Title of Invention

SYSTEM,APPARATUS AND METHOD FOR NETWORK INITIATED PDP CONTEXT ACTIVATION FOR A SECOND PDP CONTEXT

Abstract The present invention provides a system, apparatus and method wherein the network initiates a PDP context activation for a second PDP context using a new IP address that can be used for new transport sessions whenever one or more operator configured criteria apply. For example, the present invention can be used to: (1) route ongoing and new communication sessions from the old network device associated with the old IP address through a new network device associated with the new IP address using the old IP address; (2) route ongoing communication sessions from the old network device through the new network device using the old IP address, and new communication sessions directly through the new network device; or (3) route ongoing communication sessions from the old network device through the new network device without using the new IP address, and new communication sessions directly through the new network device.
Full Text TECHNICAL FIELD
The present invention relates in general to the field of mobile communications and, more
particularly, to network initiated mobility management for mobile terminals.
PRIORITY CLAIM
This patent application is a non-provisional application of U.S. provisional patent application
60/745,685 filed on April 26, 2006 and entitled "Network Initiated Activation for Local
Breakout/Initiation of a New Primary PDP Context Due to Mobility," which is hereby
incorporated by reference in its entirety.
BACKGROUND
When using mobile packet switched services there is in some cases a need to use an Internet
Protocol (IP) point of presence (POP) that is, in the network topology, located closer to the
physical location of the user equipment. This need may arise due to several reasons.
One such reason could be to avoid suboptimal routing that would occur if the user equipment
(UE) (also referred to as a mobile terminal) keeps its IP point of presence and uses the same
IP address to communicate, while it moves far away from the IP point of presence. This may
cause inefficiencies depending on what kind of services the UE is using. The inefficiencies
could arise in the form of too long delays, too low throughput (e.g., due to the long delay
when Transport Control Protocol (TCP) is used as the transport protocol). Additionally, the
suboptimal routing can cause unnecessary transmission costs for the operator.
Another reason for the need of a local IP point of presence is to use localized content, where
the localization could be based on the IP address. Another example of this is local multicast
services.
In addition, IP mobility solutions, namely Mobile IP (RFC 3344, IP Mobility Support for
IPv4; RFC3775, Mobility Support in IPv6), may require a local IP address to work in the

mobile system. Note that Mobile IP based solutions are being discussed for the new System
Architecture Evolution (SAE) system architecture (3GPP TR 23.882, System Architecture
Evolution: Report on Technical Options and Conclusions), though there is no conclusion yet
if they will eventually be used.
In the current General Packet Radio Service (GPRS), mobile terminals can request a new IP
address using the packet data protocol (PDP) context activation procedure. This procedure is
initiated by the terminal, and it is typically invoked when the terminal expects to use packet
switched services. There is no mechanism in GPRS where terminal mobility would trigger the
activation of a new PDP context. Also, there is no easily deployable mechanism for a
network-initiated IP address allocation. In other words, there is no network-initiated PDP
context activation procedure. For these reasons, current GPRS technology does not provide
the means' to satisfy the need for a local IP point of presence.
Note that one exception exists: when the mobile terminal roams to a new network, it may
perform a new attach and subsequently a new PDP context activation procedure which can
allocate a local IP point of presence (i.e., local IP address) in the visited network. This
typically occurs when the mobile terminal moves to a new network operator. But according to
the discussion above, there is also a need to allocate a local IP point of presence, which is
initiated by the network, even when the mobile terminal remains in the same network. This
need is especially high in networks that span over a large geographical area, e.g. USA or
China.
Although Mobile Internet Protocol version 6 (MIPv6) route optimization could be used to
solve the routing optimization problems, it has a number of disadvantages. First, the policy
enforcement point is changed in an ongoing flow which may compromise charging and policy
control enforcement. Second, policy and charging enforcement becomes more complicated
because the network has to process more headers, i.e. those associated with Mobile IP. Third,
moving the enforcement point could also require that the Policy Control and Charging Rules
Function (PCRF) node is moved which introduces a lot of complexity, namely the transfer of
context from the old to the new PCRF, and selection of the current PCRF becomes difficult.

