| Title of Invention | "METHOD FOR PREPARING ACYCLOVIR 2/3 HYDRATE" |
|---|---|
| Abstract | Preparation of acyclovir 2/3 hydrate comprises mixing acyclovir with water at weight ratio of 1:5~50, dissolving at 50~100°C, filtering, cooling filtrate at 0~30°C to precipitate crystal,collecting the crystal by filtration, and drying the crystal at 0~150°C for 0.5~24 hours to obtain acyclovir 2/3 hydrate. The preparation process is simple and suitable for industrial production. The prepared product has good and stable crystal form. |
| Full Text | FORM 2 THE PATENTS ACT, 1970 (39 of 1970) & THE PATENTS RULES, 2003 COMPLETE SPECIFICATION [See section 10, Rule 13] METHOD FOR PREPARING ACYCLOVIR 2/3 HYDRATE; ZHEJIANG CHARIOTEER PHARMACEUTICAL CO., LTD., A COMPANY ORGANIZED AND EXISTING UNDER THE LAWS OF CHINA, WHOSE ADDRESS IS TONGYUANXI, DAZHAN TOWNSHIP, XIANJU COUNTY, ZHEJIANG 317321, CHINA THE FOLLOWING SPECIFICATION PARTICULARLY DESCRIBES THE INVENTION AND THE MANNER IN WHICH IT IS TO BE PERFORMED. 1. TECHNICAL FIELD The present invention relates to the preparation of a nucleoside drug acyclovir (ACV) 2/3 hydrate. 2. BACKGROUND ART Acyclovir is a new HBV-DNA polymerase inhibitor, having broad spectrum antiviral activity against animal and human viruses. Kristl (Int. J. Phar. 1996, 139, 231-235) reported some crystal forms of acyclovir, including 2/3 hydrate, instable anhydrous form and anhydrous (stable) form 1 and anhydrous form 2. The results showed that, compared with other forms, 2/3 hydrate had higher water solubility and thus higher bioavailability, and was suitable for preparing antiviral preparations. The acyclovir in European Pharmacopeia is 2/3 hydrate. However, the preparation process and XRD data of acyclovir 2/3 hydrate have not been reported yet. Young (Arch. Pharm. Res. 2008, 31, 231-234) disclosed an acyclovir hydrate ( Form 3), which had a weight-loss as measured by Thermogravimetric Analysis(TGA)of about 6.74%. 3. SUMMARY OF THE INVENTION The technical problem of the present invention to solve is to provide a method for preparing acyclovir 2/3 hydrate (i.e. ACV 2/3 hydrate), which is simple and suitable for industrial production. In order to solve the above technical problem, the invention adopts the following technical scheme: A method for preparing acyclovir 2/3 hydrate comprises: mixing acyclovir with water at weight ratio of 1:5-50, dissolving at 50-100°C, filtering, cooling filtrate to 0~30°C to precipitate crystal, collecting the crystal by filtration, and drying the crystal at 0~150°C for 0.5-24 hours to obtain acyclovir 2/3 hydrate. In the dry step of the present invention, the drying conditions should be controlled properly in order to obtain qualified acyclovir 2/3 hydrate with water content of 5.1% by weight. One of ordinary skill in the art can carry out the dry step in a conventional manner to obtain acyclovir 2/3 hydrate. For example, if the dry step is carried out at high temperature (for example, over 1000c) and lasts a longer time, the crystal is easy to lose too much water and thus the water content may be below 5.1%, Generally, when the water content of the crystal gets to be below 5.1% after drying, the crystal can be placed under the circumstance of 60-80% relative humidity of air for 8-10 hours to obtain acyclovir 2/3 hydrate. Vacuum can be adopted to improve drying efficiency. In the present invention, the time required for precipitating crystal is 