Title of Invention

REERIGERATOR

Abstract A refrigerator is disclosed which enables the user to easily take ice out of an ice maker without causing a variation in the capacity of the refrigerator or a limitation on the position of a freezing compartment. The refrigerator includes a refrigerator body (100) which includes a freezing compartment (300) and a refrigerating compartmen (200), an ice making compartment (500) which is arranged in the refriderating compartment, to make ice, a heat exchange (310) which generates cold air for freezing food storing in the freezing compartment, and a cold air guiding device (600) which guides the cold air generated by the heat exchanger (310) to the ice making compartment (500), to enable the ice making compartment to make ice.
Full Text WO 2006/083111 PCT/KR2006/000357
1
Description
REFRIGERATOR
Technical Field
The present invention relates to a refrigerator, and more particularly, to a re-
frigerator which includes an ice making compartment for making ice.
Background Art
Generally, refrigerators are used to store food in a low-temperature and fresh state
for a prolonged period of time. Such a refrigerator stores in a frozen or refrigerated
state in accordance with the state or kind of the food.
In order to store food in a low-temperature state, the refrigerator includes a re-
frigerant system which repeatedly performs a refrigerant cycle of compression-con-
densation-expansion-evaporation.
Hereinafter, a conventional refrigerator will be described with reference to FIG. 1.
Referring to FIG. 1, the conventional refrigerator includes a refrigerator body 10
which includes a refrigerating compartment 20 for storing food in a refrigerated state,
and a freezing compartment 30 for storing food in a frozen state.
The refrigerating compartment 20 and freezing compartment 30 are partitioned
such that they have independent spaces, respectively. Each of the refrigerating
compartment 20 and freezing compartment 30 is provided with an opening at the front
side thereof.
The opening of the refrigerating compartment 20 is opened or closed by re-
frigerating compartment doors 22. The opening of the freezing compartment 30 is
opened or closed by a freezing compartment door 32.
Generally, the refrigerating compartment 20 is more frequently used than the
freezing compartment 30. To this end, the refrigerating compartment 20 is arranged
over the freezing compartment 30 so as to enable the user to easily take out the food
stored in the refrigerating compartment 20 without bending his body.
Drawers, baskets, and shelves for receiving food of various sizes and states are
provided in the interior of the refrigerating compartment 20 and at the refrigerating
compartment doors 22.
The freezing compartment door 32 is slidable in forward and rearward directions to
open or close the freezing compartment 30. A lower door handle is attached to the
front surface of the freezing compartment door 32 at the upper portion of the freezing
compartment door 32, to enable the user to slide the freezing compartment door 32

WO 2006/083111 PCT/KR2006/000357
2
while grasping the lower door handle.
An ice maker 40 is arranged in the freezing compartment 30, in order to make ice
using cold air generated by a heat exchanger and supplied to the freezing compartment
30.
However, the conventional refrigerator having the above-mentioned configuration
has various problems.
First, there is a problem in that the ice maker 40, which makes ice, is arranged in
the interior of the freezing compartment 30, and the freezing compartment 30 is
arranged beneath the refrigerating compartment 20 in the conventional refrigerator
having the above-mentioned configuration. That is, it is inconvenient for the user to
take ice out of the ice maker 40 because the user must operate the ice maker 40 after
opening the freezing compartment door 32 while bending his body.
The above-mentioned problem may be solved by arranging the freezing
compartment 30 over the refrigerating compartment 20. In this case, however, it is
difficult for a short man or a child to take ice out of the ice maker 40 arranged in the
interior of the freezing compartment 30, after opening the freezing compartment 30, in
the case in which the refrigerator has a large size.
Meanwhile, the ice maker 40 may be installed at an appropriate position outside the
freezing compartment 30, separately from the freezing compartment 30. In this case,
however, there are various problems, for example, an increase in the manufacturing
costs of the refrigerator, an increase in the volume of the refrigerator, and a difficulty
in the manufacture of the refrigerator, because an ice-making heat exchanger must be
installed in the ice making compartment.
For the above-mentioned reasons, it is required to develop a refrigerator which
enables the user to easily take ice out of an ice maker without causing a variation in the
capacity of the refrigerator or a limitation on the position of a freezing compartment.
Disclosure of Invention
Technical Problem
An object of the present invention devised to solve the above-mentioned problems
lies in providing a refrigerator which enables the user to easily take ice out of an ice
maker without causing a variation in the capacity of the refrigerator or a limitation on
the position of a freezing compartment.
Technical Solution
In accordance with the present invention, this object can be accomplished by

WO 2006/083111 PCT/KR2006/000357
3
providing a refrigerator comprising: a refrigerator tody which includes a freezing
compartment and a refrigerating compartment; an ice making compartment which is
arranged in the refrigerating compartment, to make ice; a heat exchanger which
generates cold air for freezing food stored in the freezing compartment; and a cold air
gliding device which glides the cold air generated by the heat exchanger to the ice
making compartment, to enable the ice making compartment to make ice.
Preferably, the ice making compartment is arranged inside a refrigerating
compartment door unit which opens or closes an inner space of the refrigerating
compartment. Preferably, the refrigerating compartment is arranged over the freezing
compartment.
Preferably, the cold air gliding device includes a duct unit which communicates
with the ice making compartment.
The refrigerator may farther comprise a cold air supply fan which forcibly supplies
the cold air generated by the heat exchanger to the ice making compartment.
The duct unit may include an air supply duct which supplies the cold air generated
by the heat exchanger to the ice making compartment, and a return duct which guides
the cold air from the ice making compartment to the freezing compartment.
In other words, the duct unit may include at least one duct which is provided at one
side wall of the refrigerating compartment such that the duct communicates with the
ice making compartment.
Preferably, the duct is arranged between an outer wall and an inner wall which form
the side wall of the refrigerating compartment.
More preferably, the duct may be spaced apart from the outer wall and the inner
wall.
To this end, the refrigerator further comprises a spacer which supports the duct such
that the duct is spaced apart from the outer wall and the inner wall.
The spacer may include two spacing ribs which are protruded from an outer surface
of the duct, to space the duct from the outer wall and inner wall by the same distance,
respectively. Preferably, the spacing ribs are symmetrical to each other.
The refrigerator may further comprise a duct holder which fixes the duct to the side
wall of the refrigerating compartment.
The duct may be internally installed between the outer wall and the inner wall
under a condition in which the duct is held by the duct holder.
The duct holder may include at least one duct receiver which firmly receives the
duct, and spacing protrusions which are outwardly protruded from the duct receiver, to