Also note that MIPv6 would require that the terminal implements the corresponding MIPv6
protocol mechanisms which are assumed to be complex. Additionally, the correspondent
nodes are also required to support MIPv6 route optimization. That means that the MIPv6
approach works only for IPv6 compatible networks.
SUMMARY
The present invention provides a system, apparatus and method wherein the network initiates
a PDP context activation for a second PDP context using a new IP address that can be used
for new transport sessions whenever one or more operator configured criteria apply. For
example, the present invention can be used to: (1) route ongoing and new communication
sessions from the old network device associated with the old IP address through a new
network device associated with the new IP address using the old IP address; (2) route ongoing
communication sessions from the old network device through the new network device using
the old IP address, and new communication sessions directly through the new network device;
or (3) route ongoing communication sessions from the old network device through the new
network device without using the new IP address, and new communication sessions directly
through the new network device. Alternatively, the UE can initiate the second Primary PDP
context set up based on (specific) location information received in the broadcast information
received from the base stations or initiated from a PDN GW/Serv. GW.
Accordingly, the present invention allows the Third Generation Partnership Project (3GPP)
core network to take control over the Gateway GPRS Support Node/Packet Data Network
Gateway (GGSN/PDN GW) handover process to provide smooth handovers in the network
for local breakout. By using network initiated PDP context activation for the second PDP
context with a new IP address, small impact is foreseen in the User Equipment (UE) or mobile
terminal, and no tunneling support is needed in the UE. The impact on the Policy Control and
Charging (PCC) architecture is also minimal. Moreover, there will not be any impact on
procedures when local breakout is not supported. This new PDP context with a new IP
address can then be used for local breakout of IP-traffic. Alternatively, this PDP context can
also be used for IP-based mobility protocols such as Mobile IP (with or without route
optimization), MIPv4, MIPv6, or Roam-IP.

A first embodiment of the present invention provides a method for creating a second network
address for a mobile terminal having a first network address within a communications
network. The second network address for the mobile terminal is created whenever one or
more network operator criteria are satisfied. Thereafter, the second network address is
provided to the mobile terminal and one or more network devices such that the second
network address is used for one or more new communication sessions with the mobile
terminal.
A second embodiment of the present invention provides a method for creating a second
network address for a mobile terminal having a first network address within a
communications network. The network determines whether one or more network operator
criteria associated with a mobile terminal have been satisfied. If the network operator criteria
have been satisfied, the second network address for the mobile terminal is created, one or
more use-based parameters are defined for the first and second network addresses, the second
network address is registered with a network database, the second network address is
provided to the mobile terminal and one or more applicable network devices and
correspondent nodes, and the first and second network addresses are used and removed in
accordance with the defined use-based parameters.
A third embodiment of the present invention provides a network node for creating a second
network address for a mobile terminal having a first network address within a
communications network. The network node includes a communications interface
communicably coupled to the mobile terminal and one or more network devices and a
processor communicably coupled to the communications interface. The processor is
configured to create the second network address for the mobile terminal whenever one or
more network operator criteria are satisfied and provide the second network address to the
mobile terminal and one or more network devices via the communications interface such that
the second network address is used for one or more new communication sessions with the
mobile terminal.

A fourth embodiment of the present invention provides a system having a communications
network and a mobile termination. The communications network has at least one network
node and one or more network devices. The mobile terminal is communicably coupled to the
network node and has a first network address. The network node has a processor configured
to create a second network address for the mobile terminal whenever one or more network
operator criteria are satisfied and provide the second network address to the mobile terminal
and at least one of the network devices such that the second network address is used for one
or more new communication sessions with the mobile terminal.
BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS
Further benefits and advantages of the present invention will become more apparent from the
following description of various embodiments that are given by way of example with
reference to the accompanying drawings, in which:
FIGURE 1 is a flow chart illustrating a method for creating a second network address for a
mobile terminal having a first network address within a communications network in
accordance with a first embodiment of the present invention;
FIGURE 2 is a flow chart illustrating a method for creating a second network address for a
mobile terminal having a first network address within a communications network in
accordance with a second embodiment of the present invention; and
FIGURES 3A, 3B and 3C show a system and network nodes operating in accordance with
various embodiments of the present invention.

