Title of Invention

IMPROVED ACTIVE FIELD POLARIZED MEDIA AIR CLEANER

Abstract Improvements in active field polarized media air cleaner include an aerodynamic front cowling to reduce static air resistance, a rear double hinge to reduce blow by, a resistive center screen permitting the sharing of high voltage power supplies while reducing the tendency to arc and allowing for a higher operational voltage, a dielectric media support frame to produce a more uniform electrostatic field and reduce blow by, while at the same time reducing the tendency to spray corona and/or arc at the edges of the center screen, a substantially flat conductive outer screen to produce a more uniform electrostatic field throughout the filter media and a high-voltage shield to reduce high-voltage arcing and the spraying of corona where the high-voltage probe contacts the center screen.
Full Text Field of Invention
The present invention, relates generally to air cleaning systems and is particularly directed
to air cleaners of the type that use an electrostatic field to polarize a media and to polarize
particles to increase the particle collection efficiency on the media.
Background of the invention
The principal of electrostatic attraction has been, used for many years to enhance the
removal of contaminants from air streams. There are three primary categories of air
electrostatic cleaners: electrostatic precipitators, passive electrostatic filters and active field
polarized media air cleaners, which are sometimes known under different terms.
Electrostatic precipitators charge particles and then capture them on oppositely charged
and/or grounded collection plates,
A passive electrostatic filter (also know as an electret) employs a media (or combination of
different media) that through some combination, of treatment and/or inherent properties has
an electrostatic charge. Particles entering the filter media that have an electrostatic charge
are attracted to the charged media filter materials that have the opposite electrostatic
charge.

An active field polarized media air cleaner uses an electrostatic field created by a voltage
differential between two electrodes, A dielectric filter media is placed in the electrostatic
field between the two electrodes. A dielectric material is an electrical insulator or a
substance that is highly resistant to electric current that can also store electrical energy. A
dielectric material tends to concentrate an applied electric field within itself and is thus an
efficient supporter of electrostatic fields. The electrostatic field polarizes both the media
fibers aad the particles that enter, thereby increasing the efficiency of the media and the air
cleaner. The efficiency of the filter is the percentage of particles removed from the air
stream at a given.particle size, or for a range of particle sizes.
A further electrostatic air filter design is disclosed in Canadian. Patent No, 1,272,453, in,
which a disposable rectangular cartridge is connected to a high voltage power supply. The
cartridge consists of a conductive inner center screen, which is sandwiched between two
layers of a dielectric fibrous material, (either plastic or glass). The two dielectric layers are,
in turn, farther sandwiched between two outer screens of conductive material. The
conductive inner center screen is raised to a high voltage, thereby creating an. electrostatic
field between the conductive inner center screen and the two conductive outer screens that
are kept at an opposite or ground potential. The high voltage electrostatic field polarizes
the fibers of the two dielectric layers.
The air cleaners may be installed in a variety of configurations and situations, both as part
of a hearing ventilating aad air conditioning (HVAC) system sad in standalone air
moving/cleaning systems In smaller HVAC systems (e.g. residential and light

commercial), the air cleaner panels are often installed in a flat configuration (perpendicular
to the airflow) or in angled filter tracks. In larger systems, banks of air filters are typically
arranged in a V-bank configuration where multiple separate filters are positioned to form a
Z-fold filter perpendicular to the axis of airflow.
Summary of the invention
The invention is embodied in improvements to active field polarized media air cleaners.
AERODYNAMIC FRONT COWLING
In accordance with one aspect of the present invention, a V-bank configuration, of active
field polarized media air cleaners includes an aerodynamic front cowling joining front
edges of adjacent active field polarized media panel air cleaners facing the airflow. The
front cowling provides a lower form drag airflow to reduce filter static pressure drop
(resistance to airflow). In addition, the hollow interior of the aerodynamic front cowling
provides a recess for concealing the high voltage power supply inside the aerodynamic
front cowling, providing protection and insulation of the electrical components. Further,
the cowling serves as a wire chase for running both high .and low voltage wires between air
cleaner panels and adjacent air cleaner modules.
REAR DOUBLE HINGE AIR SEAL

In accordance with another aspect of the present invention, a V-bank configuration of
active field polarized media air cleaners includes a rear double hinge joining rear edges of
adjacent active field polarized media air cleaners. The rear double hinge provides a
positive seal between adjacent active field polarized media air cleaners, thereby reducing
blow-by between adjacent active field polarized media air cleaners and increasing
efficiency.
IMPROVED .ELECTRODE FOR POLARIZED MEDIA AIR CLEANER
In accordance with another aspect of the present invention, the high voltage electrode is
made from a conductive extruded plastic netting or other similar material that provides for
significantly higher operational voltages and therefore higher efficiencies.
RESISTIVE CENTER SCREEN AND VARIABLE HIGH VOLTAGE POWER SUPPLY
In accordance with yet another aspect of the present invention, more than one active field
polarized media air cleaners may share a single high voltage power supply. In such
manner, if one active field polarized media air cleaner shorts out, the resistance of the
center screen will limit the current drawn from the high-voltage power supply by the short
circuit, thereby permitting the other active field polarized media air cleaner sharing the
same power supply to continue operating normally.
Additionally, the high-voltage power supplies may be made variable so that an optimal
voltage may be selected that provides an optimum electrostatic field without arcing.

