Title of Invention

A EVAPORATIVE EMISSION CONTROL SYSTEM

Abstract A control module for an engine of a vehicle includes a mode determination module that determines whether the vehicle is in a fuel-saving mode based on an acceleration of the vehicle. A diurnal control valve (DCV) control module selectively closes a DCV a predetermined time after at least one of determining that the vehicle is in the fuel-saving mode and determining that the engine is stopped.
Full Text PLUG-IN HYBRID EVAP VALVE MANAGEMENT TO REDUCE VALVE
CYCLING
CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This application claims the benefit of U.S. Provisional
Application No. 61/030,658, filed on February 22, 2008. The disclosure of the
above application is incorporated herein by reference.
FIELD
[0002] The present disclosure relates to vehicle emissions and more
particularly to evaporative emissions control.
BACKGROUND
[0003] The background description provided herein is for the purpose
of generally presenting the context of the disclosure. Work of the presently
named inventors, to the extent it is described in this background section, as well
as aspects of the description that may not otherwise qualify as prior art at the
time of filing, are neither expressly nor impliedly admitted as prior art against the
present disclosure.
[0001] Internal combustion engines combust an air/fuel (A/F) mixture
within cylinders to drive pistons and to provide drive torque. Air is delivered to
the cylinders via a throttle and an intake manifold. A fuel injection system
supplies fuel from a fuel tank to provide fuel to the cylinders based on a desired
A/F mixture. To prevent release of fuel vapor, a vehicle may include an

evaporative emissions system which includes a canister that absorbs fuel vapor
from the fuel tank, a canister vent valve, and a purge valve. The canister vent
valve allows air to flow into the canister. The purge valve supplies a combination
of air and vaporized fuel from the canister to the intake system.
[0002] Closed-loop control systems adjust inputs of a system based on
feedback from outputs of the system. By monitoring the amount of oxygen in the
exhaust, closed-loop fuel control systems manage fuel delivery to an engine.
Based on an output of oxygen sensors, an engine control module adjusts the fuel
delivery to match an ideal A/F ratio (14.7 to 1). By monitoring engine speed
variation at idle, closed-loop speed control systems manage engine intake
airflows and spark advance.
[0003] Typically, the fuel tank stores liquid fuel such as gasoline,
diesel, methanol, or other fuels. The liquid fuel may evaporate into fuel vapor
which increases pressure within the fuel tank. Evaporation of fuel is caused by
energy transferred to the fuel tank via radiation, convection, and/or conduction.
A plug-in hybrid evaporative emissions control (EVAP) system is designed to
store and dispose of fuel vapor to prevent release. More specifically, the plug-in
hybrid EVAP system returns the fuel vapor from the fuel tank to a hybrid engine
for combustion therein. The plug-in hybrid EVAP system is a sealed system to
meet zero emission requirements. The plug-in hybrid EVAP system is a sealed
system intended to meet zero emissions requirements. More specifically, the
plug-in hybrid EVAP system my be implemented in a plug-in hybrid vehicle with

minimum engine operation that stores fuel vapor prior to being purged to the
engine.
[0004] The plug-in hybrid EVAP system includes an evaporative
emissions canister (EEC), a purge valve, and a diurnal control valve. When the
fuel vapor increases within the fuel tank, the fuel vapor flows into the EEC. The
purge valve controls the flow of the fuel vapor from the EEC to the intake
manifold. The purge valve may be modulated between open and closed
positions to adjust the flow of fuel vapor to the intake manifold.
SUMMARY
[0005] A control module for an engine of a vehicle includes a mode
determination module that determines whether the vehicle is in a fuel-saving
mode based on an acceleration of the vehicle. A diurnal control valve (DCV)
control module selectively closes a DCV a predetermined time after at least one
of determining that the vehicle is in the fuel-saving mode and determining that
the engine is stopped.
[0006] Further areas of applicability of the present disclosure will
become apparent from the detailed description provided hereinafter. It should be
understood that the detailed description and specific examples are intended for
purposes of illustration only and are not intended to limit the scope of the
disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS
[0007] The present disclosure will become more fully understood from
the detailed description and the accompanying drawings, wherein:
[0008] FIG. 1 is a functional block diagram of an exemplary hybrid
engine system of a hybrid vehicle according to the present disclosure;
[0009] FIG. 2 is a functional block diagram of an exemplary hybrid
engine control module according to the principles of the present disclosure; and
[0010] FIG. 3 is a flowchart depicting exemplary steps performed by
the hybrid engine control module according to the principles of the present
disclosure.
DETAILED DESCRIPTION
[0011] The following description is merely exemplary in nature and is in
no way intended to limit the disclosure, its application, or uses. For purposes of
clarity, the same reference numbers will be used in the drawings to identify
similar elements. As used herein, the phrase at least one of A, B, and C should
be construed to mean a logical (A or B or C), using a non-exclusive logical or. It
should be understood that steps within a method may be executed in different
order without altering the principles of the present disclosure.
[0012] As used herein, the term module refers to an Application
Specific Integrated Circuit (ASIC), an electronic circuit, a processor (shared,
dedicated, or group) and memory that execute one or more software or firmware
programs, a combinational logic circuit, and/or other suitable components that
provide the described functionality.