DETAILED DESCRIPTION
While the making and using of various embodiments of the present invention are discussed in
detail below, it should be appreciated that the present invention provides many applicable
inventive concepts that can be embodied in a wide variety of specific contexts. The specific
embodiments discussed herein are merely illustrative of specific ways to make and use the
invention and are not intended to limit the scope of the invention.
To facilitate the understanding of this invention, a number of terms are defined below. Terms
defined herein have meanings as commonly understood by a person of ordinary skill in the
areas relevant to the present invention. Terms such as "a", "an" and "the" are not intended to
refer to only a singular entity, but include the general class of which a specific example may
be used for illustration. The terminology herein is used to describe specific embodiments of
the invention, but their usage does not delimit the invention, except as outlined in the claims.
The present invention provides a system, apparatus and method wherein the network initiates
a PDP context activation for a second PDP context using a new IP address that can be used
for new transport sessions whenever one or more operator configured criteria apply. For
example, the present invention can be used to: (1) route ongoing and new communication
sessions from the old network device associated with the old IP address through a new
network device associated with the new IP address using the old IP address; (2) route ongoing
communication sessions from the old network device through the new network device using
the old IP address, and new communication sessions directly through the new network device;
or (3) route ongoing communication sessions from the old network device through the new
network device without using the new IP address, and new communication sessions directly
through the new network device. Alternatively, the UE can initiate the second Primary PDP
context set up based on (specific) location information received in the broadcast information
received from the base stations or initiated from a PDN GW/Serv. GW.
Accordingly, the present invention allows the Third Generation Partnership Project (3GPP)
core network to take control over the Gateway GPRS Support Node/Packet Data Network
Gateway (GGSN/PDN GW) handover process to provide smooth handovers in the network

for local breakout. By using network initiated PDP context activation for the second PDP
context with a new IP address, small impact is foreseen in the User Equipment (UE) or mobile
terminal, and no tunneling support is needed in the UE. The impact on the Policy Control and
Charging (PCC) architecture is also minimal. Moreover, there will not be any impact on
procedures when local breakout is not supported.
This new PDP context with a new IP address can then be used for local breakout of IP-traffic.
Alternatively, this PDP context can also be used for IP-based mobility protocols such as
Mobile IP (with or without route optimization, MIPv4 (see RFC 3344, IP Mobility Support
for IPv4) or MIPv6 (see RFC3775, Mobility Support in IPv6) or Roam-IP (see Z. R. Turanyi,
Cs. Szabo, E. Kail, A. G. Valko, "Global Internet Roaming with ROAMIP," ACM Mobile
Computing and Communications Review (MCCR), Vol. 4, No. 3, p. 58-68., July 2001; Zoltan
Turanyi, Andras G. Valko "Roaming agent for internetwork handover", invention disclosure,
ETH/RL-99:1441; Zoltan Turanyi, Andras G. Valko "Mobility Management for Mobile
terminals", U.S. Patent No. 6,990,339 B2, January 24, 2006). Roam-IP is a global mobility
architecture that uses application layer solutions for global reachability and reuses transparent
tunneling mechanisms to ensure session continuity. The present invention and Roam-IP on
application layer solutions for reachability. As discussed in the references cited above, most
applications have their own registration mechanisms which eliminate the need to provide
reachability at a permanent IP address (which is a feature of Mobile IP). While Roam-IP
provides solutions for how to maintain session continuity even when the user hands over from
one network to another, it does not consider how a local IP point of presence can be provided
in a mobile network spanning a large coverage area. Hence, the present invention can be
regarded as being complementary to Roam-IP such that a network operator may use both the
present invention and Roam-IP, or any one of them.
Now referring to FIGURE 1, a flow chart illustrating a method 100 for creating a second
network address for a mobile terminal having a first network address within a
communications network in accordance with a first embodiment of the present invention is
shown. The second network address for the mobile terminal is created whenever one or more
network operator criteria are satisfied in block 102. The first and second network addresses
can be an Internet Protocol (IP) point of presence, identifier or combination of data that can be

