Title of Invention

SELF-SUPPORTING TYRE FOR WHEELS FOR BICYCLES, MOTOR CYCLES AND THE LIKE

Abstract Disclosed is a self-supporting tyre for wheels for bicycles, motorcycles and the like comprising an outer surface layer (5), which establishes contact with the ground (8) and an inner supporting layer (6) realized by a flexible polyurethane elastomer with a cellular structure, which at least partially occupies the internal volume of the tyre (1) and supports the outer surface layer, also comprising a flexible membrane (9) substantially having the shape of the outer layer (5) and radially compressing the inner supporting layer (6). Figure 1
Full Text SELF-SUPPORTING TYRE FOR WHEELS FOR BICYCLES, MOTORCYCLES AND THE LIKE
Field of the Invention
The present invention relates to a self-supporting tyre for wheels for bicycles, motorcycles and the like of the type comprising an outer layer, suitable to establish contact with the ground, an inner supporting layer, composed of polymer material and suitable to support said outer surface layer.
Description of the Prior Art
As it is known, tyres, or pneumatic tyres, cover the peripheral area of the wheels for vehicles of all types.
Tyres are therefore the point of contact between vehicle and asphalt road surface, said contact occurring precisely through an outer surface area called tread.
The purpose of tyres is: to maintain contact between the vehicle and the ground, to transmit the forces imparted on the vehicle to the ground, to cushion any impacts with the surface and to roll along the ground with low energy loss. Therefore, tyres must have: high static friction, useful to maintain high traction, low rolling friction to avoid dissipating a large quantity of energy and high elasticity, useful to cushion the vehicle to which they are fitted. The most well-known and widely used tyres are pneumatic tyres. These are substantially composed of a tubular elastic covering in natural or synthetic rubber inflated with pressurized air.
Said pneumatic tyres exploit the elasticity of the air contained therein and have considerable advantages of increased rolling performance, immediate springback, high cushioning of impacts, rigidity, grip and yet others.

As it is known, pneumatic tyres are nonetheless subject to punctures, bursting or deflations that make them permanently or temporarily unusable and which can be unexpected and dangerous for the person driving the vehicle on which they are used.
To solve the drawback mentioned, solid or self-supporting tyres, composed of elastic materials, preferably of natural rubbers, synthetic rubbers or elastomers, can be used. This type of tyre attempts to reproduce the characteristics of pneumatic tyres and does not require the presence of pressurised gas to support it.
Nonetheless, solid or self-supporting tyres have inferior characteristics compared to pneumatic tyres. In fact, they have inferior rolling performance and springback compared to the pneumatic tyres commonly used.
Moreover, some self-supporting tyres are subject to phenomena of bounce and vibrations unacceptable for vehicles such as bicycles and motorcycles.
Due to the drawbacks mentioned, self-supporting tyres are currently used almost exclusively on prams, trolleys and similar vehicles.
To improve the characteristics of self-supporting tyres numerous modifications and improvements have been made to the materials and structures thereof. Some improvements have been obtained through appropriate selection of and different ways of producing the materials used to fill the tyre; in particular, considerable improvements have been attained with the use of closed cell foamed microcellular polyurethane, as illustrated in the patent IT 1176358 by the same applicant.
Said material already offers improved rolling performance of the self-supporting wheel and causes a reduction in phenomena of bounce together with a

reduction in weight.
Also known, in self-supporting tyres for cars, is the use of a flat rigid band, embedded in the tyre, which encircles the whole wheel in proximity to the outer surface of the tyre.
This rigid band ensures that all local deformation of the tyre tends to involve the whole tyre through load distribution, similar to the case of pneumatic wheels, in which local deformation involves all the gas contained in the pneumatic tyre and consequently the whole tyre.
A solution of this type is indicated in the patent US 6 142 203.
Nonetheless, a band of this type cannot be used in tyres for bicycles and mopeds due to the large diameter and small section, which would require an excessively rigid ring to involve the whole tyre, to the detriment of mass and of cushioning.
Moreover, in wheels for cars and the like, the axis of rotation remains in a position always substantially parallel to the ground. Therefore, these tyres always come into contact with the ground along a single cylindrical ring.
Essentially, tyres for motor vehicles have, in any plane of section passing through the axis of rotation, a substantially flat tread.
Instead, the axis of rotation of bicycle and motorcycle wheels does not always remain parallel to the ground: in fact, to oppose the centrifugal force when going round bends, two-wheeled vehicles lean towards the centre of the bend.
Therefore, bicycle and motorcycle tyres come into contact with the ground through a surface which, in any plane of section passing through the axis of rotation, is substantially defined by an arc of circumference.
The use of a flat rigid encircling band as described, in a tyre for wheels for