[0013] A diurnal control valve (DCV) controls the flow of air into an
evaporative emissions canister (EEC). The diurnal control valve is normally
closed to minimize emissions. The diurnal control valve is opened to allow fuel
vapor in the EEC to be purged when the hybrid engine is running. A hybrid
engine may excessively turn on and off. Consequently, the diurnal control valve
may excessively cycle between an open position and a closed position. The
excessive cycling may cause the diurnal control valve to suffer unnecessary wear
and/or damage.
[0014] To reduce cycling of the DCV of a plug-in hybrid evaporative
emissions control (EVAP) system, the hybrid engine control system of the
present disclosure includes a DCV control system. The DCV control system
closes the DCV a predetermined time after the hybrid engine stops running.
Alternatively, the DCV control system closes the DCV the predetermined time
after a hybrid engine system of the vehicle enters a deceleration fuel cut-off
(DFCO) mode. While the operation of the DCV control system will be discussed
as it relates to plug-in hybrid vehicles, the principles of the present disclosure are
also applicable to any vehicle having an internal combustion engine..
[0015] Referring now to FIG. 1, a functional block diagram of an
exemplary hybrid engine system 100 of a vehicle is shown. The hybrid engine
system 100 includes a fuel system 102, a plug-in hybrid EVAP system 104, and a
hybrid engine control module 106. The fuel system 102 includes a fuel tank 108,
a fuel inlet 110, a fuel cap 112, and a modular reservoir assembly (MRA) 114.
The plug-in hybrid EVAP system 104 includes a fuel vapor line 116, a canister

118, a fuel vapor line 120, a purge valve (PV) 122, a fuel vapor line 124, an air
line 126, a DCV 128, and an air line 130.
[0016] The fuel tank 108 contains liquid fuel and fuel vapor. The fuel
inlet 110 extends from the fuel tank 108 to enable fuel filling. The fuel cap 112
closes the fuel inlet 110 and may include a bleed hole 132. The MRA 114 is
disposed within the fuel tank 108 and pumps liquid fuel to a fuel injection system
(not shown) of the hybrid engine system 100 to be combusted.
[0017] Fuel vapor flows through the fuel vapor line 116 into the canister
118, which stores the fuel vapor. The fuel vapor line 120 connects the canister
118 to the PV 122, which is initially closed in position. The hybrid engine control
module 106 controls the PV 122 to selectively enable fuel vapor to flow through
the fuel vapor line 124 into the intake system (not shown) of the hybrid engine
system 100 to be combusted. Air flows through the air line 126 to the DCV 128,
which is initially closed in position. The hybrid engine control module 106
controls the DCV 128 to selectively enable air to flow through the air line 130 into
the canister 118.
[0018] The hybrid engine control module 106 regulates operation of the
hybrid engine system 100 based on various system operating parameters. The
hybrid engine control module 106 controls and is in communication with the MRA
114, the PV 122, and the DCV 128. The hybrid engine control module 106 is
further in communication with an oxygen sensor 134. The oxygen sensor 134
generates a canister oxygen signal based on an oxygen concentration level of
the fuel vapor/air mixture in the canister 118. The hybrid engine control module