1-24 hours. Further, acyclovir and water are preferably mixed at weight ratio of 1:10~15. Preferably, the filtrate is cooled to 20~30°C and held for 4-10 hours to precipitate crystal. Preferably, the crystal is dried at 50-100°C for 5-12 hours to obtain acyclovir 2/3 hydrate. In the present invention, it is recommended to carry out the preparation of acyclovir 2/3 hydrate as follows: acyclovir and water are mixed at weight ratio of 1:5-50 and dissolved at 50~100°C. Then the mixture is filtered. The filtrate is cooled to 20-30°C and held for 4~10 hours to precipitate crystal. The crystal is collected by filtration, and then dried at 50-100°C for 5~12 hours to obtain the acyclovir 2/3 hydrate. The acyclovir 2/3 hydrate according to the present invention shows the following characteristic peaks expressed in terms of 29 and interplanar spacings (d value) in the X-ray powder diffraction pattern obtained with Cu-Ka radiation: Peak 20(°) interplanar spacing d(A) 1 about 7.0 about 12.7 2 about 10.5 about 8.4 3 about 13.1 about 6.8 4 about 16.1 about 5.5 5 about 18.3 about 4.9 6 about 21.0 about 4.2 7 about 24.9 about 3.7 8 about 26.2 about 3.4 9 about 29.2 about 3.0 The acyclovir 2/3 hydrate according to the present invention shows absorption peaks at about 3522cm"1, about 3471cm'1, about 3438cm"1, about 3294cm'1, about 3180cm"1, about 2854cm"1, about 2698cm"1, about 1716cm"1, about 1631cm"1, about 1610cm'1, about 1483cm"1, about 1388cm"1, about 1182cm"1, about 1105cm"1, about 1049cm"1, and about 902cm"1 in the infrared absorption spectrum (KBr pellet). The acyclovir 2/3 hydrate according to the present invention has a weight-loss as measured by Thermogravimetric Analysis(TGA)of 5.1% by weight. The preparation process of the present invention is simple and suitable for industrial production. The acyclovir 2/3 hydrate according to the present invention has the following advantages: (1) It has the property required for large-scale preparation of drugs: for example, it has thermal decomposition point of over 250°C, and good fluidity and bulk density, which are in favor of drug preparation and industrial production on a large scale. (2) It has good stability of crystalline form. The stability test has shown that the acyclovir 2/3 hydrate obtained according to the present invention can be stored for more than one year at room temperature with relative humidity of less than 50%. During the storage time, the crystalline form remains the same and the content does not reduce, which completely comply with the European Pharmacopoeia specification. It can be stored in the dark, cool and dry place for a long time. 4. DESCRIPTION OF THE DRAWINGS Figure 1 shows the X-ray powder diffraction pattern of ACV 2/3 hydrate according to the present invention. Figure 2 shows the TGA spectrum of ACV 2/3 hydrate according to the present invention. Figure 3 shows the single-crystal X-ray diffraction spectrum of ACV 2/3 hydrate according to the present invention. Figure 4 shows the infrared absorption spectrum of ACV 2/3 hydrate according to the present invention. 