Title of Invention

"CATALYSTS"

Abstract A process for producing a supported cobalt-based Fischer-Tropsch synthesis catalyst includes, in a first activation stage, treating a particulate catalyst precursor with a reducing gas, at a heating rate, HR1, until the precursor has reached a temperature, T1, where 80°C&#8804;T1&#8804;180°C, to obtain a partially treated precursor. In a second activation stage, the partially treated precursor is treated with a reducing gas, at an average heating rate, HR2, with x step increments, where 0<HR2<HR1, for a time, t1, where t1 is from 0.1 to 20 hours, to obtain a partially reduced precursor. Thereafter, in a third activation stage, the partially reduced precursor is treated with a reducing gas, at a heating rate, HR3, where HR3>HR2 until the partially reduced precursor reaches a temperature, T2. The partially reduced precursor is maintained at T2 for a time, t2, where t2 is from 0 to 20 hours, to obtain an activated catalyst.
Full Text THIS INVENTION relates to catalysts. In particular, the invention relates to a process for activating a catalyst precursor, to obtain a supported cobalt-based Fischer-Tropsch synthesis catalyst, and to a catalyst obtained from the process.
As regards supported cobalt-based Fischer-Tropsch synthesis catalysts, it is well-known that precursors of such catalysts are prepared using a metal precursor and a particulate support. The catalyst precursor preparation involves a number of different catalyst preparation steps. The catalyst precursor is then, in an activation process or step, reduced by using a reducing gas such as hydrogen, to obtain an active Fischer-Tropsch synthesis catalyst.
In known activation processes, ie involving reduction of the catalyst precursor in a flowing hydrogen or hydrogen containing gas stream at elevated temperatures, for supported cobalt-based Fischer-Tropsch synthesis catalyst precursors that the Applicant is aware of, hydrogen reduction is canied out at a temperature In the range 250°C to 500'C, and preferably at low pressures and high linear gas velocities to minimize vapour pressure of any product water which enhances sintering of the reduced metal. It is well known that manipulatton of the reduction of cobalt oxide to cobalt metal In different wa^ Influences activity and selectivity of the resultant Fischer-Tropsch synthesis catalyst. In particular, US 4605679 disctoses that the activity of a cobalt catalyst can be increased by reductton in hydrogen, then rs-oxkiising the catalyst followed by re-reductbn in hydrogen. In US 5292705, it is shown that hydrogen reduction in the presence of hydrocarbon liquids enhances the initial Fischer-Tropsch synthesis perfonnance of the catalyst. US 5585316 claims that the selectivity of heavier Fischer-Tropsch products is increased if the catalyst is first oxidised and then reduced with carbon monoxide. EP 1444040 discloses a two stage reduction step with pure hydrogen with a catalyst precursor in which all reducible cobalt oxide species combined can be described by the fonnula-unit CoOgHb (where: a>1.7 and b>0). resulting in a


more economical reduction process without sacrificing Fischer-Tropsch synthesis catalyst activity.
An object of the present Invention is to provide a supported cobalt-based Fischer-Tropsch synthesis catalyst having a higher hydrocarbon synthesis activity. Such a catalyst can be obtained with the process of the present Invention.
According to the Invention, there is provided a process for producing a supported cobalt-based Fischer-Tropsch synthesis catalyst, which process includes
in a first activation stage, treating a particulate supported cobalt-based Fischer-Tropsch synthesis catalyst precursor comprising a catalyst support impregnated with cobalt and containing cobalt oxide, with a hydrogen-containing reducing gas or a nitrogen-containing gas, at a first heating rate, HR1, until the precursor has reached a temperature, T1, where SO'C≤Ti≤lSO≤C, to obtain a partially treated catalyst precurson
in a second activation stage, treating the partially treated catalyst precursor with a hydrogen-containing reducing gas. at a second average heating rate, HR2, with x step increments, where x is an integer and Is greater than 1, and where 0 in a third activation stage, treating the partially reduced catalyst precursor with a hydrogen-containing reducing gas, at a third heating rate, HR3. where HR3>HR2 until the partially reduced catalyst precursor reaches a temperature, Ta. and maintaining the partially reduced catalyst precursor at Ta for a time, ta, where ta is from 0 to 20 hours, to obtain an activated supported cobait-based Fischer-Tropsch synthesis catalyst.
Within the context of this invention, the average heating rate HR2 is defined as the sum of the heating rates for each step increment divided by the number of step increments, where a step increment is defined as an Increase In the heating rate, x is the number of step increments, and x>1.