bicycles and the like would therefore cause dangerous irregularity in the conformation of the tyre, due to the difference in the shape of the rigid band and the surface of the tyre.
Said irregularity would cause discontinuity in the reactions produced by the tyre as a function of the angle of inclination of the wheel, which are most prominent particularly when going round bends and also cause cutting forces within the tyre itself, which would damage it.
Although improving the physical characteristics of the self-supporting tyres, the expedients and modifications described are unable to give them the exceptional qualities of pneumatic tyres.
A further drawback of self-supporting tyres is that the peripheral area of the wheel is heavier than in pneumatic tyres, causing considerable and undesirable inertia when the rotation speed of the wheel varies.
Summary of the Invention
In this situation, the technical aim underlying the present invention is to produce a self-supporting tyre for wheels for bicycles, motorcycles and the like capable of substantially overcoming the aforesaid drawbacks.
Within the scope of said technical aim, an important object of the invention is to produce a self-supporting tyre for wheels for bicycles, motorcycles and the like which has a rolling performance similar to pneumatic tyres. Another important object of the invention is to obtain a self-supporting tyre for wheels for bicycles, motorcycles and the like which sufficiently cushions the impacts to which the vehicle is subjected in contact with the irregularities of the ground. Another important object of the invention is to obtain a self-supporting tyre for

wheels for bicycles, motorcycles and the like which has a lower mass.
The technical aim and the objects specified are attained by a self-supporting tyre for wheels for bicycles, motorcycles and the like comprising: an outer layer, suitable to establish contact with the ground, an inner supporting layer, composed of a flexible polyurethane elastomer with a cellular structure, at least partially occupying the internal volume of said tyre and suitable to support said outer surface layer, said tyre comprising a flexible membrane having substantially the shape of said outer layer and radially compressing said inner supporting layer.
Said tyre has substantially the same rolling performance and comfort as pneumatic tyres, without being subject to possible punctures.
Brief Description of the Drawings
Further features and advantages of the invention are better explained below in the detailed description of a preferred embodiment of the invention, with reference to the attached drawings, wherein:
Fig. 1 shows a tyre according to the invention in a plane of section passing through the axis of rotation of the wheel on which said tyre is fitted;
Fig. 2 schematizes a wheel for bicycles and the like in an inclined position;
Fig, 3a schematizes operation of a conventional self-supporting tyre in a plane of section perpendicular to the axis of rotation of the wheel on which said tyre is fitted;
Fig. 3b schematizes operation of a self-supporting tyre according to the invention in a plane of section perpendicular to the axis of rotation of the wheel on which said tyre is fitted; and
Fig. 4 shows a variant of a detail of the tyre according to the invention.

With reference to the aforesaid Figures, the tyre according to the invention is indicated as a whole with number 1.
It is fitted to a rim 2a of a wheel 2 for a bicycle, motorcycle or two-wheeled vehicle in general.
Description of a Preferred Embodiments
The tyre 1 is fitted to the rim 2a according to known techniques, such as: using two strong elastic rings 3, composed of continuous semi-elastic or steel wire, which fix the upper part of the tyre in specific loops 4 produced on the rim, or by bonding the tyre 1 to the rim 2a, or using other techniques. The tyre 1 has an outer layer 5, suitable to establish contact with the ground and an inner supporting layer 6 composed of elastic polymer material, which at least partially occupies the internal volume of the tyre 1.
The outer layer 5 can be integral with the supporting layer 6. In this case it is composed of polyurethane or the like, or of vulcanized rubber. In the preferred embodiment, the outer layer 5 is integral with the supporting layer 6 and a median portion thereof, known as tread 7, comes into contact with the ground 8.
As it is known, the tread 7 comes into contact with the ground 8, presumed as flat, through a central portion of tread 7 when the axis 2b of the wheel 2 is parallel to the horizontal axis 8a. Instead, when the axis 2b of the wheel is inclined by an angle a other than zero with respect to the horizontal axis 8a, as occurs when going round bends, the tread 7 comes into contact with the ground 8 through a lateral portion of tread 7, as shown in Fig. 2. The purpose of the inner supporting layer 6 is instead to support the tyre 1. In pneumatic tyres this support is provided by the pressurized air.