5. DESCRIPTION OF THE PREFERRED EMBODIMENT Following are examples, which illustrate the present invention in detail. These examples should not be construed as limiting. Example 1 The mixture of acyclovir (lOg) and water (120ml) was heated to 95°C, stirred to obtain a clear solution, and filtered. The filtrate was cooled to 20~25°C, held for 5 h to precipitate crystal and then filtered. The resulting solid was dried under vacuum at 50 °C for 20h to obtain acyclovir crystal (9.8g), with purity of 99.6% by HPLC. The solid was ground into powder of 200 mesh in size. The X-ray powder diffraction pattern of the product obtained with Cu-Ka radiation exhibited characteristic peaks at 20 and interplanar spacings (d value) of about 7.0(12.7), about 10.5(8.4), about 13.1(6.8), about 16.1(5.5), about 18.3(4.9), about 21.0(4.2), about 24.9(3.7), about 26.2(3.4), and about 29.2(3.0). The product had a weight-loss as measured by Thermogravimetric Analysis(TGA)of about 5.1% by weight. The infrared absorption spectrum (KBr pellet) of the product showed absorption peaks at about 3522cm"1, about 3471cm"1, about 3438cm'1, about 3294cm'1, about 3180cm"1, about 2854cm"1, about 2698cm"1, about 1716cm"1, about 1631cm'1, about 1610cm"1, about 1483cm"1, about 1388cm"1, about 1182cm"1, about 1105cm"1, about 1049cm"1, and about 902cm"1. Example 2 The mixture of acyclovir (lOg) and water (150ml) was heated to 90°C, stirred to obtain a clear solution and filtered. The filtrate was cooled to 20~25°C, held for 5 h to precipitate crystal, and then filtered. The resulting solid was dried under vacuum at 50 °C for 20h to obtain acyclovir crystal (9.6g), with purity of 99.7% by HPLC. The solid was ground into power of 200 mesh in size. The X-ray powder diffraction pattern of the product obtained with Cu-Ka radiation exhibited characteristic peaks at 29 and interplanar spacings (d value) of about 7.0(12.7), about 10.5(8.4), about 13.1(6.8), about 16.1(5.5), about 18.3(4.9), about 21.0(4.2), about 24.9(3.7), about 26.2(3.4), and about 29.2(3.0). The product had a weight-loss as measured by Thermogravimetric Analysis(TGA)of about 5.1% by weight. The infrared absorption spectrum (KBr pellet) of the product showed absorption peaks at about 3522cm"1, about 3471cm"1, about 3438cm"1, about 3294cm"1, about 3180cm"1, about 2854cm"1, about 2698cm"1, about 1716cm"1, about 1631cm"1, about 1610cm"1, about 1483cm"1, about 1388cm"1, about 1182cm"1, about 1105cm"1, about 1049cm"1, and about 902cm'1. Example 3 The mixture of acyclovir (lOg) and water (200ml) was heated to 90°C, stirred to obtain a clear solution and filtered. The filtrate was cooled to 20~25°C, held for 10 h to precipitate crystal and then filtered. The resulting solid was dried under vacuum at 50 °C for 20h to obtain acyclovir crystal (9.5g), with purity of 99.7% by HPLC. The solid was ground into power of 200 mesh in size. The X-ray powder diffraction pattern of the product obtained with Cu-Ka radiation exhibited characteristic peaks at 29 and interplanar spacings (d value) of about 7.0(12.7), about 10.5(8.4), about 13.1(6.8), about 16.1(5.5), about 18.3(4.9), about 21.0(4.2), about 24.9(3.7), about 26.2(3.4), and about 29.2(3.0). The product had a weight-loss as measured by Thermogravimetric Analysis(TGA)of about 5.1% by weight. The infrared absorption spectrum (KBr pellet) of the product showed absorption peaks at about 3522cm"1, about 3471cm"1, about 3438cm"1, about 3294cm"1, about 3180cm"1, about 2854cm"1, about 2698cm"1, about 1716cm"1, about 1631cm"1, about 1610cm"1, about 1483cm"1, about 1388cm"1, about 1182cm"1, about 1105cm"1, about 1049cm"1, and about 902cm"1. Example 4 The mixture of acyclovir (lOg) and water (200ml) was heated to 90°C, stirred to obtain a clear solution and filtered. The filtrate was cooled to 