WO 2006/083111 PCT/KR2006/000357
4
space the duct from the outer wall and the inner wall.
The at least one duct may comprise a pair of ducts, and the at least one duct
receiver may comprise a pair of duct receivers which are connected to each other such
that the duct receivers are integral, the duct receivers receiving the ducts, respectively.
Preferably, the refrigerator further comprises a first heater which prevents a frosting
phenomenon from occurring in the refrigerating compartment due to the cold air
flowing through the duct.
In this case, the duct is installed in the side wall of the refrigerating compartment,
and the first heater is arranged on an inner surface of the side wall.
Preferably, the inner wall of the refrigerating compartment has a first opening
which forms one end of the duct unit, and the first heater is arranged adjacent to the
first opening.
The refrigerator may fiirther comprise a cold air guide which is arranged in a barrier
partitioning the refrigerating compartment and the freezing compartment, to connect
the duct unit to the freezing compartment.
The barrier may include a cover which is separably coupled to the cold air guide.
The cold air guide may include an air supply passage which guides the cold air
generated by the heat exchanger to the duct unit, and a return passage which guides the
cold air guided through the duct unit after emerging from the ice making compartment
to the freezing compartment.
The refrigerator may fiirther comprise a second heater which is provided at one
surface of the barrier feeing an inner space of the refrigerating compartment, to prevent
a frosting phenomenon from occurring in the refrigerating compartment due to the cold
air guide. The second heater may operate selectively in accordance with a pre-
determined condition.
In this case, the ice making compartment is provided at a refrigerating compartment
door unit which opens or closes an inner space of the refrigerator. The duct unit
includes a first opening which is provided at an inner wall of the refrigerating
compartment, and forms one end of the duct unit connected to one side of the re-
frigerating compartment door unit. The refrigerating compartment door unit includes a
second opening which is connected to the first opening, to connect the duct unit to an
inner space of the ice making compartment.
The refrigerator may fiirther comprise a sealing unit which is provided at at least
one of the first and second openings, to prevent air from being leaked between the first
and second openings.

WO 2006/083111 PCT/KR2006/000357
5
The sealing unit may include a gasket, and a gasket fixer which fixes the gasket to
at least one of the first and second openings.
The gasket fixer may include a gasket supporter which is coupled to at least one of
the first and second openings, and a gasket holder which fixes the gasket to the gasket
supporter.
The ice making compartment may include a door duct unit which is provided at a
refrigerating door unit for opening or closing an inner space of the refrigerating
compartment, to connect the duct unit to an inner space of the freezing compartment.
The ice making compartment may includes an ice making chamber which receives
an ice maker for making ice using the cold air generated by the heat exchanger, and an
ice making compartment door which opens or closes an opening formed at a rear side
of the ice making chamber.
The ice making compartment door may be hingably movable by a hinge mounted to
one side cf the ice making chamber. The ice making compartment door may include a
hinge cover which covers the hinge.
Advantageous Effects
The refrigerator according to the present invention has various eifects as follows.
First, since the refrigerator according to the present invention includes the cold air
guiding device for gliding the cold air generated by. the heat exchanger, which controls
the temperature of the freezing compartment, to the ice making compartment, it is
possible to appropriately select the position of the ice making compartment ir-
respective of the structure or capacity of the refrigerator. Accordingly, it is possible to
achieve an improvement in the freedom cf design cf the refrigerator, and a reduction in
the manufacturing costs of the refrigerator, and to maximize the inner space of the re-
frigerating compartment.
Second, in the refrigerator according to the present invention, it is possible to con-
veniently use the refrigerating compartment, and to easily take ice out of the ice
making compartment because the freezing compartment is arranged beneath the re-
frigerating compartment.
Third, in the refrigerator according to the present invention, it is possible to prevent
a frosting phenomenon from occurring in the refrigerating compartment due to the cold
air guiding device, which glides cold air, because the heater is arranged on the inner
surface of the refrigerating compartment.
Fourth, in the refrigerator according to the present invention, it is possible to easily
fill a foaming liquid because the duct is arranged at a correct position between the

WO 2006/083111 PCT/KR2006/000357
6
outer wall and inner wall, which form one side wall of the refrigerating compartment,
by spacing ribs and/or spacing protrusions.
Fifth, since the refrigerator according to the present invention includes the duct
holder for fixing the duct to one side wall cf the refrigerating compartment, it is
possible to easily install the duct.
Sixth, since the refrigerator according to the present invention includes the hinge
cover, which covers the hinge for hingably opening or closing the ice making
compartment door, it is possible to prevent an accident in that a portion of the body cf
the user is caught in the hinge through his carelessness, and to make the appearance cf
the ice making compartment beautiful.
Brief Description of the Drawings
The accompanying drawings, which are included to provide a further understanding
of the invention, illustrate embodiments of the invention and together with the de-
scription serve to explain the principle cf the invention.
In the drawings:
FIG. 1 is a perspective view cf a conventional refrigerator, illustrating an opened
state cf refrigerating compartment doors and an opened state cf a freezing
compartment door;
FIG. 2 is a front view illustrating a refrigerator according to a first embodiment cf
the present invention;
FIG. 3 is a perspective view illustrating an opened state cf refrigerating
compartment doors and an opened state cf a freezing compartment door in the re-
frigerator shown in FIG. 2;
FIG. 4 is a perspective view illustrating flow paths cf cold air in an ice making
compartment and a cold air guide device in the refrigerator shown in FIG. 2;
FIG. 5 is a perspective view illustrating the inner side cf a part cf one refrigerating
compartment door where the ice making compartment is arranged, in the refrigerator
shown in FIG. 2;
FIG. 6 is a perspective view cf a refrigerator according to a second embodiment cf
the present invention, illustrating an opened state cf refrigerating compartment doors
and an opened state cf a freezing compartment door;
FIG. 7 is a perspective view illustrating a cold air guide device and one door cf the
refrigerator according to the second embodiment cf the present invention;
FIG. 8 is an exploded perspective view illustrating a sealing unit applied to the re-
frigerator shown in FIG. 7;

WO 2006/083111 PCT/KR2006/000357
7
FIG. 9 is a sectional view illustrating the sealing unit applied to the refrigerator
shown in FIG. 7;
FIG. 10 is a front view illustrating an inner case included in a refrigerator door
which is applied to a refrigerator according to a third embodiment of the present
invention;
FIG. 11 is an exploded perspective view illustrating a door duct unit provided at the
inner case shown in FIG. 10, and a sealing unit provided at the door duct unit;
FIG. 12 is a perspective view illustrating a cold air guide device and a refrigerator
door which are applied to a refrigerator according to a fourth embodiment of the
present invention;
FIG. 13 is a perspective view illustrating a part of a duct constituting the cold air
glide device shown in FIG. 12;
FIG. 14 is a sectional view illustrating a state in which the duct shown in FIG. 13 is
installed at one wall of the refrigerator;
FIG. 15 is a perspective view illustrating a duct holder applied to the refrigerator
according to the fourth embodiment of the present invention;
FIG. 16 is a sectional view illustrating a state in which the duct is installed at one
wall of the refrigerator by the duct holder shown in FIG. 15;
FIG. 17 is a perspective view illustrating a first heater which is applied to a re-
frigerator according to a fifth embodiment of the present invention, and is-installed in a
refrigerating compartment wall;
FIG. 18 is a perspective view of a refrigerator according to a sixth embodiment of
the present invention, illustrating opened states of the refrigerating compartment doors
and freezing compartment door;
FIG. 19 is a perspective view illustrating a cold air guide arranged at the barrier of
the refrigerator shown in FIG. 18;
FIG. 20 is a perspective view illustrating a barrier cover which opens or closes the
cold air guide shown in FIG. 19;
FIG. 21 is a perspective view illustrating a state in which the cold air guide is
closed by the barrier cover shown in FIG. 20; and
FIG. 22 is a perspective view of an ice making compartment applied to a re-
frigerator according to a seventh embodiment of the present invention, taken at the rear
side.
Best Mode for Carrying Out the Invention
Reference will now be made in detail to the preferred embodiments of the present