DIELECTRIC MEDIA SUPPORT FRAME
In accordance with another aspect of the present invention, an active field polarized media
air cleaner includes a dielectric media support frame having on one side a recess or shelf
for holding the center screen and/or the filter media and on the other side a protrusion for
creating a positive seal with the conductive holding frame that holds the conductive outer
screens. The dielectric media support frame allows the center screen to extend to the edge
of the filter media without shorting or arcing to the conductive outer screens or to the
conductive holding frame, an arrangement that provides a more uniform electrostatic field
throughout the filter media. The border provided by the dielectric media support frame also
prevents the spraying of corona at the edges of the center conductive screen. The positive
seal between the dielectric media support frame and the conductive holding frame reduces
air leakage (blow-by) between the conductive holding frame and the edge of the filter
media. The dielectric media support frame can be made of either rigid or flexible plastic
material.
FLAT CONDUCTIVE OUTER SCREEN
For a more uniform distance between electrodes and therefore a more uniform field
throughout the active field polarized media air cleaner, the conductive outer screen is made
relatively flat as compared to the flexible outer screens of prior art active field polarized
media air cleaners. The flatness of the outer screen is achieved by using a relatively rigid
material as compared to the dielectric filter material.

IMPROVED HIGH VOLTAGE CONTACT
One of the problems in prior art active field polarized media air cleaners is the area where
the high-voltage probe contacts the center screen. Typically in the prior art, the high
voltage connection is made with a probe or clip that contacts the center screen (or
electrode) over a relatively small area. In some cases, the contact becomes poor. The
problem with this arrangement is that over time, the point of contact can arc, spray and
erode the area of contact on the electrode and make less certain contact. As this erosion
progresses, it can. accelerate to the point where contact is no longer being made. The
present invention overcomes this problem and maintains air cleaner integrity by various
means making the high voltage contact a large area by means of a disc and/or disc and
fastener thai, spreads the connection over a far wider surface of the electrode. While
various embodiments of the invention will show the high-voltage contact area as circular,
other shapes would work as well
Also, there is a tendency to spray corona and/or arc in the region of the high-voltage probe,
To reduce spraying and, arcing in the region where the high-voltage probe contacts the
center screen, a high-voltage probe enclosed in a high voltage shield is provided.
Brief description of the drawings
Figure I is an isometric drawing of a plurality of active field polarized media air cleaner
panels arranged in a V-bank configuration in accordance with the present invention.

Figure 2 is a cross-sectional view of a plurality of active field polarized media air cleaner
filters arranged in a V-bank configuration in accordance with the present invention.
Figure 3 is a detailed portion of a cross-sectional view of a plurality of active field
polarized media, air cleaner filters arranged m a V-bank configuration in accordance with
the present invention illustrating insertion of replacement filter media into a lower filter
holding frame,
Figure 4 is a detailed portion of a cross-sectional view of a plurality of active field
polarized media air cleaner filters arranged in a V-bank configuration in accordance with
the present invention illustrating insertion of replacement filter media into an upper filter
holding frame.
Figure 5 is a schematic diagram of a plurality of active field polarized media air cleaner
filters having resistive center screens and sharing common high-voltage power supplies in.
accordance with the present invention.
Figure 6 is a cross-sectional view of a front cowling for use on the top or bottom of a stack
of active field polarized media air cleaner filters arranged in a V-bank configuration in
accordance with the present invention.
Figure 7 is a cross-sectional view of a hinge section in accordance with the present
invention for use in conjunction with the front cowling a figure 6.

Figure 8 is a crass-sectional view of a front cowling for use with a plurality of active field
polarized media air cleaner filters arranged in a V-bank configuration in accordance with
the present invention.
Figure 9 is an assembly drawing of first and second active field polarized media air
cleaners and a front cowling in accordance with the present invention.
Figure 10 is a cross-sectional view of a first portion of a double hinge in accordance with
the present invention.
Figure 11 is a cross-sectional view of a second portion of a doable hinge in accordance
with the present invention,
Figure 12 is an. assembly drawing of first and second active field polarized media air
cleaners and a double hinge assembly in accordance with the present invention.
Figure 13 is an assembly drawing of a double hinge assembly in accordance with the
present invention.
Figure 14 is an isometric view of a conductive holding frame for use with art active field
polarized media air cleaner in accordance with the present invention.

Figure 15 is an isometric view of a retaining clip or elongated spline for use in conjunction
an active field polarized media air cleaners in accordance with the present invention.
Figure 16 is an assembly drawing illustrating the use of a dielectric media support frame in
accordance with the present invention.
Figure 1? is a cross-sectional view of an assembly illustrating the use of a retaining clip or
elongated spline to hold an conductive outer screen in a conductive holding frame for use
in conjunction with the present invention.
Figure 18 is a cross-sectional view of a dielectric media support frame in accordance with
the present invention.
Figure 19 is an assembly drawing showing a high-voitage probe and high-voltage contact
screen in accordance with the present invention.
Figure 20 illustrates the use of the dielectric media support frame in accordance with the
present invention.
Figure 21 illustrates the rigid conductive outer screen and conductive holding frame
including a high-voltage probe and high-voltage contact shield in accordance with the
present invention.