106 is further in communication with a driver input module 136 that generates an
acceleration signal based on an accelerator pedal position of the vehicle.
[0019] Referring now to FIG. 2, a functional block diagram of the hybrid
engine control module 106 is shown. The hybrid engine control module 106
includes a purge enablement module 202, a PV control module 204, a DFCO
determination module 206, and a DCV control module 208. The purge
enablement module 202 receives the canister oxygen signal and determines a
purge status signal based on the canister oxygen signal.
[0020] For example only, the purge status signal may be determined to
be an enabled signal when the canister oxygen is greater than or equal to a
predetermined value. The purge status signal may be determined to be a
disabled signal when the canister oxygen is less than the predetermined value.
In addition, the purge enablement module 202 may receive other system
operating parameters, such as an oxygen concentration level of exhaust gas of
the hybrid engine system 100 and a mass of air flowing into the hybrid engine
system 100. The purge enablement module 202 may determine the purge status
signal based on the other system operating parameters.
[0021] The PV control module 204 receives the purge status signal and
an engine status signal from a hybrid engine (not shown) of the hybrid engine
system 100. The engine status signal includes an engine on signal when the
hybrid engine is running. The engine status signal includes an engine off signal
when the hybrid engine is not running. The PV control module 204 opens the PV
122 when the purge status signal includes the enabled signal and the engine

status signal includes the engine on signal. The PV control module 204 closes
the PV 122 when the purge status signal includes the disabled signal or the
engine status signal includes the engine off signal.
[0022] The DFCO determination module 206 receives the acceleration
signal and determines a DFCO status signal based on the acceleration signal. A
DFCO mode is a fuel-saving mode whereby fuel injectors (not shown) of the
hybrid engine system 100 are turned off when a throttle (not shown) of the hybrid
engine system 100 is closed, and the hybrid engine is driven by the momentum
of the vehicle. For example only, the DFCO status signal may be determined to
be a DFCO on signal when the acceleration is less than or equal to a
predetermined value that indicates that the hybrid engine system 100 is in the
DFCO mode. The DFCO status signal may be determined to be a DFCO off
signal when the acceleration is greater than the predetermined value. The PV
control module 204 closes the PV 122 when the DFCO status signal includes the
DFCO on signal.
[0023] The DCV control module 208 receives the DFCO status signal,
the purge status signal, and the engine status signal. The DCV control module
208 opens the DCV 128 when the purge status signal includes the enabled
signal and the engine status signal includes the engine on signal. The DCV
control module 208 closes the DCV 128 when the purge status signal includes
the disabled signal. The DCV control module 208 closes the DCV 128 after a
predetermined time when the engine status signal includes the engine off signal
or the DFCO status signal includes the DFCO on signal.

[0024] The predetermined time is calibrated based on a temperature of
air flowing into the hybrid engine system 100. To minimize cycling of the DCV
128, the predetermined time may be set to a large value, such as 60 seconds.
To minimize emission of the fuel vapor, the predetermined time may be set to a
small value, such as 10 seconds.
[0025] Referring now to FIG. 3, a flowchart depicting exemplary steps
performed by the hybrid engine control module 106 is shown. Control begins in
step 302. In step 304, the engine status signal is determined. In step 306,
control determines whether the engine status signal includes the engine on
signal. If true, control continues in step 308. If false, control continues in step
310.
[0026] In step 308, the canister oxygen signal is determined. In step
310, the PV 122 and the DCV 128 are closed. Control returns to step 304. In
step 312, the purge status signal is determined based on the canister oxygen
signal. The purge status signal may be used for the control of other types of
emissions.
[0027] In step 314, control determines whether the purge status signal
includes the enabled signal. If true, control continues, in step 316. If false,
control continues in step 318. In step 316, the PV 122 and the DCV 128 are
opened.
[0028] In step 318, the PV 122 and the DCV 128 are closed. Control
returns to step 304. In step 320, the engine status signal is determined. In step
322, control determines whether the engine status signal includes the engine on

signal. If false, control continues in step 324. If true, control continues in step
326.
[0029] In step 324, the DFCO status signal is determined. In step 328,
control determines whether the DFCO status signal includes the DCFO on signal.
If true, control continues in step 326. If false, control continues in step 330. In
step 326, the PV 122 is closed. In step 332, the DCV 128 is closed after the
predetermined time. Control returns to step 304.
[0030] In step 330, the canister oxygen signal is determined. In step
334, the purge status signal is determined based on the canister oxygen signal.
In step 336, control determines whether the purge status signal includes the
enabled signal. If false, control continues in step 338. If true, control returns to
step 320. In step 338, the PV 122 and the DCV 128 are closed. Control returns
to step 304.
[0031] Those skilled in the art can now appreciate from the foregoing
description that the broad teachings of the disclosure can be implemented in a
variety of forms. Therefore, while this disclosure includes particular examples,
the true scope of the disclosure should not be so limited since other modifications
will become apparent to the skilled practitioner upon a study of the drawings, the
specification, and the following claims. For example, while the operation of the
DCV control system was discussed as it related to plug-in hybrid vehicles, the
principles of the present disclosure are also applicable to any vehicle having an
internal combustion engine.