WO 2006/083111 PCT/KR2006/000357
8
invention, examples of which are illustrated in the accompanying drawings. In the
following description, the same title and same reference numeral will be given for the
same configuration, and no additional description will be given thereof.
FIG. 2 is a front view illustrating a refrigerator according to a first embodiment of
the present invention. FIG. 3 is a perspective view illustrating an opened state of re-
frigerating compartment doors and an opened state of a freezing compartment door in
the refrigerator shown in FIG. 2. FIG. 4 is a perspective view illustrating flow paths cf
cold air in an ice making compartment and a cold air glide device in the refrigerator
shown in FIG. 2. FIG. 5 is a perspective view illustrating the inner side of a part of one
refrigerating compartment door where the ice making compartment is arranged, in the
refrigerator shown in FIG. 2.
Referring to FIGs. 2 to 5, the refrigerator according to the first embodiment of the
present invention includes a refrigerator body 100, and an ice making compartment
500 in which ice is made.
The inner space of the refrigerator body 100 is partitioned into a refrigerating
compartment 200 and a freezing compartment 300.
Although not shown, shelves and drawers of various shapes are arranged in the re-
frigerating compartment 200, in order to efficiently receive various kinds of food.
The flow of cold air supplied to the refrigerating compartment 200 at one side of
the refrigerating compartment 200 is influenced by the shelves and drawers such that
convection of the cold air is limited or controlled. As a result, the cold air is supplied
in different amounts to portions of the refrigerating compartment 200 defined by the
shelves and drawers, respectively, so that the portions of the refrigerating compartment
200 have different temperature characteristics. Thus, it is possible to store food in an
appropriate portion of the refrigerating compartment 200, depending on the storage
condition of the food.
Meanwhile, the refrigerating compartment 200 is open at the front side thereof. The
refrigerating compartment 200 includes a refrigerating compartment door unit 400
which selectively opens or closes the front side of the refrigerating compartment 200.
Thus, the refrigerating compartment door unit 400 opens or closes the inner space of
the refrigerating compartment 200.
The refrigerating compartment door unit 400 includes a pair cf hinged doors 410
and 420 hingably connected to the refrigerator body 100.
The left one cf the hinged doors 410 and 420, namely, the door 410, may be
hingably connected, at the left end thereof, to the left corners cf the front side of the re-

WO 2006/083111 PCT/KR2006/000357
9
frigerating compartment 200 by means of hinges, respectively. The right one of the
hinged doors 410 and 420, namely, the door 420, may be hingably connected, at the
right end thereof to the right corners of the front side of the refrigerating compartment
200 by means of hinges, respectively. Thus, the left and right doors 410 and 420 are
openable independently of each other.
Shelves 411 and 421 may be installed at the refrigerating compartment door unit
400, in order to receive drink bottles and other food.
The freezing compartment 300 is adapted to store fish, meat, or food required to be
stored for a prolonged period of time, in a frozen state. Drawers and baskets (not
shown) are arranged in the freezing compartment 300, in order to separately store a
variety of food to be stored in a frozen state, depending on the size or state of the food.
The temperature of the freezing compartment 300 is controlled by a heat exchanger
310 installed at the refrigerator body 100. In detail, the inner space of the freezing
compartment 300 is maintained in a low-temperature state by cold air generated by the
heat exchanger 310, in order to freeze the food stored in the freezing compartment 300.
In other words, a refrigerant, which passes through the heat exchanger 310, is
evaporated as it absorbs heat from cold air supplied to the freezing compartment 300,
thereby lowering the temperature of the cold air. Thus, the inner space of the freezing
compartment 300 is maintained at a temperature capable of storing food in a frozen
state.
The heat exchanger 310 is arranged at the rear side of the freezing compartment
300, in particular, at the rear side of a storage box 330 arranged in the freezing
compartment 300. Here, the storage box 330 receives the above-described drawers
and/or baskets, in order to store food.
Preferably, a fen (not shown) is arranged at one side of the heat exchanger 310, in
order to forcibly circulate air in the freezing compartment 300.
A freezing compartment door 320 is arranged at the open front side of the freezing
compartment 300, in order to open or close the freezing compartment 300. The
freezing compartment door 320 is hingably connected, at a lower end thereof, to a
lower end of the front side of the storage box 330. The storage box 330 is coupled to
the refrigerator body 100 such that the storage box 330 is slidable in forward and
rearward directions. The storage box 330 is forwardly extendable or rearwardly re-
tractable together with the freezing compartment door 320.
A lower handle 321 may be attached to a front surface of the freezing compartment
door 320, in order to open or close the freezing compartment door 320. A shelf 322,

WO 2006/083111 PCT/KR2006/000357
10
which can receive food, may be attached to a rear surface of the freezing compartment
door 320.
Meanwhile, in this embodiment, the heat exchanger 310 is configured to perform
temperature control for both the refrigerating compartment 200 and the freezing
compartment 300. Of course, the refrigerating compartment 200 may be temperature-
controlled by a separate heat exchanger (not shown).
The refrigerating compartment 200 and freezing compartment 300, which have the
above-described configurations, respectively, are partitioned by a barrier 210.
Generally, the refrigerating compartment 200 is more frequently used than the
freezing compartment 300. To this end, it is preferred that the refrigerating
compartment 200 be arranged over the freezing compartment 300 so as to enable the
user to easily take out the food stored in the refrigerating compartment 200 without
bending his body.
Accordingly, the barrier 210 is horizontally arranged in the refrigerator body 100
such that the barrier 210 defines the bottom of the refrigerating compartment 200, and
the top of the freezing compartment 300.
Meanwhile, the ice making compartment 500 basically functions to make ice, and
to store the ice. It is preferred that the ice making compartment 500 be arranged at an
appropriate position in the refrigerator, in order to enable the user to easily take out ice
made in the ice making compartment 500, irrespective of the size or capacity of the re-
frigerator, and the arrangement of the freezing compartment 300 and refrigerating
compartment 200.
In conventional cases in which there is a limitation on the arrangement of an ice
making compartment because the ice making compartment must be arranged in the
freezing compartment, there is a difficulty in arranging the ice making compartment at
an appropriate position in a refrigerator.
Therefore, in order to not only make ice using the above-described heat exchanger
without use of a separate ice-making heat exchanger, but also to enable the ice maker
. to be arranged at an appropriate position enabling the user to most easily take out ice
made by the ice maker, it is preferred that the refrigerator include a cold air guide
device for guiding cold air generated by the heat exchanger 310 to the ice making
compartment 500.
In other words, there is a feature of the present invention in that the refrigerator
includes a cold air guide device for guiding a part of cold air generated by the heat
exchanger 310, in order to enable the ice maker to be arranged at a most appropriate