used to properly route traffic to the mobile terminal. The mobile terminal, also referred to as
user equipment (UE), can be a phone, personal data assistant (PDA), computer or other
mobile communications device. The one or more network operator criteria may include a
movement of the mobile terminal within a home public land mobile network (PLMN) or to a
new visited PLMN, a traffic type associated with the first network address, a traffic quality
associated with the first network address, a traffic quantity associated with the first network
address, a determination that the first network address is not local enough for the one or more
new communication sessions or a combination thereof. The second network address can be
created by initiating a packet data protocol (PDP) context activation by a network node or the
mobile terminal. The mobile station initiates the PDP context activation after receiving a
specific location information in a broadcast from a base station or initiated from a PDN
GW/Serv. GW. In other words, the network instructs the mobile terminal to initiate the PDP
context activation. Thereafter, the second network address is provided to the mobile terminal
and one or more network devices such that the second network address is used for one or
more new communication sessions with the mobile terminal in block 104. The one or more
network devices may include a database, a correspondent node, a Gateway General Packet
Radio Service Support Node (GGSN) or a PDN GW/Serv. GW.
The use of the second network address and continued use of the first network address can
fixed or dynamically determined by the network operator. In other words, the network
operator is free to configure the present invention to determine how and when both ongoing
and new communication sessions should be routed to the mobile terminal via the first network
address, the second network address or a combination thereof. For example, the first network
address can be mandatory for one or more ongoing communication sessions, optional for the
one or more ongoing communication sessions, or used only for one or more specific
applications. Similarly, the second network address can be mandatory for the one or more
new communication sessions, optional for the one or more new communication sessions, or
used only for one or more specific applications. The second network address can also be used
for tunneling traffic from the first network address, a network node (e.g., a Gateway General
Packet Radio Service Support Node (GGSN) or a Packet Data Network Gateway/Serving
Gateway (PDN GW/Serv. GW)), or an anchor point to the second network address. Typically,
the first network address will be removed after a specified period of time, a traffic threshold is

reached or a combination thereof. Likewise, the second network address will be typically
maintained as long as the mobile terminal is connected to the communications network, until
the mobile terminal moves to a new communications network or until a specified period of
time has elapsed. As previously discussed, the second network address can be used for a local
breakout of Internet Protocol (IP) traffic or with one or more IP-based mobility protocols
(e.g., Mobile IP with route optimization, Mobile IP without route optimization, MIPv4,
MIPv6, Roam IP or a combination thereof).
Referring now to FIGURE 2, a flow chart illustrating a method 200 for creating a second
network address for a mobile terminal having a first network address within a
communications network in accordance with a second embodiment of the present invention is
shown. The network determines whether one or more network operator criteria associated
with the mobile terminal have been satisfied in block 202. If the one or more criteria have not
been satisfied, as determined in decision block 204, the network continues to monitor the
mobile terminal in block 202. If the one or more operator criteria associated with the mobile
terminal have been satisfied, as determined in decision block 204, the second network address
is created for the mobile terminal in block 206 and one or more use-based parameters are
defined for the first and second network addresses in block 208.
The use-based parameters define how and when the first and second network addresses with
be used with ongoing and new communication sessions, and when they will be removed. The
application of the use-based parameters can be fixed or dynamically determined by the
network operator. For example, the first network address can be mandatory for one or more
ongoing communication sessions, optional for the one or more ongoing communication
sessions, or used only for one or more specific applications. Similarly, the second network
address can be mandatory for the one or more new communication sessions, optional for the
one or more new communication sessions, or used only for one or more specific applications.
The second network address can also be used for tunneling traffic from the first network
address, a network node, or an anchor point to the second network address. Typically, the first
network address will be removed after a specified period of time, a traffic threshold is reached
or a combination thereof. Likewise, the second network address will be typically maintained
as long as the mobile terminal is connected to the communications network, until the mobile

terminal moves to a new communications network or until a specified period of time has
elapsed. The second network address is registered with a network database in block 210 and
provided to the mobile terminal and one or more applicable network devices and
correspondent nodes in block 212. Thereafter, the first and second network addresses are
used and removed in accordance with the defined use-based parameters in block 214.
The third and fourth embodiments of the present invention will now be described in reference
to the examples shown in FIGURES 3A, 3B and 3C. The present invention provides support
in the 3GPP core network for local breakout solutions by initiating a PDP context activation
procedure for a local IP point of presence. Basically the same mechanisms can be used both
within a home PLMN and in the roaming case when the user moves to a new visited PLMN.
Currently a tunneling mechanism is in place which tunnels traffic to and from the existing IP
point of presence where the existing IP address is allocated. In many cases, the trigger for the
activation of the new PDP context is the mobility of the user, which may be both mobility
within the same PLMN, or roaming to a new PLMN
The selection of "home PDN GW" (or GGSN, since this can be applied on 2G and 3G GPRS
also) is decided by the local Serving GPRS Support node (SGSN)/MME and the domain
name service (DNS) configuration for access point names (APN). Note that the new SAE
system may use new mechanisms for the selection of a PDN GW/Serv. GW node in the
MME, other than the current DNS lookup mechanism. The APN name needs to be available
at the new SGSN (either retrieved from the SGSN context response (for legacy it is hidden in
the PDP context, for new messages this info must be available), or alternatively from the UE)
in order to support the present invention with handovers between operators (handovers
between operators are rarely or maybe never used today). If the APN name is available, then
the local GGSN/PDN GW or SGSN/MME can decide whether new PDP contexts shall be
allocated locally or traffic shall be tunneled to the old GGSN/PDN GW. It is not required to
support this between PLMNs but by using the same tunneling solution between PLMNs and
within PLMNs it is possible to support that scenario also.
The network initiates a PDP context activation of another PDP context with a new IP address
(using the standard network requested PDP context activation procedure, in 3GPP 23,0606, or