Figure 22 is an assembly drawing illustrating the use of a dielectric media support frame in
accordance with a second embodiment of the present invention.
Figure 23 is an assembly drawing illustrarting the use of a dielectric media support frame in
accordance with a third embodiment of the present invention.
Detailed description
A plurality of active field polarized media air cleaner panels (filters), arranged in a V-bank
configuration 100, in accordance with the present invention is shown in figure 1. The
individual filter panels 101 may be referred to herein as either a "panel", "filter" and/or an
"air cleaner." A plurality of active field polarized media air cleaners 101 are organized into
a plurality of stackable modules 1.02 each module having a width. W, a height H tad a
depth D that is variable, depending on the application. In particular, the V-bank 100 in
figure 1 contains eight stackable modules 102 each of which contains eight individual
active field polarized media air cleaners for a total of 64 air cleaners.
A typical active field polarized media air cleaner is shown in figure .16, A first pad of
fibrous dielectric material 16A is disposed above a center screen 110. On the other side of
the center screen 110 is a second pad of dielectric filter material 16B. The first pad of
dielectric filter material is attached to the dielectric media support frame 120 by a suitable
means such as adhesive material 121A or ultrasonic welding. Above the first pad of
dielectric filter material 16A is a first conductive outer screen 12A. Below the second pad

of dielectric filter material 16B is a second conductive outer screen 12B. The second pad of
dielectric filter material is attached to the dielectric media support frame 120 by a suitable
means, such as adhesive material 121B or ultrasonic welding. The first conductive outer
screen, 12A is held in place by a first conductive holding frame 116A, 'The second
conductive outer screen 12B is held in place by a second conductive holding frame 116B.
The filter media itself consists of a dielectric media support frame 120, a first pad of
fibrous dielectric material 16A, a center, screen 110 and second pad of dielectric filter
material 16B. The filter holding frame that holds the filter media consists of a first
conductive holding frame 116A with a first conductive outer screen I2A, acid a second
conductive holding frame 116B with a second conductive outer screen 12B.
In operation, one terminal of a high voltage power supply 108 is connected to center screen.
110. The other terminal of the high-voltage power supply 108 is coupled to the first
conductive outer screen 12A and the second conductive outer screen 12B, which is held
typically at ground potential.
Particles in the incoming air passing through dielectric filter material 16A and 16B of the
active field polarized media air cleaner of figure 16 are polarized by the electric field
therein and collected on the first and second pads of dielectric filter material 16 A, 16B.
AERODYNAMIC FRONT COWLING


A cross-sectional view of an individual module 102 from figure I is shown in figure 2,
Each of the individual active field polarized media air cleaners 110A, HOB, 1 IOC, HOD,
110E, 110F, 110G and 110H are held in place to a V-bank formation. At the front of the
module 102 a plurality of cowlings holds each filter in place. In particular, there are two
end cowlings 104 A and 104B at the top and bottom of module 102. In between the two end
cowlings, there are three middle cowlings 106A, 106B and 106C. The aerodynamic shape
of the cowlings provides for a lower form drag airflow thereby reducing the .static (air
resistance) of the filter,
A detailed view of a center cowling 106C is shown: in figure 8. A removable cap 107A is
coupled to the body of the cowling 106C by a dovetail joint. The removable cap permits
the insertion of a power supply 108C (not shown to scale). This shields the electronics in
the power supply 108C from the air stream and insulates it from grounded surfaces of the
outer filter holding frames and system housing. Further, the center cowling 106C provides
a chase or tray for both, low and high voltage wires to be run between panels or modules.
The center cowling 106C includes a first and second attachment points, 107B and 107C A
detailed view of aa end cowling 104A is shown in figure 6. An end piece 109 (shown in
figure 7) is coupled to the end cowling 104 A by a dovetail joint. In other embodiments of
the present invention, the dovetail may be of a variety of shapes such as "L'"s or "T'"s or
alternately there may be no mating protrusion and the cowling would be bonded, screwed
or otherwise attached to the filter holding frames.
A completed assembly of the aerodynamic front cowling coupled to the filter holding
frames of two active field polarized media air cleaners is shown, in figure 9. First and


second pads of dielectric filter material 16A 16B and a center screen 110A are coupled to a
dielectric media support frame 120A. The dielectric media support frame 120A is held in
place between aa upper conductive frame 116A and a lower conductive frame 116B. The
lower conductive frame 116B is coupled to the attachment point 107B of the center
cowling 106 by a dovetail joint.
Similarly, first and second pads of dielectric filter material 17A, 17B and a center screen
110B are coupled to a dielectric media support frame 120B, The dielectric media support
frame 120B is held in place between an upper conductive frame 116C and a lower
conductive frame 116D, The upper conductive frame 116C is coupled to the attachment
point 107C of the center cowling 106 by a dovetail joint
The center aerodynamic cowling 106 provides for lower form drag airflow over the two
active field polarized media air cleaner panels. Further, it decreases assembly time of die
modules.
REAR DOUBLE HINGE .AIR SEAL
At the rear of the module 102 (figure 2) a plurality of double hinges holds each filter in
place. Each double binge is comprised of three binges H1, H2 and H3. As shown, in figure
3, the first hinge H1 has a first attachment point coupled to an upper frame 112A, and a
second attachment point coupled to a lower feme 112B. The hinge H1 has a pivot point
that permits the lower frame 112B to rotate away from the upper frame 112A so as to


