Title of Invention | CURRENT CONDUCTOR FOR AN ELECTRICAL DEVICE, ESPECIALLY BUS BAR CONDUCTOR FOR AN ELECTRICAL MEDIUM VOLTAGE INSTALLATION |
---|---|
Abstract | The invention relates to a conductor for an electrical device, especially a bus bar conductor (10a, 10b, 10c) for an electrical medium voltage installation. Said current conductor comprises a center section (11,30) from an electrically conducting material for current conduction, electrical components, for example connecting contact pieces, and components from an insulating material, e.g. carrier elements, being attachable hereto. Field-controlling shielding sections (19,20) from an electrically conducting material are contiguous to the center section (11, 30) at both sides and cover at least said center section. The shielding sections (19,20) also cover the inserted electrical components. |
Full Text | Current conductor for an electrical device, especially bus bar conductor for an electrical medium voltage installation Description The invention concerns a current conductor for an electrical device, especially a bus bar conductor for an electrical medium voltage switching station. Known medium voltage switching stations have a current conductor which has one or two ribbon conductors which are adjacent to each other, and with which screening elements, which are formed by semicircular profiles on both sides of the ribbon conductor, are associated; see ABB Calor Emag Taschenbuch (pocket book), Schaltanlagen (switching stations), 10th edition, page 397, Fig. 8- 24. From EP 572 096, a bus bar conductor system for high - voltage systems, wherein three bus bars, each consisting of two bus bar sections in the shape of an arc of a circle, are fixed to a support, so that because of the shape a suitable field distribution is achieved, has become known. Such an arrangement is intended for high voltage, but not for medium voltage, which can be seen in particular in the fact that the bus bars are housed in metal cladding which is characteristic of high voltage installations.– From DE 31 37 783 Al, a gas-insulated three-phase current bus bar system, which in one alternative has a cylindrical shape which is divided in the region of a surface line, has become known; on the end edges facing each other, lugs, which project inwards, and via which connecting conductors, in particular connecting cables, can be connected with suitable fixing elements, are formed. In another arrangement which is also described in this published specification, the bus bar consists of two sections of semi-cylindrical form, the concave sides of which face each other, the two sections being fixed to each other by means of a connecting device on one surface line, and it being possible to fix connecting elements for connecting cables and similar on the diametrically opposite surface line. The construction of such bus bars or current conductors is complicated. The object of the invention is to create a current conductor for an electrical device, especially a bus bar conductor for an electrical medium voltage installation, manufacture of said current conductor being simplified relative to the known device. This object is achieved with the features of Claim 1. According to the invention, the current conductor has a central section of electrically conducting material, and electrical components, e.g. connecting contact points and similar, or components of insulating material, in particular supporting elements, can be fixed to it. The current conductor also has, on both sides of the central section, connecting screening sections of electrically conducting material, which cover at least this and control the field, the screening sections also covering any inserted electrical components. According to an advantageous version, at least the central section can be produced from electrically conducting material by extrusion. Additionally, the screening elements can also be produced from electrically conducting material by extrusion. According to an advantageous version, the central section can be produced from electrically conducting material by extrusion, in one piece with the screening elements, in which case the electrically conducting material can be aluminum or an aluminum alloy. However, there is also the possibility of producing the screening elements from electrically conducting plastic. According to an advantageous version of the invention, the central section can have a base section which is extended lengthways, and on which, preferably perpendicularly to it, fins which are arranged at intervals from each other and project in the same direction are formed, their free ends being provided with transverse beads, between which the electrical components can be fixed. The base section can be in flat or arc-shaped form. These transverse beads can each form an L or T shape with the fins, a sufficient distance for fixing the electrical components or any supporting elements being formed between the longitudinal edges, which face each other, of the transverse beads. The screening sections can connect on the base section of the central section, and in a further embodiment can be formed in