It was surprisingly found that a supported cobalt-based Fischer-Tropsch synthesis catalyst having high intrinsic activity was obtained when the catalyst precursor was subjected to the reduction or activation procedure of the invention.
The treatments in the first, second and third activation stages may, at least in principle, be effected by using any suitable contacting configuration of the catalyst precursor with the reducing gas, such as a fluidized bed of the catalyst precursor particles, with the reducing gas acting as the fluidizing medium; a fixed bed of the catalyst precursor particles through which the reducing gas passes; or the like. However, a fluidized bed configuration is preferred.
The first activation stage commences when the catalyst precursor is first
subjected to treatment with the hydrogen-containing reducing gas or the
nitrogen-containing gas with the immediate application of the first heating rate
IHRI. The gas in the first activation stage will have a gas space velocity, SV1.
Preferably, 1^SV1535mVkgred. Co/h; more preferably,
3^V1^15mVkg red. Co/h. By 'red.Co' or 'reducible cobalt' is meant the cobalt that can be reduced during normal reduction, eg if the catalyst or catalyst precursor contains 20mass% cobalt and 50% of the cobalt can be reduced, then the amount of reducible cobalt is 0.1 g/g catalyst or catalyst precursor. The first activation stage continues until the precursor attains the temperature Ti.
Preferably, CS^C/minsHRI^siO'C/min; more preferably,
rC/mlnSHR1)S2'C/min.
In the first activation stage, Ti may be ^^'C. In one embodiment of the invention, laoX^Ti^lSO'C. This embodiment will typically apply to precursors obtained by forming a sluny of a particulate catalyst support, a cobalt compound as an active component precursor, and water; subjecting the catalyst support to impregnation with the cobalt compound; drying the impregnated catalyst support; and calcining the impregnated support.


The second activation stage thus commences when the precursor has attained the temperature T1i, and endures for the time t1 as hereinbefore described. As regards the second activation stage treatment time t1, more preferably 1≤ti:SlO hours, typically 2≤ U≤6 hours.
In the second activation stage, at least two heating ramps are employed. Thus, at least two heating ramps in which the precursor is heated from the temperature Ti to a temperature TH where TH> TI and TH The third activation stage commences once the time ti has elapsed. The precursor thus, at the commencement of the third activation stage, will be at the temperature TH. The third activation stage treatment is thus continued until the temperature in the third treatment stage, ie the temperature of the activated Fischer-Tropsch catalyst, reaches Tz. Preferably, 300'C≤z≤6OO'C. More preferably, T2 may be in the range of 300"C to 500°C, with a typical value of T2 being in the range of 300°C to 450'C. The catalyst can be maintained at T2 for 0-20 hours (ie tz), preferably 0 The gas will also, in the second activation stage, have a space velocity, hereinafter referred to as SV2, and will also, in the third activatton stage, have a space velocity, hereinafter referred to as SV3.
In one embodiment of the invention, SV1, SV2 and/or SV3 may be constant during the treatments in their respective activation stages. For example, the relationship of the space velocities in the various stages may be


SV1=SV2=SV3. However. In another embodiment of the invention, SV1, SV2 and SV3 may vary during the respective activation stages.
In the first activation stage, a hydrogen-containing reducing gas is preferably used, and the gas used In the three activation stages may have the same composition. By 'hydrogen-containing reducing gas' is meant a hydrogen containing gas mixture comprising 10voi%

90vol% H2 and 97 vol% H2 and In the first activation stage, a nitrogen-containing gas can instead be used. By 'nitrogen-containing gas' Is meant a gas mixture comprising >90vol% N2 and The treatments in the first, second and third activation stages may be effected at the same or different pressures, and may each be effected at about atmospheric pressure, preferably at between 0.6 and 1.3 bar(a).
The particulate supported cobalt-based Fischer-Tropsch synthesis ('FTS') catalyst precursor may be any suitable catalyst precursor requiring activation or reduction to obtain an active Fischer-Tropsch catalyst, and may be that obtained during preparation of a fresh catalyst or from a regenerated catalyst.
Thus, it may be that obtained during preparation of a fresh catalyst, le obtained by forming a slunry of a particulate catalyst support, a cobalt compound as an active component precursor, and water; subjecting the catalyst support to Impregnation with the cobalt compound; drying the impregnated catalyst support; and calcining the impregnated support, to obtain the catalyst precursor, which contains cobalt oxide. The catalyst