WO 2006/083111 PCT/KR2006/000357
11
position, irrespective of the size or capacity of the refrigerator, and the arrangement of
the freezing compartment 300 and refrigerating compartment 200.
This feature of the present invention is more effective when the freezing
compartment 300 is arranged beneath the refrigerating compartment 200.
In other words, when the refrigerating compartment 200 is arranged over the
freezing compartment 300, it is possible to more easily take out the food stored in the
inner space of the refrigerating compartment 200, in particular, a lower portion of the
refrigerating compartment 200.
Also, it is preferred that the ice making compartment 500 be arranged in the re-
frigerating compartment 200, in order to enable the user to easily take out the ice
stored in the ice making compartment 500. In the illustrated case, the ice making
compartment 500 is provided at the refrigerating compartment door unit 400.
Referring to FIGs. 2 to 5, a dispenser 430 is also provided at the refrigerating
compartment door unit 400, in addition to the ice making compartment 500. The
dispenser 430 fractions to enable the user to take out water purified in the refrigerator
and ice made in the ice making compartment 500 at the outside of the refrigerator.
Operating buttons 450 for control of the internal temperatures of the compartments in
the refrigerator, and other junctions, and a display unit 440 for displaying the operating
state cf the refrigerator are arranged on the front surface of the refrigerator body 100.
In accordance with this embodiment, the ice making compartment 500 is arranged
at the inner side of the refrigerating door unit 400, in particular, at the inner side of the
left door 410. The dispenser 430 is arranged to discharge the ice stored in the ice
making compartment 500 at the front side of the left door 410. Of course, the ice
making compartment 500 and dispenser 430 may be arranged at the right door 420.
In order to enable the dispenser 430 to discharge the ice made in the ice making
compartment 500 by gravity, it is preferred that the ice making compartment 500 be
arranged over the dispenser 430.
The ice making compartment 500 has a rear wall which is protruded from the left
door 410 into the refrigerating chamber 200.
The ice making compartment 500 includes an ice making chamber 510 in which an
ice maker 511 adapted to make ice using cold air generated by the heat exchanger 310
is received, and an ice making compartment door 520 which opens or closes an
opening formed at a rear side of the ice making chamber 510.
The ice making compartment 500 is defined by an inner case (not shown) coupled
to the rear surface of the left door 410. Accordingly, the inner space of the ice making

WO 2006/083111 PCT/KR2006/000357
12
compartment 500 is partitioned from the inner space of the refrigerating compartment
200.
The ice maker 511, which makes ice using cold air generated by the heat exchanger
310, is arranged in the interior of the ice making compartment 500, namely, the ice
making chamber 510. A feeder 512 is also received in the ice making chamber 510.
The feeder 512 is arranged beneath the ice maker 511, to store and feed ice made by
the ice maker 511.
The feeder 512 not only stores ice made by the ice maker 511, but also feeds the ice
to the dispenser 430, in order to enable the user to take out the ice through the
dispenser 430, if necessary.
Meanwhile, the cold air guide device functions to guide the cold air generated by
the heat exchanger 310 to the ice making chamber 510 of the ice making compartment
500.
Referring to FIGs. 3 and 4, the cold air glide device includes a duct unit 600 which
communicates with the ice making compartment 500.
In detail, the duct unit 600 defines a flow path of the cold air generated by the heat
exchanger 310. Preferably, the refrigerator according to the first embodiment of the
present invention fiirther includes a cold air supply fen 630 which forces the cold air
generated by the heat exchanger 310 to flow through the ice making compartment 500.
Accordingly, a part of the cold air generated by the heat exchanger 310 is
introduced into the ice making compartment 500 via the duct unit 600 in accordance
with the driving of the cold air supply fen 630.
The ice making compartment 500 may be configured to be selectively connected to
the duct unit 600, as in this embodiment.
In detail, the ice making compartment 500 and duct unit 600 are configured to be
connected to each other only in a closed state of the left door 410.
In other words, when the left door 410 is closed, the ice making chamber 500 com-
municates with the duct unit 600.
For this configuration, a first opening 601 is formed through an inner wall of the re-
frigerating compartment 200. The first opening 601 defines one end of the duct unit
600, in particular, an upper end of the duct unit 600. A second opening 501, which is
selectively connected to the first opening 601, is formed at the refrigerating door unit
400, in particular, the left door 410.
When the second opening 501 is connected to the first opening 610, the second
opening 501 communicates with the inner space of the ice making compartment 500,

WO 2006/083111 PCT/KR2006/000357
13
in particular, the ice making chamber 510.
In detail, when the left door 410 is closed, the second opening 501 is connected to
the first opening 601. On the other hand, when the left door 410 is opened, the second
opening 501 is disconnected from the first opening 601.
Of course, although not shown, the ice making compartment 500 may be
configured to always communicate with the duct unit 600. For this configuration, the
duct unit 600 may be directly connected, at one end thereof, to one side of the re-
frigerator door unit 400 where the ice making compartment 500 is defined, and may be
connected, at the other end thereof, to one side of the freezing compartment 300.
The duct unit 600 includes at least one duct, two ducts 610 and 620 in the illustrated
case, arranged at one side wall of the refrigerating compartment 200.
Where the ice making compartment 500 is arranged at the left door 410, as in this
embodiment, it is preferred that the ducts 610 and 620 be arranged at the left wall of
the refrigerating compartment 200.
The ducts 610 and 620 function to supply cold air generated by the heat exchanger
310 to the ice making compartment 500. Hereinafter, these ducts are collectively
referred to as an air supply duct 610.
In this embodiment, the air supply duct 610 is configured such that one end of the
air supply duct 610, namely, the upper end of the air supply duct 610, communicates
with the ice making compartment 500, and the other end of the air supply duct 610,
namely, the lower end of the air supply duct 610, communicates with the freezing
compartment 300. In accordance with this configuration, the air supply duct 610
guides a part of the cold air, supplied to the freezing compartment 300, to the ice
making compartment 500.
Of course, the other end of the air supply duct 610 may be open to one side of the
heat exchanger 310 such that the air supply duct 610 directly sucks cold air from the
heat exchanger 310, to guide the sucked cold air to the ice making compartment 500.
Meanwhile, the cold air introduced into the ice making compartment 500 absorbs
heat from water in the ice making compartment 500. The cold air emerging from the
ice making compartment 500 may be introduced into the interior of the refrigerating
compartment 200. However, it is preferred that the cold air emerging from the ice
making compartment 500 be returned to the freezing compartment 300, taking into
consideration the temperature difference between the cold air in the refrigerating
compartment 200 and the cold air in the ice making compartment 500.
To this end, the duct unit 60 preferably further includes a duct 620 which is