The supporting layer 6 occupies a prevalent portion of the internal volume of the tyre 1.
Moreover, it is preferably composed of a flexible polyurethane elastomer with a closed cell foamed microcellular structure, with a final density of the structure ranging from 0.2 to 0.5 kg/dm3.
A material of this type is, for instance, produced by the Italian firm Sinergit S.r.l. with the name “Reselgit microcellulare”.
Said material has ideal behaviour: in fact, it optimally cushions impacts to which the tyre 1 is subjected during use, said impacts being absorbed and partly dissipated by adiabatic compression of the gas contained in the microcells and partly dissipated in the form of heat.
This material consequently has considerably reduced bounce and vibrations. Moreover, unlike the case of many polymer materials, Reselgit microcellulare rapidly dissipates absorbed heat into the environment and is very long-lasting, as said polymer material is not subject to the aging phenomena typical of many polymer materials, even after several years of use.
Due to these optimal characteristics Reselgit microcellulare can also be used to produce the outer layer 5, in particular if this is integral with the supporting layer 6, and Reselgit with a density ranging from 0.5 to 0.8 kg/dm3 is preferably used.
Moreover, according to in-depth studies by the applicant, the rolling performance of the wheel is due mainly to two factors: reactivity of the tyre, i.e. the speed with which the tyre returns to its circular shape after it has been deformed, and the grip it has on the asphalt road surface, i.e. the surface area of tread 7 in direct contact with the ground 8.
In fact, it is known that the rolling friction which develops during rolling of the

wheels is, with the same quantity of material forming the tread 7, directly proportional to the grip the tyre imparts on the ground, which in turn is directly proportional to the rigidity of the tyre 1.
The applicant has however found that, with the same grip, pneumatic tyres have better rolling performance than self-supporting tyres.
This is due to the fact that self-supporting tyres have lower reactivity than pneumatic tyres, due to the materials they are composed of and to the fact that, unlike the case of pneumatic wheels, the forces imparted by the asphalt road surface on the self-supporting tyres only act on a limited portion of the tyre.
This lower reactivity does not allow the self-supporting tyres, which become deformed under the vertical thrust of the weight, to return rapidly to their circular shape after deformation. Consequently, tyres with lower reactivity have a shape that is substantially less circular during rolling and, consequently, a lower rolling performance.
In order to increase the reactivity of the tyre the applicant has found an improvement thereof, in the case in which the material constituting the supporting layer 6 is precompressed.
In particular, a very high reactivity was found with the use of Reselgit microcellulare reduced by compression in a volume percentage ranging from 10% to 20%.
It is in fact known to the applicant that this material, similar to many foamed and elastic polymer materials, has very rapid springback when deformations are high, and much slower springback when deformations are low. Thanks to precompression, the elastic body is in a working range with rapid springback even with small deformations. The reactivity of said elastic body is therefore always high.
In order to obtain optimal characteristics of the tyre 1, it has a flexible membrane 9 with high tensile strength, that is, which is substantially inextensible.
This flexible membrane 9 in a plane of section passing through the axis 2b is in contact with the supporting layer 6 and preferably bordering with the outer layer 5.
The flexible membrane 9 substantially follows the shape of the tread 7, in particular in a plane of section passing through the axis 2b of the wheel 2, this flexible membrane 9 has the profile of an arc of circumference of a thickness of around one millimetre, as shown in Fig. 1, while in a plane of section perpendicular to the axis 2b this membrane 9 has the shape of a ring having as its centre the centre of the wheel 2, as shown in Fig 3b.
The flexible membrane 9 is preferably composed of a weave of threads wound on two or more ropes 9a, substantially inextensible and continuous, positioned at the two ends of the membrane 9, which encircle the whole tyre 1. These threads are preferably composed of a material with high tensile strength, such as aramid fibres or the like.
Similar membranes are used to produce the body of some pneumatic tyres for bicycles and motorcycles and have the advantage of having a high tensile strength in the plane of extension of the membrane, while remaining sufficiently flexible.
The membrane 9 radially compresses the inner supporting layer 6 in volume percentages ranging from 10% to 20%. Said compression is implemented simply by reducing the height of the section of the supporting layer 6 by a