an evolution thereof), when the old GGSN or PDN GW is not considered to be local enough
for the traffic. This is defined by operator configured criteria. The MME/SGSN may or may
not change as a result of the change in the PDN GW/Serv. GW /GGSN. The new PDP
context may be used for new transport sessions, i.e. all new connections to different
applications, p-2-c or p-2-p based. The new IP address may also be used for tunneling of
traffic from another node, such as the previous GGSN or PDN GW/Serv. GW, or from any
anchor point. For the latter, the tunneling protocol/solution may be Mobile IPv4, Mobile IPv6
or any other mobility protocol using the new IP address as tunnel end-point.
The system includes a communications network 300 and a mobile terminal 302. The
communications network 300 has at least one region (e.g., Region A and Region B), at least
one network node (e.g., PDN GW/Serv. GW home address.304, PDN GW/Serv. GW foreign
address 306 or other network node) and one or more network devices (not shown). The
mobile terminal 302 is communicably coupled to the network node 304 and has a first
network address 308. The applicable network node has a processor configured to create a
second network address 310 for the mobile terminal 300 whenever one or more network
operator criteria are satisfied and provide the second network address 310 to the mobile
terminal 302 and at least one of the network devices (e.g., PDN GW/Serv. GW home address
304, correspondent node 312 or other device) such that the second network address 310 is
used for one or more new communication sessions with the mobile terminal 302. The
network node also includes a communications interface communicably coupled to the mobile
terminal 302 and one or more network devices.
Now referring to FIGURE 3A, a tunneling protocol/solution for Mobile IPv4 using the
present invention is shown. The ongoing communication session (path 314) prior to initiation
of the second network address 310 is between the mobile terminal 302, the home PDN
GW/Serv. GW 304 and the correspondent node 312. After creation of the second network
address 310, the ongoing communication session and any new communication sessions (path
316) are routed from the home PDN GW/Serv. GW 304 and through the foreign PDN
GW/Serv. GW 306 (care-of address) using the second network address 310. Triangular
routing 318 is possible with MIPv4, but it optimizes the uplink only and makes firewall
configuration and policy enforcement very difficult.

Referring to FIGURE 3B, a tunneling protocol/solution for Mobile IPv6 using the present
invention is shown. The ongoing communication session (path 314) prior to initiation of the
second network address 310 is between the mobile terminal 302, the home PDN GW/Serv.
GW 304 and the correspondent node 312. After creation of the second network address 310,
the ongoing communication session is routed from the home PDN GW/Serv. GW 304 and
through the foreign PDN GW/Serv. GW 306 (care-of address) using the second network
address 310 (path 316), and any new communication sessions (path 320) are optimally routed
by MIPv6 directly through the foreign PDN GW/Serv. GW 306 (care-of address) using the
second network address 310.
Now referring to FIGURE 3C, a protocol/solution without tunneling using the present
invention is shown. The ongoing communication session (path 314) prior to initiation of the
second network address 310 is between the mobile terminal 302, the home PDN GW/Serv.
GW 304 and the correspondent node 312. After creation of the second network address 310,
the ongoing communication session is routed from the home PDN GW/Serv. GW 304 through
the foreign PDN GW/Serv. GW 306 (care-of address) without using the second network
address 310 (path 322), and any new communication sessions (path 324) are routed directly
through the foreign PDN GW/Serv, GW 306 (care-of address) using the second network
address 310. In this case, there is no tunneling to the new IP address 310; instead, the Gn/Gp
interface between SGSN and GGSN (alternatively that the inter PDN GW/Serv. GW interface
in SAE/LTE) is used for traffic to/from the old IP address 308 for already ongoing
communications. For new sessions the UE 302 shall use the new IP address 310 allocated
from the new GGSN or PDN GW. This can be achieved e.g., by having different routing costs
or by having explicit support for this mechanism in the UE 302 TCP/IP stack. The network
can then include mechanism, either timer based or traffic measurement based, that eventually
removes the old IP address 308 through the GGSN initiated delete of PDP context (or evolved
version thereof). The new IP address 310 in the new GGSN or PDN GW for SAE is kept as
long as the UE 302 is still connected to the network, or until the UE 302 moves to the next
location where a Local Breakout (LBO) is needed.