WO 2006/083111 PCT/KR2006/000357
14
connected to the ice making compartment 500, to glide the cold air from the ice
making compartment 500 to the freezing compartment 300. Hereinafter, the duct 620
is referred to as a return duct.
One end of the return duct 620, namely, the upper end of the return duct 620, is
connected to the ice making compartment 500, whereas the other end of the return duct
620, namely, the lower end of the return duct 620, is connected to one side of the
freezing compartment 300 such that the return duct 620 communicates with the inner
space of the freezing compartment 300.
Meanwhile, the first opening 601 includes a duct-side air supply port 601a which
allows the cold air emerging from the supply air duct 610 to be discharged into the ice
making chamber 500. The second opening 501 includes a door-side inlet 501a which is
formed through an inner wall of the left door 410 such that the door-side inlet 501a is
selectively connected to the duct-side air supply port 601a.
Where the duct unit 600 further includes the return duct 620, as in this embodiment,
the first opening 601 farther includes a duct-side inlet 601b which receives the cold air
emerging from the ice making compartment 500, to guide the received cold air to the
freezing compartment 300. In this case, the second opening 501 further includes a
door-side outlet 501b which is formed through the inner wall of the left door 410 such
that the door-side outlet 501b is selectively connected to the duct-side inlet 601b.
Meanwhile, at least one of the ducts 610 and 620, in particular, at least one of the
air supply duct 610 and return duct 620, is preferably arranged between outer and inner
walls defining one side of the refrigerating compartment 200, namely, the left side of
the refrigerating compartment 200.
Here, the outer wall defines the left appearance of the refrigerator body 100,
whereas the inner wall defines the left inner wall of the refrigerating compartment 200.
In particular, it is preferred that the air supply duct 610 be arranged between the
outer and inner walls, because the temperature of the cold air flowing through the air
supply duct 610 is lower than the temperature of the cold air flowing through the
return duct 620.
In order to minimize the influence of the duct unit 600 on the temperature of the re-
frigerating compartment 200, however, it is preferred that both the air supply duct 610
and the return duct 620 be arranged between the outer and inner walls, as in this
embodiment.
The space between the walls of the refrigerating compartment 200, namely, the
outer and inner walls of the refrigerating compartment 200 is filled with an insulating

WO 2006/083111 PCT/KR2006/000357
15
material such as foamed urethane, in order to prevent the internal temperature of the
refrigerating compartment 200 from being varied by the cold air flowing through the
duct unit 600, and to minimize an increase in the temperature of the cold air flowing
through the ducts 610 and 620.
Where the air supply duct 610 is arranged at the left side of the refrigerating
compartment 200 in the space between the outer and inner walls of the refrigerating
compartment 200, it is preferred that the first opening 601 be arranged at the left inner
wall of the refrigerating compartment 200. In this case, it is also preferred that the
second opening 501 be arranged at the inner case of the refrigerating compartment
door unit 400.
In detail, the duct-side air supply port 601a and duct-side inlet 601b may be formed
at a front portion of the left inner wall of the refrigerating compartment 200.
One end of the air supply duct 610, namely, the outlet of the air supply duct 610, is
connected to the duct-side air supply port 601a. One end of the return duct 620,
namely, the inlet of the return duct 620, is connected to the duct-side inlet 601b.
Meanwhile, the door-side inlet 501a and door-side outlet 501b are formed at the
inner case such that they correspond to the duct-side air supply port 601a and duct-side
inlet 601b, respectively.
Of course, where one end of the air supply duct 610 is protruded from the inner
wall of the refrigerating compartment 200, the outlet of the air supply duct 610 may
form the duct-side air supply port. On the other hand, where one end of the return duct
620 is protruded from the inner wall of the refrigerating compartment 200, the inlet of
the return duct 620 may form the duct-side air supply port.
In accordance with the above-described configuration, when the left door 410 is
closed, the first opening 601 and second opening 501 are connected to each other. In
this state, a part of the cold air supplied to the freezing compartment 300 is supplied to
the interior of the ice making compartment 500 via the air supply duct 610. Also, the
cold air used to make ice in the ice making compartment 500 is returned to the freezing
compartment 300 via the return duct 620.
Hereinafter, operation of the refrigerator having the above-described configuration
according to the first embodiment of the present invention will be described.
First, cold air, which is supplied to the freezing compartment 300 after being cooled
by the heat exchanger 310, freezes food stored in the freezing compartment 300.
A part of the cold air, which is supplied to the freezing compartment 300 after
being cooled by the heat exchanger 310, is guided to the ice making compartment 500

WO 2006/083111 PCT/KR2006/000357
16
via the cold air glide device, in particular, the duct unit 600.
In detail, a part of cold air generated by the heat exchanger 310 is forcibly fed to the
ice making compartment 500 via the air supply duct 610 by the cold air supply fen
630.
The cold air introduced into the ice making compartment 500 heat-exchanges with
water supplied to the ice maker 540. Thus, making cf ice is carried out in the ice
making compartment 500.
The cold air, which has performed heat exchange, namely, has been used to make
ice, is introduced into the return duct 620 through the duct-side inlet 601b connected to
the door-side outlet 501b, and is then returned to the freezing compartment 300 via the
return duct 620.
The cold air introduced into the freezing compartment 300 is cooled as it heat-
exchanges again with the heat exchanger 310. The resultant cold air is then supplied to
the freezing compartment 300 or ice making compartment 500.
Ice made in the ice making compartment 500 is stored in the feeder 512. The ice
stored in the feeder 512 is subsequently externally discharged through the dispenser
420 in accordance with operation cf the user.
Mode for the Invention
Hereinafter, a refrigerator according to a second embodiment of the present
invention will be described with reference to FIGs. 6 to 9.
FIG. 6 is a perspective view of the refrigerator according to the second embodiment
of the present invention, illustrating an opened state of refrigerating compartment
doors and an opened state cf a freezing compartment door. FIG. 7 is a perspective
view illustrating a cold air guide device and one door of the refrigerator according to
the second embodiment of the present invention. FIG. 8 is an exploded perspective
view illustrating a sealing unit applied to the refrigerator shown in FIG. 7. FIG. 9 is a
sectional view illustrating the sealing unit applied to the refrigerator shown in FIG. 7.
] The basic constituent elements of the refrigerator according to the second
embodiment cf the present invention are identical to those of the refrigerator according
to the first embodiment of the present invention. In the following description given in
conjunction with the refrigerator according to the second embodiment of the present
invention, the constituent elements identical to those cf the first embodiment of the
present invention will be designated by the same reference numerals as those used in
the first embodiment of the present invention, respectively, and no additional de-
scription thereof will be given.