allow a replacement filter media to be inserted into the active field polarized media air
cleaner 110G,
Similarly, as shown in figure 4, the second hinge H2 has a first attachment point coupled to
an upper frame 114A, and a second attachment point coupled to a lower frame 114B. The
hinge H2 has a pivot point that permits the upper frame 114A to rotate away from the
lower frame 114B so as to allow a replacement filter media to be inserted into the active
field polarized media air cleaner 110H.
A third hinge H3 as a first attachment point coupled to the first hinge H1 and a second
attachment point coupled to the second hinge H2. The third hinge H3 has a third pivot
point such that the upper active field polarized media air cleaner (112A, 112B) can rotate
as a unit with respect to the lower active field polarized media air cleaner (114A, 114B).
The use of double hinges at the rear of module 102 provides for flexibility in mounting
active field polarized media air cleaners at different angles wiih respect to each, other. The
double hinge at the rear of the module 102 also provides a good ait1 seal at the rear of the
filters regardless of the different angles for mounting individual air cleaners. The positive
seal provided by the double hinge at the rear of the filters reduces blow by, Le. the the
portion of the air stream, passing by the filter arrangement without passing through the
filter media.
The double hinge of the present invention is shown in further detail in figures 10, 11, 12
and 13. Each hinge is formed by a plastic extrusion comprising rigid and flexible plastic
regions. In figure 1.0, a first hinge has a first attachment point 140 and a second attachment


point 144. The first and second attachment points 140,144 rotate with respect to each other
around a pivot area 144. The attachment points 140, 144 are generally rigid plastic or other
material components as compared to the more flexible material, typically plastic, of the
pivot area 141. The pivot area 141 is typically made of flexible plastic, which forms a
pivot point about which the first and second attachment points 140, 144 may rotate. Other
combinations of materials, for example metal and rubber, are also possible.
As shown in figure 13, two of the hinges of the type shown in figure 10 are used in
combination with a third hinge to form the double hinge of the present invention. The first
of such hinges is shown as 140A having a pivot area 141A, The second of such hinges is
shown as 140B having a pivot area 141B. A third hinge 142A in figure 13 (also shown in
figure 11) has a first attachment point 142 and second attachment point 145, which rotate
with respect to each other about pivot area 143. The first attachment point of hinge 142A is
coupled via a dovetail joint to the first hinge 140A. The second attachment point of hinge
142A is coupled via a dovetail joint to the second hinge 140B. The assembly of the first
hinge 140A, the second hinge 140B and the third hinge 142A forms the double hinge of
the present invention.
Figure 12 illustrates two active field polarized media air cleaner panels coupled to a double
hinge. The upper 116A and lower 116B conductive holding frames of a first filter panel
115A are coupled to the first hinge 140A. la particular, the upper conductive frame 116A
of the first filter panel 115 A is typically an aluminum extrusion (or other suitable material)
having a shape forming a dovetail joint coupled to the first attachment point of the first
hinge 140A. The lower conductive frame 116B of the first filter panel USA is an


aluminum extrusion having a shape forming a dovetail joint coupled to the second
attachment point of the first hinge 140A. As will be discussed elsewhere, the frames 116A,
116B may also be made of a non-conductive material.
Similarly, the upper conductive frame 116C of the second filter panel 115B is an.
aluminum extrusion having a shape forming a dovetaii joint coupled to Hie first attachment
point of the second hinge 140B. The lower conductive frame 116D of the second filter
panel 115B is an aluminum extrusion having a shape forming a dovetail joint coupled to
the second attachment point of the second hinge 140B.
Thus, the upper conductive frame 116A and the lower conductive frame 116B of the first
filter panel 115 A may rotate with respect to each other about pivot point 141A of the first
hinge 140A. Similarly, the upper conductive frame 116C and the tower conductive frame
116D of the second filter panel 115B may rotate with respect to each other about pivot
point 141B of the second hinge 140B, Finally, by use of the double hinge of the present
invention, the first filter panel 115A and the second filter panel 115B may rotate with
respect to each other about pivot point 143 of the third hinge 142A.
Alternatively, the outer frame members 116A, 116B, 116C, 116D may be constructed of
tubing or "L" s that are formed, welded, or otherwise constructed into a substantially
rectangular frame. The external screens (12A, 12B in figure 16) could then be screwed,
welded, or otherwise secured to the frame members. Similarly the hinge and cowling
assemblies could instead of dovetail joints, be screwed, bonded, or otherwise secured to
the sides of the frame. Further, the "dovetail" as disclosed above could be a "T" or "L" or


other shape that would provide a positive attachment between the frame member and the
hinge in the front or the cowling in the rear.
IMPROVED ELECTRODE DESIGN
While various air permeable materials and grids are described in the prior art (e.g., for use
as the center screen), extruded plastic netting is not disclosed, Extruded plastic nettings are
made from a wide variety of materials, with either low or high-density polyethylene, being
among the most common, The extruded plastic netting is typically made conductive by
adding carbon or other agents to the plastic resins. The resulting conductivity is variable
and controllable depending on the specific formula used. Fire retardants are also used to
make the material suitable for use as a center screen electrode in active field polarized air
filtration applications. Extruded plastic netting material has been found to have many
advantages from manufacturing and operational standpoints for use as an electrode in an
active field polarized media air cleaner. The primary advantages of extruded plastic netting
derive from the shape and form of the members of the netting (particularly the lack of
sharp edge shapes formed around the openings of the netting).
When using high voltage potentials between electrodes, a number of factors contribute to
the propensity for arcing, spraying and corona discharge and the point at which it occurs.
The important factors Include the shape, consistency, flatness, and spacing of the members
or fibers of the electrodes. Sharp edges, burrs, kinks, stray fuzz or fibers, points, etc. all
promote spraying and corona discharge. Because of its fabrication process, extruded plastic
netting is substantially free of these defects. The resultant center screen grid therefore