percentage ranging from 10% to 20% and leaving the other dimension ot the section and the circumference of the wheel substantially unchanged.
Moreover, precompression of the supporting layer 6 determines stiffening of the tyre 1 and therefore less grip on the asphalt road surface.
Grip on the asphalt road surface determined by the tyre 1 can be further improved with the presence of a stiffening element 10 positioned in the centre of the tyre 1, in a plane of section passing through the axis 8a.
The stiffening element 10 has a high bending strength due to the vertical load forces and, therefore, preferably extends mainly in a direction perpendicular to the ground 8.
It can have different conformations. In the preferred solution said body 10 has a triangular or trapezoidal section and is integral in one piece with the membrane 9, as shown in Fig 1.
In this case the element 10 can be composed of the same weave of threads of which the membrane 9 is composed. Said solution proves convenient in terms of weight and distribution of forces.
Alternatively, the element 10 can be separated from said membrane 9, as shown in Fig. 4, and composed of composite fibre materials with aramid or carbon fibres with a matrix in compact polyurethane or other resins.
The presence of the stiffening body 10 considerably reduces the grip of the tyre 1 on the ground 8.
Operation of the stiffening element 10 is schematized in Fig. 3a and 3b, where operation of wheels 2 with said element 10 (Figure 3b) and wheels without said element 10 are compared schematically.
It can be noted that the stiffening element 10 involves, in the plane

perpendicular to the axis 8a, a large portion of the tyre 1 in local deformations.
It is specified that the element 10 does not reduce elasticity and consequently cushioning of the tyre 1, which can deform according to the diagram shown in Fig. 3b.
Moreover, the stiffening element 10 does not reduce the grip of the tyre 1 in proximity to the non-central portions of the tread 7, i.e. the portions of tread that come into contact with the ground while going round bends. Therefore, grip of the tyre 1 on the bend is not reduced.
In fact, when the tyre 1 is vertically stressed by the force of gravity and is inclined by an angle a with respect to the horizontal axis 8a, the action of the element 10 is consequently more limited.
Finally, this element 10 considerable increases the load distribution on the tyre 1, in the plane perpendicular to the axis 8a, due to its increased rigidity.
The invention achieves important advantages.
In fact, the tyre 1 has substantially the same rolling performance and comfort as pneumatic tyres, without being subject to possible punctures.
A further advantage is the low weight. In fact, the Reselgit microcellulare of which most of the tyre is composed has a specific weight ranging from 0.2 to 0.8 kg/dm3.


CLAIMS
1. Self-supporting tyre for wheels for bicycles, motorcycles and the like comprising: an outer layer (5), suitable to establish contact with the ground (8), an inner supporting layer (6) composed of polymer material at least partially occupying the internal volume of said tyre (1) and suitable to support said outer surface layer (5), characterized in that: said inner supporting layer (6) is composed of a flexible polyurethane elastomer with a cellular structure, said tyre (1) comprising a flexible membrane (9) having substantially the shape of said outer layer (5) and radially compressing said inner supporting layer (6).
2. Tyre according to claim 1, including a stiffening element (10) incorporated in said supporting layer (6) and positioned, in a plane of section passing through the axis (8a), longitudinally at the centre of said tyre (1) and suitable to withstand bending in a plane perpendicular to the axis (2b) of the wheel (2).
3. Tyre according to claim 1, wherein said membrane (9) radially reduces by compression said inner supporting layer (6) in a volume percentage ranging from 10% to 20%.
4. Tyre according to claim 1, wherein said outer layer (5) is integral in one piece with the supporting layer (6).
5. Tyre according to claim 1, wherein said inner supporting layer (6) totally occupies the internal volume of said tyre (1).
6. Tyre according to claim 1, wherein said membrane (9) borders with said outer surface layer (5).
7. Tyre according to claim 1, wherein said membrane (9) is composed of a weave of threads wound on a plurality of ropes (9a) positioned at the two ends of the membrane (9).

8. Tyre according to claim 2, wherein said stiffening element (10) is integral with said membrane (9).
9. Tyre according to claim 2, wherein said stiffening element (10) has a substantially triangular shape, in any plane of section passing through the axis (8a) of the wheel (2).

Documents:

http://ipindiaonline.gov.in/patentsearch/GrantedSearch/viewdoc.aspx?id=DUh3qQ+DaRJzJNgPbyiYcg==&loc=egcICQiyoj82NGgGrC5ChA==


Patent Number 279208
Indian Patent Application Number 1851/CHE/2006
PG Journal Number 03/2017
Publication Date 20-Jan-2017
Grant Date 13-Jan-2017
Date of Filing 06-Oct-2006
Name of Patentee GARAVAGLIA, PIETRO
Applicant Address VIA PRIMO MAZZOLLARI, 48, I-20142 MILANO,
Inventors:
# Inventor's Name Inventor's Address
1 GARAVAGLIA, PIETRO VIA PRIMO MAZZOLLARI, 48, I-20142 MILANO,
PCT International Classification Number B60C11/00
PCT International Application Number N/A
PCT International Filing date
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 05425704.3 2005-10-07 EUROPEAN UNION