precursor thus obtained must, however, then still be activated or reduced prior to using it for catalyzing a FIscher-Tropsch reaction, and this reduction or activation is effected in accordance with the method of the present invention. The resultant catalyst is thus an activated FIscher-Tropsch catalyst.
The regenerated catalyst precursor can be that obtained by regenerating a spent cobalt FIscher-Tropsch catalyst, that was used In a FTS process for a period of time, by means of any suitable regeneration process, which results in an oxidized catalyst precursor containing supported cobalt oxide.
Any commercially available pre-shaped porous oxide catalyst support, such as alumina (AI2O3), silica (SiOa). titania (Ti02). magnesia (MgO). SiO2-Al2O2 and zinc oxide (ZnO), may be used. The support preferably has an average pore diameter between 8 and 50 nanometers, more preferably between 10 and 15 nanometers. The support pore volume may be between 0.1 and 1.5m^g, preferably between 0.3 and O.QmVg.
The support may be a protected modified catalyst support, containing, for example, silicon as modifying component, as generally described in EP Application No. 99906328.2 (European Publication No. 1058580), which is hence incorporated herein by reference.
More specifically, the protected modified catalyst support may be that obtained by contacting a silicon precursor, eg an organic silicon compound such as tetra ethoxy silane (TEGS') of tetra methoxy silane (TMOS'). with the catalyst support, eg by means of impregnation, precipitation or chemical vapour deposition, to obtain a silicon-containing modified catalyst support; and calcining the silicon-containing modified catalyst support, eg in a rotary calclner, at a temperature from 100°C to 800°C, preferably from 450°C to 550°C, and for a period of from 1 minute to 12 hours, preferably from 0.5 hour to 4 hours.
The cobalt loading can be between 5gCo/100g support and 70gCo/100g support, preferably between 20gCo/100g support and 55gCo/100g support.


The cobalt salt may, In particular, be cobalt nitrate. Co(N03)2.6H20.
The Impregnation of the catalyst support may. in principle, be effected by any Icnown method or procedure such as incipient wetness impregnation or slurry Impregnation. Thus, the impregnation may generally be effected In the manner described in US 6455462 or In US 5733839, and which are thus incorporated herein by reference thereto.
More specifically, impregnation may be effected by subjecting, at elevated temperature, a slurry comprising the particulate catalyst support, water, and the cobalt salt to a sub-atmospheric pressure environment, which may be down to 5kPa(a), preferably between atmospheric pressure and 10l(Pa(a); drying the impregnated canler at elevated temperature and under a sub-atmospheric pressure environment, which may be as hereinbefore described. Still more specifically, the impregnation may be effected by subjecting the slunry, In an initial treatment stage, to treatment at elevated temperature and under a sub-atmospheric pressure environment as hereinbefore described to Impregnate the support with the cobalt salt and to dry the impregnated support partially, and thereafter, in a subsequent treatment stage, subjecting the partially dried impregnated support to treatment of elevated temperature and under a sub-atmospheric pressure environment as hereinbefore described, such that the temperature in the subsequent treatment stage exceeds that in the initial treatment stage and/or the sub-atmospheric pressure in the subsequent treatment stage is lower than that in the initial treatment stage, thereby to obtain more vigorous drying of the impregnated support in the subsequent treatment stage than in the initial treatment stage, to obtain a dried impregnated support.
The impregnation may include subjecting the support to two or more impregnation steps, to obtain a desired cobalt loading. Each impregnation step may then include an initial and a subsequent treatment stage as hereinbefore described.