one piece with it. In a further version of the invention, the screening sections can be formed of electrically conducting plastic. Each screening element is approximately C-shaped, with the concave sides facing each other and receiving the central section between them. The screening elements can be produced with each other in one piece, preferably of electrically conducting plastic, it being possible to lock the central section inside the screening elements. Further advantageous versions of the invention can be taken from the other subclaims. On the basis of the drawings, in which some embodiments of the invention are shown, the invention, and further advantageous versions, improvements and further advantages, will be explained and described in more detail. Fig. 1 shows a first embodiment of a bus bar in cross section, Fig. 2 shows another embodiment of the bus bar, also in cross section, Fig. 3 shows a third embodiment of a bus bar, Fig. 4 shows a sectional view through the bus bar according to Fig. 1, and also shows a bus bar holder, and Fig. 5 shows three bus bars according to Fig. 1 on a single bus bar holder, similar to that of Fig. 4. A bus bar according to the invention, or a current conductor 10 according to the invention, has a central section 11, which has a base section 12 in the form of a ribbon conductor. Onto this base section 12, at intervals from each other and running perpendicular to it, fins 13 and 14, on the free ends of which transverse fins 15 and 16 are formed, the edges 17 and 18 of which, facing each other and having a distance D between them, are connected. On both sides of the base section 12, approximately C-shaped screening sections 19, 20, the free longitudinal edges 21 and 22 of which, facing each other, allow access to the central section 11, are connected. Such an embodiment according to Fig. 1 can preferably be produced from aluminum by extrusion, without problems. Fig. 1 shows an electrical contact point 23, which is in the form of a tulip contact point with fingers (not shown in more detail) which are formed on a base plate 24. A T-shaped projection 25, which grips behind the edges 17 and 18 of the transverse fins 15 and 16, is provided on the base plate 24, so that the contact point 23 can be fixed on the central section 11. The contact point 23 can be locked on, or screwed tight or pushed in in another suitable manner. From Figs. 4 and 5, it can be seen that the bus bar 10 - can be fixed on a support 40 of insulating material. The support 40 of insulating material has elastic locking arms 41 and 42, which lock in behind the outer edge of the transverse fins 15 and 16 with their locking lugs 43 and 44, the two locking arms 41 and 42 receiving the transverse fins 15 and 16 between them. The support 40 has, as can be seen in Fig. 5, a flat base 50 which is rectangular in cross section, and on which arms 51 to 53 are formed, so that the result is an E shape; the free ends of the arms 51 to 53 are in the form shown in Fig. 4, so that three bus bars 10a, 10b and 10c can be locked onto the support 40, corresponding to the number of phases. In the embodiment according to Fig. 2, a central section 30 is provided, which has a flat base section 31, on which fins 32 and 33, which run perpendicularly to it, and transverse fins 34 and 35, which are formed on them, are formed. This central section, with the base section 31, the fins 32, 33 and the transverse fins 34, 35, can be produced by extrusion, and takes the current-carrying function of the bus bar. A C-shaped screening profile 36 is associated with this central section 30, and corresponding to the screening section 19 and 20, has legs 37 and 38, which are themselves C-shaped, and are to be connected to a middle section or coupling piece 39. On the inside of the middle section 39 of the C shape, locking lugs 54 and 55, behind which the base section 31 can be locked, are formed. This screening profile 36 with the locking lugs 54, 55 can also be produced by extrusion, from either aluminum or an electrically conductive plastic. In the version according to Fig. 3, a central section 60 with a base section 61, on the longitudinal edges of which fins 62, 63 running perpendicularly to it are formed, is provided, transverse fins 64 and 65 in turn connecting to the free ends of the fins 62, 63. On both sides of the base section 61, C-shaped screening elements 66 and 67 corresponding to the screening elements 19 and 20 are attached, for example by the central section 60 being partly run into the screening elements 66 and 67. In the case of the versions according to Figs. 2 and 3, a good electrically conducting connection between the central section 30 and the screening element 36, or 60 and the: screening elements 66, 67, is essential, so that these too can exercise their function. The length of the legs 19, 20; 37, 38; 66, 67 depends on the size of electrically conducting components which can be fixed to the central section 11, so that in every case, these electrically conducting components are covered by the screening legs. Patent Claims 1. A current conductor for an electrical device, especially bus bar conductor (10a, 10b, 10c) for an electrical medium voltage installation, with a central section (11, 30) of electrically conducting material to carry the current, to which central section (11, 30) electrical components, e.g. connecting contact points or those of insulating material, e.g. supporting elements, can be fixed, and with, on both sides of the central section (11, 30), connecting screening sections (19, 20) of electrically conducting material, which cover at least this and control the field, the screening sections (19, 20) also covering the inserted electrical components. 