CLAIMS
What is claimed is:
1. A control module for an engine of a vehicle, comprising:
a mode determination module that determines whether the vehicle
is in a fuel-saving mode based on an acceleration of the vehicle; and
a diurnal control valve (DCV) control module that selectively closes
a DCV a predetermined time after at least one of determining that the vehicle is
in the fuel-saving mode and determining that the engine is stopped.
2. The control module of claim 1 wherein the mode determination
module determines that the vehicle is in the fuel-saving mode when the
acceleration is less than a threshold.
3. The control module of claim 1 wherein the DCV control module
receives an engine status and determines whether the engine is stopped based
on the engine status.
4. The control module of claim 1 further comprising a purge valve
control module that closes a purge valve when the vehicle is in the fuel-saving
mode.

5. The control module of claim 4 further comprising a purge
enablement module that generates a purge status based on an evaporative
emissions canister (EEC) level, wherein the purge valve control module closes
the purge valve further based on the EEC level.
6. The control module of claim 1 wherein the DCV control module
receives an operating mode, an engine status, and a purge status and selectively
closes the DCV based on the operating mode, the engine status, and the purge
status.
7. The control module of claim 1 wherein the predetermined time is
based on air temperature.
8. A hybrid vehicle that includes the control module of claim 1.
9. A method for operating an engine of a vehicle, comprising:
determining whether the vehicle is in a fuel-saving mode based on
an acceleration of the vehicle; and
selectively closing a diurnal control valve (DCV) a predetermined
time after at least one of determining that the vehicle is in the fuel-saving mode
and determining that the engine is stopped.
10. The method of claim 9 further comprising determining that the
vehicle is in the fuel-saving mode when the acceleration is less than a threshold.

11. The method of claim 9 further comprising:
receiving an engine status; and
determining whether the engine is stopped based on the engine
status.
12. The method of claim 9 further comprising closing a purge valve
when the vehicle is in the fuel-saving mode.
13. The method of claim 12 further comprising:
generating a purge status based on an evaporative emissions
canister (EEC) level; and
closing the purge valve further based on the EEC level.
14. The method of claim 9 further comprising:
receiving an operating mode that indicates the fuel-savings mode,
an engine status, and a purge status; and
selectively closing the DCV based on the operating mode, the
engine status, and the purge status.
15. The method of claim 9 wherein the predetermined time is based on
air temperature.

16. The method of claim 9 further comprising providing a hybrid vehicle
that includes engine.

A control module for an engine of a vehicle includes a mode determination
module that determines whether the vehicle is in a fuel-saving mode based on an
acceleration of the vehicle. A diurnal control valve (DCV) control module
selectively closes a DCV a predetermined time after at least one of determining
that the vehicle is in the fuel-saving mode and determining that the engine is
stopped.

Documents:

http://ipindiaonline.gov.in/patentsearch/GrantedSearch/viewdoc.aspx?id=DOQylVThNFcPSPT90BowOQ==&loc=wDBSZCsAt7zoiVrqcFJsRw==


Patent Number 279123
Indian Patent Application Number 207/KOL/2009
PG Journal Number 02/2017
Publication Date 13-Jan-2017
Grant Date 11-Jan-2017
Date of Filing 06-Feb-2009
Name of Patentee GM GLOBAL TECHNOLOGY OPERATIONS, INC.
Applicant Address 300 GM RENAISSANCE CENTER DETROIT, MICHIGAN
Inventors:
# Inventor's Name Inventor's Address
1 ZHONG WANG 14310 NE 7TH PL. NO.3 BELLEVUE, WA 98007
2 MILES K. MAXEY 8663 FISH LAKE RD. HOLLY, MI. 48442
3 JONATHAN J. STEC 3094 EXETER DRIVE MILFORD, MI.48380
4 TIMOTHY E. MCCARTHY 7250 YOUNESS, DRIVE GRAND BLANC, MI 48439
5 VINCENT A. WHITE 41304 RAYBURN DRIVE NORTHVILLE, MI 48167
6 JOHN F. VAN GILDER 4214 MORRICE ROAD WEBBERVILLE, MI 48892
7 LAN WANG 1947 HARTSHORN TROY, MI. 48083
8 JUN LU 24376 CAVENDISH AVE, WEST NOVI, MICHIGAN 48375
9 BRIAN SPOHN 172339 HICKORY RD. HOLLY, MI 48442
PCT International Classification Number F16K37/00
PCT International Application Number N/A
PCT International Filing date
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 61/030,658 2008-02-22 U.S.A.