The process may then include, in each of the impregnation steps, controiiing the drying rate of the slurry to a specified drying profile.
The support impregnation may thus involve a 2-step slurry phase impregnation process, which is dependent on a desired cobalt loading requirement and the pore volume of the catalyst support.
The support impregnation and drying may typically the effected in a conical vacuum drier with a rotating screw or in a tumbling vacuum drier.
During the cobalt Impregnation steps, a water soluble precursor salt of platinum (R), palladium (Pd), ruthenium (Ru), rhenium (Re) or mixtures thereof, may be added, as a dopant capable of enhancing the redudbillty of the active component.
Calcination of the Impregnated and dried material may be done using any method, Icnown to those skilled In the art, for example in a fluidlzed bed, or a rotary kiln, calciner at 200-400°C. It may, in particular, be effected as described in PCT Patent Applicatbn WO 01/39882, which is thus also Incorporated herein by reference.
The invention extends also to an activated Fischer-Tropsch catalyst, when obtained by the process of the first aspect of the invention.
The activated Fischer-Tropsch catalyst can t>e used in a process for producing hydrocariSons, which includes contecting a synthesis gas comprising hydrogen (H2) and carbon monoxkle (CO) at an elevated temperature between 180*'C and 250°C and an elevated pressure between 10 and 40 bar with an activated Fischer-Tropsch catalyst as hereinbefore described, using a Fischer-Tropsch reaction of the hydrogen with the carbon monoxide.
The invention will now be described in more detail with reference to the following non-limiting example.


EXAMPLE 1
A particulate supported cobalt-based Fischer-Tropsch synthesis catalyst precursor, which, on activation, produces a 30g Co/0.075Pt/1.5SI/100g AI2O3 proprietary sluny phase Fischer-Tropsch synthesis catalyst of the Applicant, and which Is fully described in WO 01/39882, was Investigated.
A representative batch of this pre-reduced catalyst precursor was specifically prepared as follows: Puralox SCCa 2/150, pore volume of 0.48mVg, from SASOL Gemiany GmbH of Uberseering 40, 22297 Hamburg, Germany was modified with silicon such that the final silicon level was 2.5 Si atoms/nm^ of support. TEOS (tetra ethoxy sllane) was added to ethanol, alumina (11 ethanol/kg alumina) was added to this solution, and the resultant mixture stirred at 60 "C for 30 minutes. Subsequently the solvent was removed under vacuum with a jacket temperature of the drier equipment of 95 'C. The dried modified support was then calcined at 500 "C for 2 hours. A solution of 17.4kg of Co(N03)2.6H20. 9.6g of (NH3)4Pt(N03)2. and 11kg of distilled water was mixed with 20.0kg of the above mentioned silica modified gamma alumina support by adding the support to the solution. The slurry was added to a conical vacuum drier and continuously mixed. The temperature of this sluny was increased to 60°C after which a pressure of 20kPa(a) was applied. During the first 3 hours of the drying step, the temperature was increased slowly and reached 95°C after 3 hours. After 3 hours the pressure was decreased to 3-15kPa(a), and a drying rate of 2:5m%/h at the point of incipient wetness was used. The complete impregnation and drying step took 9 hours, after which the impregnated and dried catalyst support was immediately and directly loaded Into a fluidised bed calclner. The temperature of the dried impregnated catalyst support was about 75°C at the time of loading into the calciner. The loading took about 1 to 2 minutes, and the temperature Inside the calclner remained at its set point of about 75°C. The dried impregnated catalyst support was heated from 75°C to 250°C, using a heating rate of 0.5°C/min and an air space velocity of 1.0 mVkg Co(N03)2.6H20/h, and kept at 250°C for 6 hours. To obtain a catalyst with a cobalt loading of 30gCo/100gAl2O3, a second impregnation/drylng/calcination


step was performed. A solution of 9.4kg of Co(N03)2.6H20, 15.7g of (NH3)4Pt(N03)2. and 15.1kg of distilled water was mixed with 20.0kg of the catalyst precursor from the first Impregnatton and calcination, by adding the catalyst precursor to the solution. The slurry was added to a conical vacuum drier and continuously mixed. The temperatufB of this sluny was increased to OO'C after which a pressure of 20kPa(a) was applied. During the first 3 hours of the drying step, the temperature was increased slowly and reached QS'C after 3 hours. After 3 hours the pressure was decreased to 3-15kPa(a), and a drying rate of 2.5m%/h at the point of incipient wetness was used. The complete impregnatbn and drying step took 9 hours, after which the treated catalyst support was immediately and directly toaded into the fluidlsed bed calciner. The temperature of the dried impregnated catalyst support was about JS'C at the time of toading into the cateiner. The loading took about 1 to 2 minutes, and the temperature inside the cateiner remained at its set point of about ZS'C. The dried Impregnated catalyst was heated from 75°C to 250°C. using a heating rate of O.S'C/min and an air space vebcity of 1.0 mVkg Co(N03)2.6H20/h, and kept at 250'C for 6 hours. A supported cobalt catalyst precursor on an alumina support was thus obtained.
One sample of this precursor, klentlfied as Precursor A, was subjected to a
standard one-step reduction or activatton procedure as follows:
In a fluidized bed (20mm internal diameter) reduction unit, the catalyst
precursor A was reduced, at atmospheric pressure, utilizing an undiluted H2
reducing gas (100vol% H2) as total feed gas at a space velocity of 13.7 m^n
per kilogram reducible cobalt per hour, whilst applying the following
temperature program: heat from 25°C to 425*0 at 1°0/min, and hold
isothermally at 425°0 for 16 hours.
Precursor A was thus thereby transformed Into comparative Oatalyst A.
Another sample of this precursor, identified as Precursor B, was subjected to the following 3 stage reduction procedure (Table 1): (1) in a first activation stage, the sample was heated from 25°0 to 120°C at a first heating rate of rc/min using pure 100% hydrogen;