2. The current conductor as claimed in claim 1, characterized in that at least the central section (1.1, 30) is produced from electrically conducting material by extrusion. 3. The current conductor as claimed in claim 2, characterized in that the screening elements (19, 20) are produced from electrically conducting material by extrusion. 4. The; current conductor as claimed in one of the preceding claims, characterized in that the central section (11, 30) is produced from electrically conducting material by extrusion, in one piece with the screening elements (19, 20). 5. The current conductor as claimed in one of claims 1 to 4, characterized in that the electrically conducting material is aluminum or an aluminum alloy. 6. The current conductor as claimed in one of claims 1 to 3, characterized in that the screening elements are produced from electrically conducting plastic. 7. The current conductor (10) as claimed in one of the preceding claims, characterized in that the screening sections (19, 20) are C-shaped, with the concave sides facing each other. 8. The current conductor (10) as claimed in one of the preceding claims, characterized in that the central section (11, 30) has a base section (12, 31, 61) which is extended lengthways, and that the screening sections (19, 20) connect on the side edges of the base section. 9. The current conductor as claimed in one of the preceding claims, characterized in that on the base section, preferably perpendicularly to it, fins (13, 14; 32, 33; 62, 63) which are arranged at intervals from each other and project in the same direction are formed, their free ends being provided with transverse beads (15, 16; 34, 35; 64, 65), between which the electrical components can be fixed. 10. The current conductor (10) as claimed in claim 9, characterized in that the transverse beads (15, 16; 34, 35; 64, 65) each form an L or T shape with the fins (13, 14; 32, 33; 62, 63), a sufficient distance for fixing the electrical components being formed between the longitudinal edges (21, 22), which face each other, of the transverse beads (15, 16; 34, 35; 64, 65). 11. The current conductor (10) as claimed in claim 10, characterized in that the edges, which face away from each other, of the T-shaped transverse beads can be locked behind locking lugs (43, 44; 54, 55), e.g. on a support, so that the current conductor (10) can be fixed on a support of electrically conducting material. The current conductor (10) as claimed in one of the preceding claims, characterized in that the screening sections (37, 38) are joined to each other in one piece via a coupling piece (39) , and the central section (30) is fixed to the coupling piece within the space formed by the screening sections (37, 38). The current conductor (10) as claimed in claim 12, characterized in that the central section (30), can be locked firmly to the coupling piece (39). 14 The current conductor (10) as claimed in one of claims 1 to 11, characterized in that the central section is at least partly run into the screening sections, which are formed from the electrically conductive plastic. The invention relates to a conductor for an electrical device, especially a bus bar conductor (10a, 10b, 10c) for an electrical medium voltage installation. Said current conductor comprises a center section (11,30) from an electrically conducting material for current conduction, electrical components, for example connecting contact pieces, and components from an insulating material, e.g. carrier elements, being attachable hereto. Field-controlling shielding sections (19,20) from an electrically conducting material are contiguous to the center section (11, 30) at both sides and cover at least said center section. The shielding sections (19,20) also cover the inserted electrical components. |
---|
Patent Number | 279817 | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Indian Patent Application Number | 2976/KOLNP/2008 | |||||||||||||||||||||
PG Journal Number | 05/2017 | |||||||||||||||||||||
Publication Date | 03-Feb-2017 | |||||||||||||||||||||
Grant Date | 31-Jan-2017 | |||||||||||||||||||||
Date of Filing | 22-Jul-2008 | |||||||||||||||||||||
Name of Patentee | ABB TECHNOLOGY AG | |||||||||||||||||||||
Applicant Address | AFFOLTERNSTRASSE 44 CH-8050 ZURICH | |||||||||||||||||||||
Inventors:
|
||||||||||||||||||||||
PCT International Classification Number | H02G 5/04 | |||||||||||||||||||||
PCT International Application Number | PCT/EP2007/000656 | |||||||||||||||||||||
PCT International Filing date | 2007-01-24 | |||||||||||||||||||||
PCT Conventions:
|