20~25°C, held for 10 h to precipitate crystal, and then filtered. The resulting solid was dried at 70°C for 20h to obtain acyclovir crystal (9.5g), with purity of 99.5% by HPLC. The solid was ground into power of 200 mesh in size. The X-ray powder diffraction pattern of the product obtained with Cu-Ka radiation exhibited characteristic peaks at 29 and interplanar spacings (d value) of about 7.0(12.7), about 10.5(8.4), about 13.1(6.8), about 16.1(5.5), about 18.3(4.9), about 21.0(4.2), about 24.9(3.7), about 26.2(3.4), and about 29.2(3.0). The product had a weight-loss as measured by Thermogravimetric Analysis(TGA)of about 5.1% by weight. The infrared absorption spectrum (KBr pellet) of the product showed absorption peaks at about 3522cm"1, about 3471cm"1, about 3438cm"1, about 3294cm"1, about 3180cm"1, about 2854cm"1, about 2698cm"1, about 1716cm"1, about 1631cm"1, about 1610cm"1, about 1483cm'1, about 1388cm"1, about 1182cm"1, about 1105cm"1, about 1049cm"1, and about 902cm"1. Example 5 The mixture of acyclovir (lOg) and water (200ml) was heated to 90°C, stirred to obtain a clear solution and filtered. The filtrate was cooled to 20~25°C, held for 10 h to precipitate crystal, and then filtered. The resulting solid was dried at 100°C for 5h and then placed under the circumstance of 80% relative humidity of air for 8 hours to obtain acyclovir crystal (9.5g), with purity of 99.5% by HPLC. The solid was ground into power of 200 mesh in size. The X-ray powder diffraction pattern of the product obtained with Cu-Ka radiation exhibited characteristic peaks at 28 and interplanar spacings (d value) of about 7.0(12.7), about 10.5(8.4), about 13.1(6.8), about 16.1(5.5), about 18.3(4.9), about 21.0(4.2), about 24.9(3.7), about 26.2(3.4), and about 29.2(3.0). The product had a weight-loss as measured by Thermogravimetric Analysis(TGA)of about 5.1% by weight. The infrared absorption spectrum (KBr pellet) of the product showed absorption peaks at about 3522cm"1, about 3471cm"1, about 3438cm"1, about 3294cm"1, about 3180cm"!, about 2854cm"1, about 2698cm"1, about 1716cm"1, about 1631cm"1, about 1610cm"1, about 1483cm"1, about 1388cm"1, about 1182cm"1, about 1105cm"1, about 1049cm"1, and about 902cm"1. Example 6 The mixture of acyclovir (lOg) and water (200ml) was heated to 90°C, stirred to obtain a clear solution and filtered. The filtrate was cooled to 20~25°C, held for 10 h to precipitate crystal, and then filtered. The resulting solid was dried at 120°C for 5h and then placed under the circumstance of 60% relative humidity of air for 10 hours to obtain acyclovir crystal (9.5g), with purity of 99.5% by HPLC. The solid was ground into power of 200 mesh in size. The X-ray powder diffraction pattern of the product obtained with Cu-Ka radiation exhibited characteristic peaks at 29 and interplanar spacings (d value) of about 7.0(12.7), about 10.5(8.4), about 13.1(6.8), about 16.1(5.5), about 18.3(4.9), about 21.0(4.2), about 24.9(3.7), about 26.2(3.4), and about 29.2(3.0). The product had a weight-loss as measured by Thermogravimetric Analysis(TGA)of about 5.1% by weight. The infrared absorption spectrum (KBr pellet) of the product showed absorption peaks at about 3522cm"1, about 3471cm'1, about 3438cm"1, about 3294cm"1, about 3180cm"1, about 2854cm"1, about 2698cm"1, about 1716cm"1, about 1631cm"1, about 1610cm"1, about 1483cm"1, about 1388cm"1, about 1182cm"1, about 1105cm"1, about 1049cm"1, and about 