(ii) in a second activation stage, sample B was held at 120°C for 3 hours, then at 130X for a further 3 hours, and thereafter at 140°C for yet a further 3 hours;
(iii) in a third activation stage, the sample was heated from 140°C to 425°C at a heating rate of 1°C/min and using the same space velocity as in the first and second activation stages; the temperature was held at 425'Cfor4hour8.
This reduction procedure was also carried out in the fluidized bed reduction unit hereinbefore described, and the same undiluted H2 reducing gas (100vol% H2) was used In all three activation stages. During all three stages a space velocity of 13.7mn^/kg reducible cobalt/hour was used, while using the pure 100 % hydrogen.
Thus, Precursor B was subjected to a 3-stage reduction/activation procedure in accordance with the invention, to obtain Catalyst B which is thus in accordance with the invention.
During reduction, precursors A and B were thus transfomiiad into Fischer-Tropsch synthesis ('FTS') Catalysts A and B respectively. These catalysts were evaluated in a laboratory scale reactor under realistic FTS conditions (230*0,17.5 barg pressure. H2:CO inlet ratio of 1.9:1, inlet contains 15% Inerts (hence 85% of inlet is H2 and CO), synthesis gas space velocity of 7000ml/g/h and at synthesis gas conversions of between 50 and 65%).




RIAF = Belatlve intrinsic Flscher-Tropsch Tropsch synthesis Activity Factor
FronfY Table 1(RIAF data) it is clear that the activity of the 3-stage reduced catalyst B (run CB034) is significantly higher than that of the standard reduced catalyst A (run 198£) after 1 day online.
The Relatlve Intrinsic Fischer-Tropsch synthesis Activity factor ('RIAFx') of a supported cobalt sluny phase catalyst, of which the pre-reduction catalyst precursor has been prepared in strict accordance with a prescribed catalyst preparation procedure X, ie catalyst precursor X. is defined as:

where:
a) Axi is the Antienius pre-exponentlal factor of catalyst precursor X,
activated according to an arbitrary reduction procedure
b) Ax is the Arrhenius pre-exponentlal factor of catalyst precursor X,
estimated from the 15 hours on stream sluny-phase Continuous §tin-ed
lank Beactor (CSTR) Fischer-Tropsch synthesis performance under
realistic conditions, and having utilized the standard one-step reduction
procedure:
Fluidlzed bed (20mm Intemal diameter) reduction of 15±5g catalyst precursor A (le pre-reduction catalyst mass), at atmospheric pressure utilizing an undiluted H2 reducing gas (purity of 5.0) as total feed at a space velocity of 13700mtn per gram reducible cobalt per hour, whilst applying the following temperature program: heat from 25'C to 425"C at rc/min, and hold isothemriaiiy at 425°C for 16 hours.
c) The pre-exponential factor A, ie applicable to both Axi and Ax, is defined from the generally accepted cobalt-based Fischer-Tropsch empirical kinetic expresston:



where:
TFT is expressed in terms of the number of moles of CO converted into Fischer-Tropsch synthesis products per unit time per unit mass of the catalyst precursor in Its pre-reduction state.
d) X is any catalyst precursor.
14