The network may provide additional information on how the new address should be used, i.e.,
whether to use it for all applications or only specific ones, whether it is mandatory or optional
to use it, whether Mobile IP can be used with the address (without or with route optimization)
whether the other addresses will be deleted, and so on. Note that it is possible that some of
the traffic is using the local IP address while the rest of the traffic is using the IP address from
the original IP point of presence, e.g., in the roaming scenario it may be possible that the
home operator allows only some of the traffic to be local (e.g., only emergency traffic or only
internet traffic is allowed to be broken out locally).
Alternatively, the UE can initiate the second Primary PDP context activation based on
(specific) location information received in the broadcast information received from the base
stations or initiated from a PDN GW/Serv. GW. The location information is either based on
the Routing/tracking area (or similar, e.g., using some bits of the routing/tracking area
identifier) but then the UE needs to know at which RA change the new primary PDP context
shall be set up. The more realistic approach seems to be that an additional information is
added to the broadcast message with some identity of the regions where a local GGSN/PDN
GW close to the base station can be selected.
The mobile terminal can take advantage of the new IP address in several ways. When an IP
application starts a new transport session, it asks for a new socket connection from the
operating system of the terminal. The operating system assigns an IP address for the socket
connection. Thereby the operating system has control over which IP address is being used by
new connections. Whenever a new, local IP address is assigned to the terminal, new
connections can start using this new address.
Additionally, applications can be directly informed about the existence of the new local IP
address. In many applications, there is a registration process where the IP address can be
registered in a server together with an application-level id. The allocation of a new IP address
can trigger such a registration process, making user that the application will start using the
new IP address.

Although the change of the IP address could in theory be problematic for applications in some
rare cases, most applications can handle the loss of connectivity at an old IP address and
automatically re-establish connectivity at a new IP address. Note that this is needed not only
for local breakout, but also to handle cases when network connectivity may go up and down.
Furthermore, many network operators, e.g. broadband operators do not allow users to keep the
same IP address for extended periods of time (e.g., more than a day), which is another reason
why applications already today need to prepare for a change of the IP address.
Although the present invention and its advantages have been described in detail, it should be
understood that various changes, substitutions and alterations can be made herein without
departing from the scope of the invention as defined by the appended claims. Moreover, the
scope of the present application is not intended to be limited to the particular embodiments of
the process, machine, manufacture, composition of matter, means, methods and steps
described in the specification, but only by the claims.

WE CLAIM:
1. A method for creating a second network address for a mobile terminal having a first
network address for use in a first packet data protocol, PDP, context within a communications
network, the method comprising the steps of:
creating the second network address for the mobile terminal by initiating by the net-
work or the mobile terminal, a second PDP context whenever one or more network operator
criteria are satisfied; and
providing the second network address to the mobile terminal and one or more network
devices such that the second network address is used for one or more new communication
sessions with the mobile terminal;
wherein:
the first network address is mandatory for one or more ongoing communication ses-
sions, optional for the one or more ongoing communication sessions, or used only for one or
more specific applications; and
the second network address is mandatory for the one or more new communication
sessions, optional for the one or more new communication sessions, or used only for one or
more specific applications.
2. The method of claim 1, wherein the first and second network addresses each comprise
an Internet Protocol, IP, point of presence.
3. The method of claim 1, wherein the one or more network operator criteria is selected
from a group consisting of at least one of the following:
a movement of the mobile terminal within a home public land mobile network,
PLMN;
a movement of the mobile terminal to a new visited PLMN;
a traffic type associated with the first network address;
a traffic quality associated with the first network address;
a traffic quantity associated with the first network address; and
the first network address is not local enough for the one or more new communication
sessions.