WO 2006/083111 PCT/KR2006/000357
17
The refrigerator according to the second embodiment cf the present invention
includes sealing units 710 and 720 for preventing cold air from being leaked between
the first opening 601 and the second opening 501.
In order to enable the user to open or close the ice making compartment door 520 in
the refrigerator according to the second embodiment cf the present invention, a handle
521 is provided at the ice making compartment door 520. Also, the ice making
compartment door 520 is hingably mounted to one edge cf an opening formed through
the rear wall of the ice making chamber 510.
The opening/closing structure of the ice making compartment door 520 and handle
521 may be applied to the refrigerator according to the first embodiment of the present
invention in the same manner as described above.
The opening formed through the rear wall of the ice making chamber 510 is formed
at an inner liner 530 which is coupled to the inner wall cf the left door 410.
Accordingly, when the user pulls the handle 521 in an opened state cf the left door
410, the ice making compartment door 520 is opened while being hingably moved.
The sealing units 710 and 720 may be provided at one of the first and second
openings 601 and 501.
Of course, the sealing units 710 and 720 may be provided at the first and second
openings 610 and 501, respectively.
Hereinafter, the sealing units 710 and 720 will be described in more detail with
reference to Figs. 8 and 9. Since the sealing units 710 and 720 have the same structure,
the following description will be given only in conjunction with one of the sealing
units 710 and 720, for example, the sealing unit 710.
The sealing unit 710 is provided at the second opening 510 cf the inner case 530,
and functions to prevent cold air from being leaked through the first opening 601 and
the second opening 501.
The sealing unit 710 includes a gasket 711, and a gasket fixer for fixing the gasket
711 to the first opening 601 provided at the inner wall cf the refrigerating compartment
200.
The gasket 711 is in contact with the first opening 601.
The gasket fixer includes a gasket supporter 713 which is coupled to the first
opening 601, and a gasket holder 712 which fixes the gasket 711 to the gasket
supporter 713.
In detail, the gasket holder 712 is coupled to the gasket supporter 713, to fix the
gasket 711 to the gasket supporter 713. The gasket supporter 713 is coupled to the

WO 2006/083111 PCT/KR2006/000357
18
edge of the first opening 601, to fix the gasket 711 to the inner case 530.
The gasket 711 includes a gasket body 71 la, and a holder coupler 71 Id for
coupling the gasket 711 to the gasket holder 712.
A cold air hole 711b is provided at the gasket body 71 la in order to allow the ice
making compartment 500 and duct unit 600 to communicate with each other. The cold
air hole 71 lb is formed through the gasket body 711a.
In this embodiment, the gasket body 71 la is made up of a ring-shaped member such
that the cold air hole 711 b is defined at a central portion of the gasket body 711a.
It is preferred that a reinforcing rib 71 lc be provided at the cold air hole 711b. The
reinforcing rib 71 lc includes a first rib having an approximately cross shape, and an
annular second rib which has an outer diameter smaller than an inner diameter of the
cold air hole 711b, and is formed integrally with the first rib.
The holder coupler 71 Id forms a holder receiving groove 71 If for receiving the
gasket holder 712. To form the holder receiving groove 71 If, the holder coupler 71 Id
extends radially inwardly from the edge of the gasket body 711 a, and then extends
radially outwardly after being bent.
Thus, the bent portion of the holder coupler 71 Id forms the holder receiving groove
71 If for receiving the gasket holder 712, as shown in FIG. 9.
The gasket holder 712 includes a holder body 712a having an approximately ring
shape, and at least one fixing member 712b which is coupled to the gasket supporter
713.
The holder body 712a is fitted in the holder receiving groove 71 If. The fixing
member 712b includes a hook extending from the edge cf the holder body 712a at one
side of the holder body 712a such that the hook is integral with the holder body 712a.
The hook extends toward the gasket supporter 713. The hook is coupled to the
gasket supporter 713, thereby fixing the gasket 711 to the gasket supporter 713.
In detail, the portion of the holder coupler 71 Id extending from the bent portion of
the holder coupler 71 Id outwardly from the gasket body 71 la is interposed between
the holder body 712a and the gasket supporter 713.
When the hook is engaged with the gasket supporter 713, the gasket 711 is partially
supported by the gasket holder 712 and gasket supporter 713. Thus, the assembly of
the sealing unit 710 is completed.
Meanwhile, a hook groove 71 le, through which the hook extends, is formed at the
portion of the holder coupler 71 Id extending from the bent portion cf the holder
coupler 71 Id outwardly from the gasket body.

WO 2006/083111 PCT/KR2006/000357
19
Here, the number of hook grooves 71 le is identical to the number of hooks. In this
embodiment, four hooks 71 le, which are spaced apart from one another by an angle of
90°, are formed at the holder coupler 71 Id. Also, four hooks, which are spaced apart
from one another by an angle of 90°, are formed at the holder body 712a.
The gasket supporter 713 includes a supporter body 713a, and hook coupling holes
713c formed at the supporter body 713a such that the hook coupling holes 713c
correspond to the hooks, respectively.
The supporter body 713a has a recessed step on which the gasket holder 712 and
gasket 711 are seated. A communicating hole 713b having a predetermined diameter is
formed through the support body 713a inside the step. The communicating hole 713b
communicates with the cold air hole 711b of the gasket 711. The hooks extend through
the hook coupling holes 713c, respectively, and engage with the rear surface cf the
supporter body 713a.
*In detail, hook engaging grooves 713d are formed at the rear surface of the
supporter body 713a. The hook engaging grooves 713d receive respective ends of the
hooks. A support protrusion 712c is formed at each hook. The support protrusion 712c
supports the edge of the associated hook engaging groove 713d at one side of the
associated hook engaging groove 713d. Each hook is preferably made of an elastic
material.
Accordingly, when each hook 712b is engaged with the rear surface of the
supporter body 713a after extending through the associated hook coupling hole 713c, a
portion cf the holder coupler 71 Id is fitted between the holder body 712a and the
supporter body 713a. Thus, the gasket 711 is fixed to the gasket supporter 713.
It is preferred that the gasket 711 having the above-described structure be made of a
flexible material. For example, the gasket 711 may be made of a material having
elasticity, such as rubber.
The gasket supporter 713 is fixed to the left door 210. In detail, the gasket supporter
713 is fixed to the second opening 501 of the inner case 530, thereby supporting the
gasket holder 420 such that the gasket holder 420 is fixedly maintained.
Of course, the sealing units 710 and 720, which have the above-described con-
figuration, may also be provided at the first opening 601.
Where the first opening 601 includes the duct-side air supply port 601a and duct-
side inlet 601b, and the second opening 501 includes the door-side inlet 501a and
door-side outlet 501b, the sealing units 710 and 720 are provided at at least one of the