allows for maximum operational voltages and therefore higher field strengths and greater
filter efficiencies. Specifically, it has been found that a center screes made from an
extruded plastic netting can carry an operational voltage 20-30% higher than a carbon
impregnated foam aad up to 40% higher than an aluminum screen. Although a low-
density polyethylene is an excellent material for this application, as it lies substantially flat,
other materials substantially lacking in sharp features such as sharp edges, burrs, kinks,
stray fuzz or fibers, points, etc. will also be appropriate.
RESISTIVE CENTER SCREEN AND VARIABLE HIGH VOLTAGE POWER SUPPLY
The aerodynamic cowlings shown in figure 2 are hollow, and, in each middle cowling
106A, 106B and 106C there is a respective high-voltage power supply 108A, 108B and
108C. The three high voltage power supplies 108A, 108B and 108C are shared among the
eight active field polarized media air cleaners 110A, 110B, 110C, 110D, 110E, 110F,
110G and 110H. See figure 5. It should be noted that there amid be one power supply for
several or all panels in a module or all modules in an HVAC system or one power supply
per panel. The goal is a balance between operational redundancy and overall system cost
Therefore, the present arrangement provides for two or more panels to share a single power
supply without one panel being able to adversely impact the operation of the other panels
sharing the same power supply.
In accordance with one aspect of the present invention, the center screen of each active
field polarized media air cleaner is resistive rather than conductive. As shown in figure 5,
the eight active field polarized media air cleaners 110A, 110B, 110C, 110D, 110E, 111F,


110G and 110H are represented by the symbols for a resistor, In particular, high-voltage
power supply 108A is coupled to the center screen for the three active field polarized
media air cleaners 110A, 110B and 110C. High-voltage power supply 108B is coupled to
the center screen for the two active field polarized media air cleaners 110D and 10E.
Finally, high-voltage power supply 108C is coupled to the center screen for the three active
field polarized media and cleaners 110F, 110G and 110H.
The shared high-voltage power supply in combination with a resistive center screen and
active field polarized media air cleaner permits the filters to still continue to operate in the
event that the center screen of one of the air cleaners is shorted to ground. For example, if
the center screen of filter 110H were shorted to ground (as illustrated by short circuit 110S)
the remaining resistance of the portion of the center screen between the short 110S and
high-voltage power supply, would permit high-voltage power supply 108C to continue
operating. Thus, even if the center screen of filter 110H has been shorted to ground, the
other fitters connected to the same power supply (namely 110F and 110G) would continue
to operate.
If, as in the prior art, the center screen was highly conductive, then a short circuit of one of
the center screens would result in the collapse of the voltage from the high-voltage power
supply thereby disabling all of the filters connected to the same high-voltage power supply
To avoid a short circuit in the center screen of one filter from disabling other filters, prior
art banks of filters provided for one power supply per filter. The resistive center electrode
(screen) could be made of a variety of materials. For example, an extruded plastic net or


carbon impregnated foam or mesh. In a forther embodiment of the invention the center
screen would have odor-absorbing properties, such as a carbon impregnated foam or mesh.
Furthermore, high-voltage power supplies 108A, 108B and 108C are made variable. That
is, the output voltage provided by power supply 108A to the center screens of active field
polarized media air cleaners 110A, 110B and 110C is adjustable. Similarly, the output
voltage provided by power supply 1088 to the center .screens of active field polarized
media air cleaners 110D and 1.10.E is adjustable. In similar manner the output voltage
provided by power .supply 108C to the center screens of active field polarized media air
cleaners 110F, 110G and 110H is adjustable.
Adjustability of the high-voltage potential applied to the center screens of the active field
polarized media air cleaners permits an optimization of electrostatic field strength.
Generally speaking, the highest possible voltage before arcing occurs is the most desirable
choice. However, the highest possible voltage is dependent on several factors such as
altitude and humidity. A higher voltage level is desirable where the filters are installed at a
sea level location. Conversely, at higher altitude a lower voltage is desirable. The optimum
voltage is also related to humidity. In dryer climates, a higher voltage may be applied to
the filters without arcing. In climates experiencing higher humidity conditions a lower
voltage to prevent arcing is desirabis. The adjustability of high-voltagc power supplies
108A, 108B and 108C permits the selection of an optimal electrostatic field under
appropriate altitude and climate conditions. Further, the arcing voltage will be a function of
the materials of both the charged electrode and the media. Variability of the power supply
allows for the optimization of the voltage depending on the materials used as well.


DIELECTRIC MEDIA SUPPORT FRAME
A cross-sectional view of a dielectric media support frame 120 in accordance with the
present invention is shown in figure 18. The dielectric media support frame, which is
typically formed by extrusion, includes vertical flanges 120A and 120D. The dielectric
media support frame 120 also includes horizontal flanges or shelves 120C1 and 120C2.
The horizontal flanges or shelves 120C1 and. 120C2 form a recess 122. Opposite the recess
122 is a protrusion 124 having flexible fins 126 on both sides,
Figate 16 illustrates the use of the dielectric media support frame of the present invention
in an active field polarized media air cleaner. A first function of the dielectric media
support frame 120 is to permit the center screen 110 of an active field polarised media air
cleaner to extend all the way to the edge of the filter media. Another function of the
dielectric media support frame 120 is to prevent arcing to the upper or lower conductive
holding frames 116A, 116B and reduce the spraying of corona at the edges of the center
conductive screen 110, To accomplish these 'functions, the center screen 110 is held in
place on one of the shelves 120C1; 120C2 forming the recess 122 of the dielectric media
support frame 120.
An alternate embodiment of a dielectric media support frame 120X in accordance with the
present invention is shown in figure 22. In lieu of a recess, the dielectric media support
frame 120X has a single horizontal flange or shelf 120Z. The first pad of dielectric filter
material 16A, the center screen 110 and the second pad of dielectric filter material 16B rest


