN-GU, ANYANG-SI, GYEONGGI-DO 431-080 REPUBLIC OF KOREA
4 YI, SEUNG JUNE LG INSTITUTE HOGYE 1(IL)-DONG, DONGAN-GU, ANYANG-SI, GYEONGGI-DO 431-080 REPUBLIC OF KOREA
PCT International Classification Number H04B7/26; H04B7/26
PCT International Application Number PCT/KR2008/004915
PCT International Filing date 2008-08-22
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 60/977,366 2007-10-03 U.S.A.
2 61/039,095 2008-03-24 U.S.A.
3 61/074,998 2008-06-23 U.S.A.
4 61/018,884 2008-01-03 U.S.A.
5 10-2008-0082245 2008-08-22 U.S.A.