4. The method of claim 1, wherein the one or more network devices is selected from a
group consisting of:
a database;
a correspondent node;
a Gateway General Packet Radio Service Support Node, GGSN; and
a Packet Data Network Gateway/Serving Gateway, PDN GW/Serv. GW.
5. The method of claim 1, wherein the mobile terminal initiates the PDP context activa-
tion after receiving specific location information in a broadcast from a base station or a mes-
sage from a Packet Data Network Gateway/Serving Gateway, PDN GW/Serv. GW.
6. The method of claim 1, further comprising the step of removing the first network ad-
dress after a specified period of time, a traffic threshold is reached, or a combination thereof.
7. The method of claim 1, wherein the second network address is used for a local break-
out of Internet Protocol, IP, traffic or one or more IP-based mobility protocols.
8. The method of claim 7, wherein the one or more IP-based mobility protocols are se-
lected from a group consisting of at least one of the following:
Mobile IP with route optimization;
Mobile IP without route optimization;
Mobile IP version 4, MIPv4;
Mobile IP version 6, MIPv6; and
Roam IP.
9. The method of claim 1, further comprising the step of determining whether one of the
new communication sessions should be routed to the first network address, the second net-
work address, or a combination thereof.
10. The method of claim 1, further comprising a step selected from a group consisting of:
routing one or more ongoing communication sessions and the one or more new com-

munication sessions from a first network device associated with the first network address
through a second network device associated with the second network address using the first
network address;
routing the one or more ongoing communication sessions from the first network de-
vice through the second network device using the first network address, and routing the one or
more new communication sessions directly through the second network device; and
routing the one or more ongoing communication sessions from the first network de-
vice through the second network device without using the second network address, and rout-
ing the one or more new communication sessions directly through the second network device.
11. The method of claim 10, wherein the network node is selected from one of a Gateway
General Packet Radio Service Support Node, GGSN, and a Packet Data Network Gate-
way/Serving Gateway, PDN GW/Serv. GW.
12. The method of claim 1, wherein the second network address is maintained for a period
of time selected from:
as long as the mobile terminal is connected to the communications network;
until the mobile terminal moves to a new communications network; and
until a specified period of time has elapsed.
13. The method of claim 1, further comprising the steps of:
registering the second network address with a network database; and
informing a correspondent node of the second network address.
14. A network node for creating a second network address for a mobile terminal having a
first network address within a communications network, the network node comprising:
a communications interface communicably coupled to the mobile terminal and one or
more network devices;
a processor communicably coupled to the communications interface wherein the proc-
essor is configured to:
create the second network address for the mobile terminal by initiating a sec-
ond PDP context whenever one or more network operator criteria are satisfied; and

provide the second network address to the mobile terminal and one or more
network devices via the communications interface such that the second network address is
used for one or more new communication sessions with the mobile terminal;
wherein:
the first network address is mandatory for one or more ongoing communication ses-
sions, optional for the one or more ongoing communication sessions, or used only for one or
more specific applications; and
the second network address is mandatory for the one or more new communication
sessions, optional for the one or more new communication sessions, or used only for one or
more specific applications.
15. The network node of claim 14, wherein the one or more network operator criteria is
selected from a group consisting of at least one of the following:
a movement of the mobile terminal within a home public land mobile network,
PLMN;
a movement of the mobile terminal to a new visited PLMN;
a traffic type associated with the first network address;
a traffic quality associated with the first network address;
a traffic quantity associated with the first network address; and
the first network address is not local enough for the one or more new communication
sessions.
16. The network node of claim 14, wherein the second network address is used for a local
breakout of Internet Protocol, IP, traffic or one or more IP-based mobility protocols.
17. The network node of claim 14, wherein the network node further comprises one of the
following:
means for routing one or more ongoing communication sessions and the one or more
new communication sessions from a first network device associated with the first network
address through a second network device associated with the second network address using
the first network address;
means for routing the one or more ongoing communication sessions from the first net-
work device through the second network device using the first network address, and for

routing the one or more new communication sessions directly through the second network
device; and
means for routing the one or more ongoing communication sessions from the first
network device through the second network device without using the second network address,
and for routing the one or more new communication sessions directly through the second
network device.
18. A system comprising:
a communications network having at least one network node and one or more network
devices;
a mobile terminal communicably coupled to the network node and having a first net-
work address; and
the network node having a processor configured to create a second network address
for the mobile terminal whenever one or more network operator criteria are satisfied and to
provide the second network address to the mobile terminal and at least one of the network
devices such that the second network address is used for one or more new communication
sessions with the mobile terminal;
wherein:
the second network address is created by initiating a second PDP context by the net-
work node or the mobile terminal;
the first network address is mandatory for one or more ongoing communication ses-
sions, optional for the one or more ongoing communication sessions, or used only for one or
more specific applications; and
the second network address is mandatory for the one or more new communication
sessions, optional for the one or more new communication sessions, or used only for one or
more specific applications.
19. The system of claim 18, wherein the one or more network operator criteria is selected
from a group consisting of at least one of the following:
a movement of the mobile terminal within a home public land mobile network
(PLMN):
a movement of the mobile terminal to a new visited PLMN;