on shelf 120Z. The first pad of dielectric filter material is attached to the dielectric media
support frame 120 by a suitable means such as adhesive material 121X or ultrasonic
welding.
Yet another alternate embodiment of a dielectric media support frame 120Y in accordance
with the present invention is shown in figure 23, In figure 23 the tise of adhesive material
(121A and 121B in figure 16, or 121X in figure 22) is eliminated, The recess 122Y is made
large enough so that the first pad of dielectric filter material 16A, the center screen 110 and
the second pad of dielectric filter material 16B are positioned in the recess 122Y of the
dielectric media support frame 120Y.
Alternatively, the insuiating/conduetive properties of the dielectric media support frame
(120 in figure 16) and the upper aad tower conductive holding frames (116A, 116B in
figure 16) could be reversed. That is, the media support frame 120 could be conductive (or
not a complete insulator) and the upper and lower holding frames 116A, 116B could be an
insulator (i.e. a dielectric or non-conductive material) or be insulated by having a holding
clip wrap around the mating surfaces of the holding frames or by having am insulating
material applied to them. In, the latter case, the media support frame 120 may be omitted
with the center screen 110 sandwiched between upper 116A and lower 116B non-
conducting and/or insulated holding frames.
A second function of the dielectric media support frame is to form a positive seal between
the upper conductive holding frame 116A and the lower conductive holding frame 116B.
For the latter purpose, the protrusion 124 and flexible fins 126 of the dielectric media


support frame form a positive seal between the upper conductive holding frame 116A and
the lower conductive holding frame 116B, Alternatively, the protrusion from the dielectric
media support frame could press against the upper conductive holding frame 116A and/or
the lower conductive holding frame 116B rather than being pressed between the upper and
lower conductive holding frames 116A, 1168. In general, protrusion 124 is any shape that
creates a positive seal between the media support frame 120 and the holding frame(s)
116A.116B.
FLAT CONDUCTIVE OUTER SCREEN
A first conductive outer screen 12A is held in place by the upper conductive frame 116A.
A second conductive outer screen 12B is held in place by the lower conductive frame
1.16B. For the sake of clarity, the retaining clips (118 in, figures 15 and 17) that hold the
outer screens 12A and 12B to upper and lower conductive frames 116A and 116B
respectively are omitted in .figure 16. A cross-sectional view of the retaining clip 118 is
illustrated in figure 15. A detail view of how the retaining clip 118 is assembled with the
conductive frame 116 is shown in figure 17. First, the conductive outer screen 12 is
inserted into the recess of the conductive holding frame 116. Thereafter, the retaining clip
118 is rotated into place. The retaining clip 118 holds the conductive outer screen 12 in the
conductive holding frame 116. The retaining clip 118 is an elongated spline that rims the
eatire length of the frame.
The conductive outer screen 12 (in figure 17) is made of a sufficiently rigid material so as
to lie substantially flat when placed against the pad of fibrous dielectric material (16A or


16B in figure 16), The conductive outer screen 12 permits air to flow through it. The
conductive outer screen 12 may be made of perforated solid sheet material or of expanded
sheet material, for example expanded metal. Expanded metal is sheet material that is slit
and pulled apart so that the slits stretch open to form passageways for airflow,
The conductive outer screen 12A, 12B being relatively rigid compared to the pad of
fibrous dielectric material 16A, l6Bf compresses the dielectric material preventing a
bowing or "pillow" effect This, when the conductive holding screens 116A and 116B are
closed around the pads of dielectric filter material 16A and 16B, the conductive outer
screens 12A and 12B are substantially flat and substantially parallel to each other.
Substantially flat conductive outer screens 12A, 12B provides for a more uniform field
throughout the active field polarized media air cleaner. In the prior art, the outer screen
flexes into a pillow shape, in which case the maximum high-voltage is limited by the
minimum spacing (typically near the edges), In the prior art, most of the screen, area in. the
middle of the active field polarized media air filter will be much 'further away from the
center screen (as compared to the area near the edges) thus reducing the electrostatic field
which in rum reduces the efficiency of the filter. As compared to the prior art, the
electrostatic field of the present invention will be more uniform, throughout the filter media
and can be sustained at a higher voltage and therefore support a greater electrostatic field.
IMPROVED HIGH VOLTAGE CONTACT WITH CENTER SCREEN


As indicated in figure 16, a first terminal of a high-voltage power supply 108 is coupled to
the center screen 110. In the prior art, a high-voltage probe would pass through the
conductive outer screen, piercing the pad of fibrous dielectric material 16A or sliding
between the two pads 16A and B to make contact by pressing against the center screen
110. Often, such contacts were unreliable. If the high-voltage probe failed to make contact
with the center screen, then there would be no electrostatic field across the pads of
dielectric filter material 16A, 16B greatly reducing the filter efficiency. Furthermore, the
sharp point of a high-voltage probe often resulted in the spraying of corona and/or arcing
to the conductive outer screens 12A, 12B, Further, because the center screen material is
typically sparse and air permeable and because the contact area was relatively small, arcing
could lead to an erosion of the center screen and a loss of contact.
In accordance with the present invention, a conductive disc is attached to the center screen
in the area where the high voltage probe would make contact. See figure 19, Adding a
contact area to the center screen allows for the use of a more resilient material and further,
increase the area of contact with the charged electrode (center screen).
When a relatively sparse filter media, .material, is used, a piercing or penetrating high-
voltage probe may be employed, and the disc(s) would be on either side of the center
screen. However, with denser filter media, it is preferable to have one conductive disc
press against the denser filter media and another conductive disc press against the center
screen. The two conductive discs would be mechanically an electrically connected to each
other.