I/WE CLAIM:
1. A process for producing a supported cobalt-based Fischer-
Tropsch synthesis catalyst, which process includes
in a first activation stage, treating a particulate supported cobalt-based Fischer-Tropsch synthesis catalyst precursor comprising a catalyst support impregnated with cobalt and containing cobalt oxide, with a hydrogen-containing reducing gas or a nitrogen-containing gas, at a first heating rate. HR1, until the precursor has reached a temperature. T1, where 80°C≤i≤180°C, to obtain a partially treated catalyst precursor;
in a second activation stage, treating the partially treated catalyst precursor with a hydrogen-containing reducing gas, at a second average heating rate, HR2, with x step Increments, where x is an integer and is greater than 1, and where 0 in a third activation stage, treating the partially reduced catalyst precursor with a hydrogen-containing reducing gas. at a third heating rate. HR3. where HR3>HR2 until the partially reduced catalyst precursor reaches a temperature, T2. and maintaining the partially reduced catalyst precursor at T2 for a time, ta, where t2 is from 0 to 20 hours, to obtain an activated supported cobalt-based Fischer-Tropsch synthesis catalyst.
2. A process according to Claim 1 wherein, in the first activation stage, 0.5°C/min≤R1i10»C/mln.
3. A process according to Claim 2 wherein, in the first activation stage, rC/mln≤HR1≤2'C/mln.
4. A process according to any one of Claims 1 to 3 inclusive wherein, in the second activation stage, 1≤ti≤10 hours.
5. A process according to Claim 4 wherein, in the second activation stage, 2≤ ti≤6 hours.


6. A process according to any one of Claims 1 to 5 inclusive
wherein, in the second activation stage, the precursor is heated from the
temperature T1 to a temperature TH where TH> TI and TH 7. A process according to any one of Claims 1 to 6 inclusive
wherein, in the third activation stage, 300C°≤2≤S600°C.
8. A process according to any one of Claims 1 to 7 inclusive
wherein, in the third activation stage, 1^t2^10 hours.
9. A process according to any one of Claims 1 to 8 inclusive,
wherein the space velocity of the gas is constant during the treatments in the
first, second and third stages.
10. A process according to any one of Claims 1 to 9 inclusive,
wherein the treatments in the first, second and third activation stages are
each effected at a pressure between 0.6 and 1.3 bar(a).
11. A process according to any one of Claims 1 to 10 inclusive,
wherein a hydrogen-containing reducing gas is used in the first activation
stage, with the hydrogen-containing reducing gas in each of the activation
stages comprising >90VQI% H2 and 12. A process according to Claim 1. wherein the hydrogen-
containing gas in each of the activation stages comprised >97vol% H2 and


Documents:

http://ipindiaonline.gov.in/patentsearch/GrantedSearch/viewdoc.aspx?id=M+4EXzDIRJ/bTNsYmUDn2w==&amp;loc=egcICQiyoj82NGgGrC5ChA==


Patent Number 279562
Indian Patent Application Number 6712/CHENP/2009
PG Journal Number 05/2017
Publication Date 03-Feb-2017
Grant Date 25-Jan-2017
Date of Filing 13-Nov-2009
Name of Patentee SASOL TECHNOLOGY (PROPRIETARY) LIMITED
Applicant Address 1 STURDEE AVENUE, ROSEBANK, 2196 JOHANNESBURG
Inventors:
# Inventor's Name Inventor's Address
1 VISAGIE, JACOBUS LUCAS 23 DONKIN STREET, 1947 SASOLBURG,
2 BOTHA, JAN, MATTHEUS 38 BILLINGHAM STREET, 1947 SASOLBURG
3 KOORTZEN, JOHANNES, GERHARDUS 13 RUBEN STREET, 1947 SASOLBURG
4 DATT, MICHAEL, STEVEN 402 HEADINGLEY JACOBS AVENUE, ILLOVO, 2196 JOHANNESBURG
5 BOHMER, ALTA 28 AQUA STREET, 1932 DENEYSVILLE
6 VAN DE LOOSDRECHT, JAN BOSCHENVAAL RIVERFRONT LODGES, 25 BARRAGE ROAD, 1947, SASOLBURG
7 SAIB, ABDOOL, MUTHALIB 120 KALDINS VILLA, EMFULENI GOLF ESTATE, 1911 VANDERBIJLPARK
PCT International Classification Number C10G2/00
PCT International Application Number PCT/IB2008/051724
PCT International Filing date 2008-05-05
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 2007/03621 2007-05-04 South Africa