WO 2006/083111 PCT/KK2006/000357
20
duct-side air supply port 601a, duct-side inlet 601b, door-side inlet 501a, and door-side
outlet 501b.
In this case, it is preferred that the sealing units 710 and 720 be provided at at least
one of the duct-side air supply port 601 a and door-side inlet 501a and at least one of
the duct-side inlet 601b and door-side outlet 501b. Of course, the sealing units 710 and
720 may be provided at each cf the duct-side air supply port 601a, duct-side inlet
601b, door-side inlet 501a, and door-side outlet 501b.
Meanwhile, in this embodiment, cold air generated by the heat exchanger 310 is
introduced into the air supply duct 610 of the duct unit after passing through the
interior of the barrier 210. Where the duct unit 600 includes the return duct 620, cold
air discharged out cf the ice making compartment 500 is introduced into the freezing
compartment 300 after passing through the interior of the barrier 210.
A grill pan 340 is arranged at the rear side of the freezing compartment 300, to form
the rear wall of the freezing compartment 300. The grill pan 340 has a fen mounting
portion 341 to which a cold air supply fen (not shown) is mounted.
Although not shown, constituent elements of the refrigerant cycle such as a
compressor and the heat exchanger 310 are installed at the rear side of the grill fan
340.
Other configurations cf the refrigerator according to the second embodiment cf the
present invention are identical to those of the first embodiment of the present
invention. Accordingly, no repeated description will be given of the identical con-
figurations.
Hereinafter, a refrigerator according to a third embodiment of the present invention
will be described with reference to FIGs. 10 and 11.
FIG. 10 is a front view illustrating an inner case included in a refrigerator door
which is applied to the refrigerator according to the third embodiment cf the present
invention. FIG. 11 is an exploded perspective view illustrating a door duct unit
provided at the inner case shown in FIG. 10, and a sealing unit provided at the door
duct unit.
The basic constituent elements of the refrigerator according to the third
embodiment of the present invention are identical to those of the refrigerator according
to the first embodiment and/or second embodiment of the present invention. In the
following description given in conjunction with the refrigerator according to the third
embodiment of the present invention, the constituent elements identical to those cf the
first embodiment and/or second embodiment of the present invention will be

WO 2006/083111 PCT/KR2006/000357
21
designated by the same reference numerals as those used in the first embodiment and/
or second embodiment of the present invention, respectively, and no additional de-
scription thereof will be given.
In accordance with the third embodiment of the present invention, the ice making
compartment 500 includes a door duct 540 which connects the interior of the ice
making compartment 500 to the duct unit 600, as shown in FIGs. 10 and 11.
The door duct 540 is provided at the refrigerating compartment door unit 400, in
particular, in the interior of the inner case 530 of the left door 410.
Referring to FIG. 10, the top wall of the inner case 530 is rearwardly recessed to
form the ice making chamber 510. The door duct 540 may be arranged inside the
second opening 501 such that the door duct 540 communicates with the second
opening 501. Alternatively, the door duct 540 may be exposed externally of the inner
case 530 at one side of the door duct 540 such that the door duct 540 forms the second
opening 501.
The door duct 540 is received in a space defined between the second opening 501
and the ice making chamber 510, in a fixed state.
The door duct 540 has a first duct portion 541 which communicates with the air
supply duct 610, and a second duct portion 542 which communicates with the return
duct 620.
In this embodiment, the inlet of the first duct portion 541 and the outlet of the
second duct portion 542 form the door-side inlet 501a and door-side outlet 501b, re-
spectively. It is preferred that the above-described sealing unit 710 be provided at each
of the inlet of the first duct portion 541 and the outlet of the second duct portion 542.
Hereinafter, the door duct 540 will be described in more detail. The first duct
portion 541 includes a body 541b centrally formed with a through hole 541a.
It is preferred that the through hole 541 a have an inlet which forms the door-side
inlet 501a. It is also preferred that the body 541b have a step recessed to a pre-
determined depth to receive the sealing unit 710.
Preferably, the step has an edge having the same shape as the appearance cf the
gasket supporter 713 and has a depth approximately identical to the thickness of the
gasket supporter 713 in order to prevent the sealing unit 701 from joggling after being
fitted in the step.
A plurality of supporter mounting grooves 541c are formed at the step, in order to
fix the gasket supporter 713 to the step of the first duct portion 541. Also, the above-
described coupling protrusions (not shown) are formed at the gasket supporter 713.

WO 2006/083111 PCT/KR2006/000357
22
The coupling protrusions are engaged in the supporter mounting grooves 541c, re-
spectively.
The second duct portion 542 may have the same structure as that of the first duct
portion 541.
Meanwhile, the door duct 540 is made of an insulating material in order to
minimize thermal loss cf cold air because the door duct 540 guides cold air introduced
into or discharged out of the duct unit 600. Preferably, the door duct 540 is made cf an
insulating material such as expanded polystyrene (EPS) which is easily moldable, and
has superior insulation properties.
Thus, cold air supplied from the heat exchanger 310 is introduced into the ice
making chamber 510 via the air supply duct 610 and first duct portion 541 of the door
duct 540. On the other hand, cold air discharged out cf the ice making chamber 510 is
returned to the freezing compartment 300 via the second duct portion 542 cf the door
duct 540 and return duct 620.
Other configurations cf the refrigerator according to the third embodiment of the
present invention are identical to those cf the first embodiment and/or second
embodiment of the present invention. Accordingly, no repeated description will be
given cf the identical configurations.
Hereinafter, a refrigerator according to a fourth embodiment cf the present
invention will be described with reference to FIGs. 12 and 16.
FIG. 12 is a perspective view illustrating a cold air guide device and a refrigerator
door which are applied to the refrigerator according to the fourth embodiment of the
present invention. FIG. 13 is a perspective view illustrating a part of a duct constituting
the cold air guide device shown in FIG. 12. FIG. 14 is a sectional view illustrating a
state in which the duct shown in FIG. 13 is installed at one wall of the refrigerator.
FIG. 15 is a perspective view illustrating a duct holder applied to the refrigerator
according to the fourth embodiment of the present invention. FIG. 16 is a sectional
view illustrating a state in which the duct is installed at one wall cf the refrigerator by
the duct holder shown in FIG. 15.
The basic constituent elements cf the refrigerator according to the fourth
embodiment cf the present invention are identical to those of the refrigerator according
to at least one of the first through third embodiments of the present invention. In the
following description given in conjunction with the refrigerator according to the fourth
embodiment of the present invention, the constituent elements identical to those cf at
least one of the first through third embodiments of the present invention will be

WO 2006/083111 PCT/KR2006/000357
23
designated by the same reference numerals as those used in at least one of the first
through third embodiments of the present invention, respectively, and no additional de-
scription thereof will be given.
Referring to FIGs. 12 to 14, the refrigerator according to the fourth embodiment of
the present invention includes a spacer which spaces ducts internally arranged at one
side wall of the refrigerator from the outer wall O and inner wall I forming the side
wall of the refrigerator.
Here, the ducts include the above-described air supply duct 610 and return duct
620.
The spacer supports the air supply duct 610 and/or return duct 620 to be spaced
apart from the outer wall O and inner wall I.
The spacer is provided to minimize thermal loss of cold air flowing through the
duct unit 600 and to easily fill a foaming liquid between the outer wall O and the inner
wall I.
It is preferred that the spacer be configured to uniformly space each cf the ducts
610 and 620 from the outer wall O and inner wall I.
The spacer includes at least one spacing rib protruded from the outer surface of an
associated one of the ducts 610 and 620.
The spacing rib Junctions to arrange the associated duct, namely, the air supply duct
610 or return duct 629, at a desired correct position in one side wall of the refrigerating
compartment 200.
In this embodiment, the spacer includes two spacing ribs 61 la or 621a which are
protruded from the outer surface of the associated air supply duct 610 or return duct
620 in a symmetrical manner. Of course, it is preferred that spacing ribs 611a and
spacing ribs 621a are provided at the air supply duct 610 and return duct 620, re-
spectively.
The spacing ribs 61 la or 621a extend in opposite directions from the outer surface
cf the associated duct 610 or 620, respectively.
Thus, the air supply duct 610 and/or return duct 620 is centrally arranged between
the outer wall O and the inner wall I.
The spacing ribs 61 la and 621a preferably have a shape having a small cross-
sectional area, in order to minimize the area of the spacing ribs 61 la and 621a
contacting the outer wall O and inner wall I. Accordingly, it is possible to minimize
thermal loss caused by the spacing ribs.
When the ducts 610 and 620 are centrally arranged between the inner wall I and the