902cm"1. Example 7 The mixture of acyclovir (lOg) and water (200ml) was heated to 90°C, stirred to obtain a clear solution and filtered. The filtrate was cooled to 20~25°C, held for 10 h to precipitate crystal, and then filtered,, The resulting solid was dried at 150°C for 3h and then placed under the circumstance of 70% relative humidity of air for 10 hours to obtain acyclovir crystal (9.5g), with purity of 99.5% by HPLC. The solid was ground into power of 200 mesh in size. The X-ray powder diffraction pattern of the product obtained with Cu=Ka radiation exhibited characteristic peaks at 29 and interplanar spacings (d value) of about 7.0(12.7), about 10.5(8.4), about 13.1(6.8), about 16.1(5.5), about 18.3(4.9), about 21.0(4.2), about 24.9(3.7), about 26.2(3.4), and about 29.2(3.0). The product had a weight-loss as measured by Thermogravimetric Analysis(TGA)of about 5.1% by weight. The infrared absorption spectrum (KBr pellet) of the product showed absorption peaks at about 3522cm-1, about 3471cm-1, about 3438cm-1, about 3294cm-1, about 3180cm-1, about 2854cm-1, about 2698cm-1, about 1716cm-1, about 1631cm-1, about 1610cm-1, about 1483cm-1, about 1388cm-1, about 1182cm-1, about 1105cm-1, about 1049cm-1, and about 902cm-1. Example 8 The mixture of acyclovir (lOg) and water (150ml) was heated to 90°C, stirred to obtain a clear solution and filtered. The filtrate was cooled to 0°C, held for 12 h to precipitate crystal, and then filtered. The resulting solid was dried under vacuum at 50°C for 20h to obtain acyclovir crystal (9.9g), with purity of 99.7%by HPLC. The solid was ground into power of 200 mesh in size. The X-ray powder diffraction pattern of the product obtained with Cu-Ka radiation exhibited characteristic peaks at 29 and interplanar spacings (d value) of about 7.0(12.7), about 10.5(8.4), about 13.1(6.8), about 16.1(5.5), about 18.3(4.9), about 21.0(4.2), about 24.9(3.7), about 26.2(3.4), and about 29.2(3.0). The product had a weight-loss as measured by Thermogravimetric Analysis(TGA)of about 5.1% by weight. The infrared absorption spectrum (KBr pellet) of the product showed absorption peaks at about 3522cm-1, about 3471cm-1, about 3438cm-1, about 3294cm-1, about 3180cm-1, about 2854cm-1, about 2698cm-1, about 1716cm-1, about 1631cm-1, about 1610cm-1, about 1483cm-1, about 1388cm-1, about 1182cm-1, about 1105cm-1, about 1049cm-1, and about 902cm-1. Example 9 The mixture of acyclovir (10g) and water (150ml) was heated to 100°C, stirred to obtain a clear solution and filtered. The filtrate was cooled to 0°C, held for 24 hours to precipitate crystal, and then filtered. The resulting solid was dried under vacuum at 50°C for 20h to obtain acyclovir crystal (9.9g), with purity of 99.7% by HPLC. The solid was ground into power of 200 mesh in size. The X-ray powder diffraction pattern of the product obtained with Cu-Ka radiation exhibited characteristic peaks at 29 and interplanar spacings (d value) of about 7.0(12.7), about 10.5(8.4), about 13.1(6.8), about 16.1(5.5), about 18.3(4.9), about 21.0(4.2), about 24.9(3.7), about 26.2(3.4), and about 29.2(3.0). The product had a weight-loss as measured by Thermogravimetric Analysis(TGA)of about 5.1% by weight. The infrared absorption spectrum (KBr pellet) of the product showed absorption peaks at about 3522cm-1, about 3471cm-1, about 3438cm-1, about 3294cm-1, about 3180cm-1, about 2854cm-!, about 2698cm-1, about 1716cm-1, about 1631cm-', about 