In accordance with the present invention, a high-voltage contact protected by a high-
voltage shield to reliably contact the center screen is shown in figure 19. A rivet 136 is
passed through a hole in the center screen 13. A conductive disk (e.g. titanium) 133
secures the rivet 136 to the center screen 13, which provides a good connection between
the rivet 136 and the charged electrode or center screen 13. Alternatively, a second metallic
disk can be placed beneath the head of the rivet.
In a further embodiment of the invention, a high-voltage probe 130 passes through the
conductive outer screen 12A and terminates in a high-voltage contact 134. A high-voltage
shield of insulating dielectric material 132A surrounds the high-voltage contact 134,
Similarly, a high-voltage shield of insulating dielectric material 132B surrounds lower end
of the rivet 136 and tire metallic disk 133. Alternatively, the high-voltage probe may be
routed on the inside of the conductive outer screens 116A, 116B.
A top view of the filter media in figure 19 is shown in figure 20. A dielectric media
support frame 120 surrounds the pad of dielectric filter material 16A. The rivet or
attachment means 136 passes through the pad of dielectric filter material 16A.
A top view of the frame that holds the filter media in Igure 19 is shown in figure 21. Four
conductive outer filter holding frame pieces 116 and four plastic end caps 128 form a
frame to hold the conductive outer screen 12. The high-voltage contact 134 is positioned
within the insulating high-voltage shield 132A.


In operation, when the conductive outer filter holding frames 116A and 116B (figure 19)
are closed around the filter media (120, 16A, 13 and 16B) the high-voltage contact 134
contacts the head of the rivet 136, Also, the high-voltage shields 132A and 132B slightly
compress the pads of dielectric filter material 16A and 16B, The high-voltage contact 134
assures a reliable connection with the head of the rivet 136. The insulating high-voltage
shields 132A, 132B reduce the spraying of corona from the tip of the high-voltage contact
134. Furthermore, the insulating high-voltage shields 132A, 132B reduce the chances of
arcing from the high-voltage contact 134 to the conductive outer screens 12A and 12B.
The high-voltage contact 134 is typically made of rigid titanium or other resilient material.
In making contact with the head of the rivet 136, the center screen 13 may flex slightly;
Alternatively, the high-voltage contact. 134 can be a spring contact to reduce the flexing of
the center screen 13. Alternative arrangements for the contact area 136 on the center screen
13 include a conductive disk on the top side of the center screen 13, a pair of conductive
discs, one on the top and the other on the bottom of the center screen, with a fastener
passing through the center screen and holding the two discs together. The key point is that
the rigidity of the high-voltage probe 134 or the rigidity of the external conductive outer
screens or both, in conjunction force a positive mechanical contact between the end of the
high-voltage probe 134 and the disc or disc/rivet combination 136. The result is a firm
contact that cannot be compromised by vibration, or media movement or center screen
(electrode) movement.


WE CLAIM :
1. A filter bank for filtering air in an air stream comprising:
a first filter panel having a front end and a back end;
a second filter panel having a front end and a back end;
said front end of said first filter panel disposed adjacent to said front end of said second
filter panel such that said first and second filters are disposed at an angle with respect to
each other; and
a cowling having a curved aerodynamic front end and a back end, said cowling disposed
with said back end adjacent to said first end of said first filter panel and said first end of
said second filter panel, said curved aerodynamic front end of said cowling facing the air
stream flowing through said first and second filters.
2. A filter bank in accordance with claim 1, wherein said cowling is tollow and said filter
bank further comprises a power supply disposed within said cowling.
3. A filter bank for filtering air in an air stream comprising:
a first filter panel comprising a respective top frame and a respective bottom frame,


a first hinge, having a first attachment portion, a second attachment portion and a first
pivot portion coupling said first attachment portion to said, second attachment portion, said
top frame of said first fitter panel being attached to said first attachment point of said first
hinge and said bottom frame of said first filter panel being attached to said second
attachment portion of said first hinge sack that said top and bottom filter holding frames of
said first filter panel are hinged with, respect to each other by said first pivot portion;
a second filter panel comprising a respective top frame and a respective bottom frame;
a second Mage, having a first attachment portion, a second attachment portion and a
second pivot portion coupling said first attachment portion to said second attachment
portion, said top frame of said second filter panel being attached to said Irst attachment
point of said second hinge and said bottom frame of said second filter panel being attached
to said second attachment portion of said second hinge such that said top and bottom filter
holding frames of said second filter panel are hinged with respect to each other by said
second pivot portion; and
a third hinge, having a first attachment portion, a second attachment portion and a third
pivot portion coupling said first attachment portion to said a second attachment portion,
said first attachment portion of said third hinge being connected to said first hinge and said
second attachment portion of said third hinge being connected to said second hinge such
that said first filter panel and said second filter panel are hinged with respect to each other
by said third pivot portion.