a traffic type associated with the first network address;
a traffic quality associated with the first network address;
a traffic quantity associated with the first network address; and
the first network address is not local enough for the one or more new communication
sessions.
20. The system of claim 19, wherein the mobile station initiates the PDP context activa-
tion after receiving a specific location information in a broadcast from a base station or in a
message from a Packet Data Network Gateway/Serving Gateway (PDN GW/Serv. GW).
21. The system of claim 18, wherein the second network address is used for a local break-
out of Internet Protocol (IP) traffic or one or more IP-based mobility protocols.
22. The system of claim 18, wherein the network node includes one of the following:
means for routing one or more ongoing communication sessions and the one or more
new communication sessions from a first network device associated with the first network
address through a second network device associated with the second network address using
the first network address;
means for routing the one or more ongoing communication sessions from the first net-
work device through the second network device using the first network address, and for
routing the one or more new communication sessions directly through the second network
device; and
means for routing the one or more ongoing communication sessions from the first
network device through the second network device without using the second network address,
and for routing the one or more new communication sessions directly through the second
network device.
23. A method for creating and utilizing a second network address for a mobile terminal
having a first network address for use in a first packet data protocol (PDP) context within a
communications network, the method comprising the steps of:
determining whether one or more network operator criteria associated with a mobile
terminal have been satisfied;

creating the second network address for the mobile terminal by initiating a second
PDP context-
defining one or more use-based parameters, said use-based parameters defining condi-
tions for utilizing either the first network address or the second network address;
registering the second network address with a network database;
providing the second network address to the mobile terminal and one or more applica-
ble network devices and correspondent nodes; and
utilizing the first and second network addresses in accordance with the defined use-
based parameters whenever one or more network operator criteria are satisfied;
wherein:
the first network address is mandatory for one or more ongoing communication ses-
sions, optional for the one or more ongoing communication sessions, or used only for one or
more specific applications; and
the second network address is mandatory for the one or more new communication
sessions, optional for the one or more new communication sessions, or used only for one or
more specific applications.

The present invention provides a system, apparatus and method wherein the network initiates
a PDP context activation for a second PDP context using a new IP address that can be used
for new transport sessions whenever one or more operator configured criteria apply. For
example, the present invention can be used to: (1) route ongoing and new communication
sessions from the old network device associated with the old IP address through a new
network device associated with the new IP address using the old IP address; (2) route ongoing
communication sessions from the old network device through the new network device using
the old IP address, and new communication sessions directly through the new network device;
or (3) route ongoing communication sessions from the old network device through the new
network device without using the new IP address, and new communication sessions directly
through the new network device.

Documents:

http://ipindiaonline.gov.in/patentsearch/GrantedSearch/viewdoc.aspx?id=yil7bsTLoG2XK1nwgXp5Zw==&loc=wDBSZCsAt7zoiVrqcFJsRw==


Patent Number 279605
Indian Patent Application Number 4668/KOLNP/2008
PG Journal Number 05/2017
Publication Date 03-Feb-2017
Grant Date 27-Jan-2017
Date of Filing 18-Nov-2008
Name of Patentee TELEFONAKTIEBOLAGET LM ERICSSON (PUBL)
Applicant Address S-164 83 STOCKHOLM
Inventors:
# Inventor's Name Inventor's Address
1 BACKMAN, JAN SNÄCKLIDEN 24, S-442 71 KÄMA
2 MIKLOS, GYÖRGY KÁRÓKATONA U. 3/H., H-2096 BUDAPEST
3 HALL, GÖRAN EJDERGATAN 14, S-431 64 MÖLNDAL
PCT International Classification Number H04L 29/06
PCT International Application Number PCT/IB2007/001080
PCT International Filing date 2007-04-25
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 60/745,685 2006-04-26 U.S.A.
2 11/739,950 2007-04-25 U.S.A.