1610cm-1, about 1483cm-1, about 1388cm-1, about 1182cm-1, about 1105cm-1, about 1049cm-1, and about 902cm-1. Example 10 The mixture of acyclovir (lOg) and water (150ml) was heated to 90°C, stirred to obtain a clear solution and filtered. The filtrate was cooled to 30°C, held for 12 h to precipitate crystal, and then filtered. The solid was dried under vacuum at 50°C for 24h to obtain acyclovir crystal (9.7g), with purity of 99.7% by HPLC. The solid was ground into power of 200 mesh in size. The X-ray powder diffraction pattern of the product obtained with Cu-Ka radiation exhibited characteristic peaks at 20 and interplanar spacings (d value) of about 7.0(12.7), about 10.5(8.4), about 13.1(6.8), about 16.1(5.5), about 18.3(4.9), about 21.0(4.2), about 24.9(3.7), about 26.2(3.4), and about 29.2(3.0). The product had a weight-loss as measured by Thermogravimetric Analysis(TGA)of about 5.1% by weight. The infrared absorption spectrum (KBr pellet) of the product showed absorption peaks at about 3522cm-1, about 3471cm-1, about 3438cm-1, about 3294cm-1, about 3180cm-1, about 2854cm-1, about 2698cm-1, about 1716cm-1, about 1631cm-1, about 1610cm-1, about 1483cm-1, about 1388cm-1, about 1182cm-1, about 1105cm-1, about 1049cm-', and about 902cm-1. Example II The mixture of acyclovir (lOg) and water (150ml) was heated to 90°C, stirred to obtain a clear solution and filtered. The filtrate was cooled to 30°C, held for 24 h to precipitate crystal, and then filtered. The resulting solid was dried under vacuum at 50°C for 12h to obtain acyclovir crystal (9.8g), with purity of 99.8% by HPLC. The solid was ground into power of 200 mesh in size. The X-ray powder diffraction pattern of the product obtained with Cu-Ka radiation exhibited characteristic peaks at 20 and interplanar spacings (d value) of about 7.0(12.7), about 10.5(8.4), about 13.1(6.8), about 16.1(5.5), about 18.3(4.9), about 21.0(4.2), about 24.9(3.7), about 26.2(3.4), and about 29.2(3.0). The product had a weight-loss as measured by Thermogravimetric Analysis(TGA)of about 5.1% by weight. The infrared absorption spectrum (KBr pellet) of the product showed absorption peaks at about 3522cm-1 , about 3471cm-1 , about 3438cm-1 , about 3294cm-1, about 3180cm-1, about 2854cm-1, about 2698cm-1, about 1716cm-1, about 1631cm-1, about 1610cm-1, about 1483cm-1, about 1388cm-1, about 1182cm-1, about 1105cm-1, about 1049cm-1 and about 902cm-1. Example 12 The mixture of acyclovir (10g) and water (200ml) was heated to 50°C, stirred to obtain a clear solution and filtered. The filtrate was cooled to 0°C, held for 1 h to precipitate crystal, and then filtrated. The resulting solid was dried under vacuum at 50°C for 24h to obtain acyclovir crystal (9.6g), with purity of 99.8% by HPLC. The solid was ground into power of 200 mesh in size. The X-ray powder diffraction pattern of the product obtained with Cu-Ka radiation exhibited characteristic peaks at 20 and interplanar spacings (d value) of about 7.0(12.7), about 10.5(8.4), about 13.1(6.8), about 16.1(5.5), about 18.3(4.9), about 21.0(4.2), about 24.9(3.7), about 26.2(3.4), and about 29.2(3.0). The product had a weight-loss as measured by Thermogravimetric Analysis(TGA)of about 5.1% by weight. The infrared absorption spectrum (KBr pellet) of the product showed absorption peaks at about 3522cm-1, about 3471cm-1, about 3438cm-1, about 3294cm-1, about 3180cm-1, about 2854cm-1, about 2698cm-1, about 1716cm-1, about 