4, An apparatus comprising:
a. first active field polarized media air cleaner having a first resistive center screen;
a second active field polarized media air clener having a second fesistivc crater screen;
and
a high voltage power supply having a first output voltage terminal coupled to said first
resistive center screen and to said second resistive screen.
5, An apparatus in accordance with claim 4, wherein said.first active field polarized media
air cleaner further includes a first conductive outer screen, and said secend active field
polarized media air cleaner further includes a second conductive outer screen and. said high
voltage power supply rurttet includes a second output voltage terminal coupled to said
first and second conductive outer screens.
6, A filter media comprising:
a first pad of dielectric filter material;
a second pad of dielectric filter material being substantially the same shape and area as said
first pad of fibrous dielectric material;


a center screen disposed between said first and second pads of dielectric material, said
center screen being substantially the same shape and area as said first and second pads of
dielectric material; and
a dielectric media support frame having an inner side and outer side, said inner side-
enclosing said first aad second pads of dielectric material, said filter holding frame having
on the inner side thereof a shelf far holding said center screes between said first and
second pads of dielectric material
7. A filter media in accordance with claim 6, wherein said dielectric media support frame
further comprises a protrusion on the outer side thereof.
8. A filter media in accordance with claim 7, wherein said dielectric media support frame
farther comprises flexible fins extending from said protrusion.
9. A filter media in accordance with claim 7, for me in an active field polarized media air
cleaner, said active field polarized media air cleaner farther comprising:
a first conductive outer screen;
a first conductive holding frame for holding said first conductive outer screen;
a second conductive outer screen;


a second conductive holding frame for holding said second conductive outer screen:
said first and second holding frames being disposed substantially parallel to each other on
either side of said dielectric media support frame, whereby said protrusion on the outer
side of said dielectric media support frame is substantially in contact with and held
between said first and second conductive holding frames.
10. An active field polarized media air cleaner, said active field polarized media air cleaner
comprising:
a first pad of dielectric filter material;
a second pad of dielectric fitter material;
a center screen disposed between said first and second pads of dielectric material;
a first conductive outer screen of sufficiently rigid material so as to lie substantially flat
when, placed against said Erst pad of dielectric filter material;
a first conductive holding frame for holding said first conductive outer screen;
a second conductive outer screen of sufficiently rigid material so as to lie substantially flat
when placed against said second pad of dielectric filter material;


a second conductive holding frame for holding said second conductive outer screen;
said first and second conductive holding frames being disposed substantially parallel to
each other oa either side of said first and second pads of dielectric filter material, whereby
said first and second conductive outer screens are substantially flat and substantially
parallel to each other.
11 An active field polarized media air cleaner in accordance with claim 10, wherein said
first and second, conductive outer screens each comprise a perforated sheet of solid
material.
12. In an active field, polarized media air cleaner, said active field polarized media air
cleaner comprising in combination a first conductive outer screen, a first pad of dielectric
filter material, a center screen, a second pad of dielectric filter material, and a second
conductive outer screen, an improvement comprising:
a high-voltage probe passing through, said conductive outer screen; and
an insulating shield attached to said first conductive outer screen, said insulating shield
surrounding said high-voltage probe.
13. A combination in accordance with claim 11, wherein said high-voltage probe
comprises a. spring: contact.


14: A combination in accordance with claim 12, further comprising a contact attached to
said center screen, said contact positioned so as to contact said high-voltage probe.
15: A combination in accordance with claim 14, wherein said contact comprises:
a fastener having a head and a shank, said shank passing through said center screen, said
head of said fastener being in contact with said high-voltage probe.
16, A combination in accordance with claim 15, further comprising a metallic disk
disposed oa the shank of said fastener, said metallic disk being in contact with said center
screen.
17. A combination in. accordance with claim 12, further comprising a second insulating
shield attached to said second conductive outer screen, said second insulating shield
disposed opposite said first insulating shield.
Dated this 29th day of July 2008.

Improvements in active field polarized media air cleaner include an aerodynamic front
cowling to reduce static air resistance, a rear double hinge to reduce blow by, a resistive
center screen permitting the sharing of high voltage power supplies while reducing the
tendency to arc and allowing for a higher operational voltage, a dielectric media support
frame to produce a more uniform electrostatic field and reduce blow by, while at the same
time reducing the tendency to spray corona and/or arc at the edges of the center screen, a
substantially flat conductive outer screen to produce a more uniform electrostatic field
throughout the filter media and a high-voltage shield to reduce high-voltage arcing and the
spraying of corona where the high-voltage probe contacts the center screen.

Documents:

http://ipindiaonline.gov.in/patentsearch/GrantedSearch/viewdoc.aspx?id=F/evH4d/x/WolyDlDCEiNQ==&loc=wDBSZCsAt7zoiVrqcFJsRw==


Patent Number 279085
Indian Patent Application Number 3078/KOLNP/2008
PG Journal Number 02/2017
Publication Date 13-Jan-2017
Grant Date 10-Jan-2017
Date of Filing 29-Jul-2008
Name of Patentee ENVIRONMENTAL MANAGEMENT CONFEDERATION, INC.
Applicant Address 5 CRESCENT AVENUE, ROCKY HILL, PA
Inventors:
# Inventor's Name Inventor's Address
1 WISER, FORWOOD 942 RIDGE ROAD, KINGSTON, PA 08852
2 KAEPPNER, BENJAMIN HANS 110 DAVID STREET, CARLETON PLACE, ONTARIO K7C EP2
3 SUMMERS, GEORGE ROBERT PO BOX 1174, CARLETON PLACE, ONTARIO K7C 4L1
PCT International Classification Number B03C 3/00
PCT International Application Number PCT/US2006/062763
PCT International Filing date 2006-12-29
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 60/754,771 2005-12-29 U.S.A.
2 60/754,805 2005-12-29 U.S.A.