1631cm-1, about 1610cm-1, about 1483cm-1, about 1388cm-1, about 1182cm-1, about 1105cm-1, about 1049cm'-1, and about 902cm'1. Example 13 The mixture of acyclovir (lOg) and water (150ml) was heated to 90°C, stirred to obtain a clear solution and filtered. The filtrate was cooled to 20°C, held for 5 h to precipitate crystal, and then filtered. The resulting solid was dried under vacuum at 50°C for 20h to obtain acyclovir crystal (9.9g), with purity of 99.7% by HPLC. The solid was ground into power of 100 mesh in size. The X-ray powder diffraction pattern of the product obtained with Cu-Ka radiation exhibited characteristic peaks at 20 and interplanar spacings (d value) of about 7.0(12.7), about 10.5(8.4), about 13.1(6.8), about 16.1(5.5), about 18.3(4.9), about 21.0(4.2), about 24.9(3.7), about 26.2(3.4), and about 29.2(3.0). The product had a weight-loss as measured by Thermogravimetric Analysis(TGA)of about 5.1% by weight. The infrared absorption spectrum (KBr pellet) of the product showed absorption peaks at about 3522cm-1, about 3471cm-1, about 3438cm-1, about 3294cm-1, about 3180cm-1, about 2854cm-1, about 2698cm-1, about 1716cm-1, about 1631cm-1, about 1610cm-1, about 1483cm-1, about 1388cm"1, about 1182cm-1, about 1105cm-1, about 1049cm-1, and about 902cm-1. Example 14 The mixture of acyclovir (lOg) and water (100ml) was heated to 98°C, stirred to obtain a clear solution and filtered. The filtrate was cooled to 20°C, held for 5h to precipitate crystal, and then filtered. The resulting solid was dried at 150°C for 0.5h to obtain acyclovir crystal (9.7g), with purity of 99.7%by HPLC. The solid was ground into power of 100 mesh in size. The X-ray powder diffraction pattern of the product obtained with Cu-Ka radiation exhibited characteristic peaks at 29 and interplanar spacings (d value) of about 7.0(12.7), about 10.5(8.4), about 13.1(6.8), about 16.1(5.5), about 18.3(4.9), about 21.0(4.2), about 24.9(3.7), about 26.2(3.4), and about 29.2(3.0). The product had a weight-loss as measured by Thermogravimetric AnaIysis(TGA)of about 5.1% by weight. The infrared absorption spectrum (KBr pellet) of the product showed absorption peaks at about 3522cm-1, about 3471cm-1, about 3438cm-1, about 3294cm-1, about 3180cm-1, about 2854cm-1, about 2698cm-1, about 1716cm-1, about 1631cm-1, about 1610cm-1, about 1483cm-1, about 1388cm-1, about 1182cm-1, about 1105cm-1, about 1049cm-1, and about 902cm-1. Example 15 The mixture of acyclovir (lOg) and water (200ml) was heated to 90°C, stirred to obtain a clear solution and filtered. The filtrate was cooled to 20~25°C, held for 10 h to precipitate crystal, and then filtered. The resulting solid was placed under the room temperature condition for 24h to obtain acyclovir crystal (9.9g), with purity of 99.5% by HPLC. The solid was ground into power of 200 mesh in size. The X-ray powder diffraction pattern of the product obtained with Cu-Ka radiation exhibited characteristic peaks at 20 and interplanar spacings (d value) of about 7.0(12.7), about 10.5(8.4), about 13.1(6.8), about 16.1(5.5), about 18.3(4.9), about 21.0(4.2), about 24.9(3.7), about 26.2(3.4), and about 29.2(3.0). The product had a weight-loss as measured by Thermal Gravimetry Analysis (TG) of about 5.1% by weight. The infrared absorption spectrum (KBr pellet) of the product showed absorption peaks at about 3522cm-1, about 3471cm-1, about 3438cm-1, about 3294cm-1, about 3180cm-1, about 2854cm-1, about 2698cm-1, about 1716cm-1, about 1631cm-1, about 1610cm-1, about 1483cm-1, about 1388cm-1, about 1182cm-1, about 1105cm-1, about 1049cm-1, and about 902cm-'. We Claim : 1. A method for preparing acyclovir 2/3 hydrate comprising: mixing acyclovir with water at weight ratio of 1:5-50, dissolving at 50~100°C, filtering, cooling filtrate to 0~30°C to precipitate crystal, collecting the crystal by filtration, and drying the crystal at (M50°C for 0.5-24 hours to obtain acyclovir 2/3 hydrate. 2. The method of claim 1, wherein when the water content of the crystal gets to be below 5.1% after drying, the crystal can be placed under the circumstance of 60-80% relative humidity of air for 8-10 hours to obtain acyclovir 2/3 hydrate. 3. The method of claim 1, wherein the time required for precipitating crystal is 1~24 hours. 4. The method of claim 1, wherein the acyclovir and water are mixed at weight ratio of 1:10~15. 5. The method of claim 1, wherein the filtrate is cooled to 20~30°C and held for 4~10 hours to precipitate crystal. 6. The method of claim 1, wherein the crystal is dried at 50~100°C for 5~12 hours. 7. The method of claim 1, wherein the preparation is carried out as follows: acyclovir and water are mixed at weight ratio of 1:5~50 and dissolved at 50~100°C; then the mixture is filtered; the filtrate is cooled to 0~30°C and held forl~24 hours to precipitate crystal; the crystal is collected by filtration, and then dried at 50~100°C for 0.5-24 hours to obtain the acyclovir 2/3 hydrate. 8. The acyclovir 2/3 hydrate prepared by the method of claim 1, showing the following characteristic peaks expressed in terms of 20 and interplanar spacings d value in the X-ray powder diffraction pattern obtained with Cu-Ka radiation: Peak 20(°) interlane space d(A) 1 about 7.0 about 12.7 2 about 10.5 about 8.4 3 about 13.1 about 6.8 4 about 16.1 about 5.5 5 about 18.3 about 4.9 6 about 21.0 about 4.2 7 about 24.9 about 3.7 8 about 26.2 about 3.4 9 about 29.2 about 3.0 9. The acyclovir 2/3 hydrate of claim 8, showing absorption peaks at about 3522cm-1, about 3471cm-1, about 3438cm-1, about 3294cm'1, about 3180cm'1, about 2854cm"1, about 2698cm"1, about 17I6cm-1, about 1631cm-1, about 1610cm"1, about 1483cm"1, about 1388cm-1, about 1182cm"1, about 1105cm-1, about 1049cm"1, and about 902cm"1 in the infrared absorption spectrum (KBr pellet). 10, The acyclovir 2/3 hydrate of claim 8, having a weight-loss as measured by Thermogravimetric Analysisof 5.1% by weight. |
|---|
| Patent Number | 278935 | ||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Indian Patent Application Number | 1945/MUMNP/2011 | ||||||||||||||||||||||||
| PG Journal Number | 01/2017 | ||||||||||||||||||||||||
| Publication Date | 06-Jan-2017 | ||||||||||||||||||||||||
| Grant Date | 04-Jan-2017 | ||||||||||||||||||||||||
| Date of Filing | 16-Sep-2011 | ||||||||||||||||||||||||
| Name of Patentee | ZHEJIANG CHARIOTEER PHARMACEUTICAL CO., LTD. | ||||||||||||||||||||||||
| Applicant Address | TONGYUANXI, DAZHAN TOWNSHIP, XIANJU COUNTY, ZHEJIANG 317321, CHINA | ||||||||||||||||||||||||
Inventors:
|
|||||||||||||||||||||||||
| PCT International Classification Number | A61K 31/522,A61P 31/12,C07D 473/18 | ||||||||||||||||||||||||
| PCT International Application Number | PCT/CN2010/071087 | ||||||||||||||||||||||||
| PCT International Filing date | 2010-03-17 | ||||||||||||||||||||||||
PCT Conventions:
|
|||||||||||||||||||||||||