WO 2006/083111 PCT/KR2006/000357
24
outer wall O, the foaming liquid L filling the space between the outer wall O and inner
wall I can smoothly flow. In other words, since the distance between each of the ducts
610 and 620 and the inner wall I, and the distance between each cf the ducts 610 and
620 and the outer wall O are uniform, the foaming liquid L can sufficiently fill the
space between the inner wall I and the outer wall O.
Meanwhile, the air supply duct 610 includes at least one main duct 611 which
guides cold air to flow rectilinearly, and a connecting duct 612 which varies the flow
direction of cold air flowing through the air supply duct 610. The connecting duct 612
may be connected to one end of the main duct 611. Where the air supply duct 610
includes, for example, two main ducts 611, the connecting duct 612 may be connected
between the fecing ends cf the main ducts 611.
Where the duct unit 601 includes, in addition to the air supply duct 610, the return
duct 620, the return duct 620 includes, similarly to the air supply duct 610, at least one
main duct 621 which guides cold air to flow rectilinearly, and a connecting duct 622
which varies the flow direction cf cold air flowing through the return duct 620. The
connecting duct 622 may be connected to one end of the main duct 621. Where the
return duct 620 includes, for example, two main ducts 621, the connecting duct 622
may be connected between the feeing ends of the main ducts 621.
Each of the main ducts 611 and 621 has an approximately rectilinear shape. Each cf
the connecting ducts 612 and 622 has a curved shape to guide a flow of cold air. The
connecting duct 612 or 622 may form one end of the associated air supply duct 610 or
return duct 620. Where the connecting duct 612 or 622 is connected between the
adjacent main ducts 611 or 621, it varies the flow direction cf cold air.
In this embodiment, the spacing ribs 61 la and 621a are provided at the outer
surfaces cf the associated connecting ducts 612 and 622, respectively. However, the
present invention is not limited to this arrangement. The spacing ribs 61 la and 621a
may be provided at the outer surfaces of the associated main ducts 611 and 621, re-
spectively.
The refrigerator according to the fourth embodiment of the present invention may
father include a duct holder 800 which factions to fix the ducts 610 and 620 to one
side wall of the refrigerating compartment 200.
In detail, at least one cf the air supply duct 610 and return duct 620 is coupled to the
duct holder 800, and is fixed to one side wall of the refrigerating compartment 200 by
the duct holder 800.
Referring to FIG. 13, and FIGs. 15 and 16, the duct holder 800 includes duct

WO 2006/083111 PCT/KR2006/000357
25
receivers 810 and 820 which receive the ducts 610 and 620 in a fixed state, re-
spectively.
In this embodiment, the duct holder 800 simultaneously fixes the air supply duct
610 and return duct 620. To this end, it is preferred that the duct holder 800 include a
pair of duct receivers, namely, duct receivers 810 and 820, which are connected to
each other such that they are integral.
Hereinafter, the duct receiver 810, which receives the air supply duct 610, is also
referred to as a first duct receiver, whereas the duct receiver 820, which receives the
return duct 620, is also referred to as a second duct receiver.
The duct receivers 810 and 820 have duct receiving holes 811 and 812 through
which the ducts 610 and 620 extend, respectively. The duct receivers 810 and 820 are
connected to each other by a connecting rib 830.
The shapes of the duct receiving holes 811 and 821 correspond to the outer cross-
sectional shapes of the air supply duct 610 and return duct 620, respectively. Ac-
cordingly, the air supply duct 610 and return duct 620 are fixed as they are fitted in the
duct receiving hole 811 of the first duct receiver 810 and the duct receiving hole 821 of
the second duct receiver 820, respectively.
In addition to the above-described configuration, the duct holder 800 preferably
includes at least one spacing protrusion 840 outwardly protruded from the outer
surface of each of the duct receivers 810 and 820.
The spacing protrusion 840 has the same junction as those of the above-described
spacing ribs 61 la and 621a. Accordingly, the duct unit 600 may include the spacing
protrusions 840 or the spacing ribs 61 la and 621a alone.
Of course, there is a difference between the spacing protrusions 840 and the spacing
ribs 611a and 621a in that the spacing protrusions 840 are protruded from respective
outer surfaces of the duct receivers 810 and 820, whereas the spacing ribs 611a and
621a are protruded from respective outer surfaces of the ducts 610 and 620.
The spacing protrusions 840 formed at each of the duct receivers 810 and 820 are
arranged at opposite sides of the associated duct receiver 810 or 820. Accordingly, the
spacing protrusions 840 maintain the air supply duct 610 and return duct 620 at a
central position between the outer wall O and the inner wall I.
Where the air supply duct 610 and return duct 620 are centrally arranged between
the inner wall I and the outer wall O, the foaming liquid L filling the space between the
inner wall I and the outer wall O can smoothly flow. Accordingly, the foaming liquid
L can sufficiently fill the space between the inner wall I and the outer wall O.

WO 2006/083111 PCT/KR2006/000357
26
Other configurations cf the refrigerator according to the fourth embodiment of the
present invention are identical to those cf the first through third embodiment of the
present invention. Accordingly, no repeated description will be given cf the identical
configurations.
Hereinafter, a refrigerator according to a fifth embodiment cf the present invention
will be described with reference to FIG. 17.
FIG. 17 is a perspective view illustrating a first heater which is applied to the re-
frigerator according to the fifth embodiment of the present invention, and is installed in
a refrigerating compartment wall.
The basic constituent elements of the refrigerator according to the fifth embodiment
cf the present invention are identical to those of the refrigerator according to at least
one of the first through fourth embodiments of the present invention. In the following
description given in conjunction with the refrigerator according to the fifth
embodiment of the present invention, the constituent elements identical to those of at
least one of the first through fourth embodiments of the present invention will be
designated by the same reference numerals as those used in at least one cf the first
through fourth embodiments of the present invention, respectively, and no additional
description thereof will be given.
Referring to FIG. 17, the refrigerator according to the fifth embodiment of the
present invention includes a first heater 851 which prevents a frosting phenomenon
from occurring in the refrigerating compartment 200 due to cold air flowing through
the ducts 610 and 620.
In this case, at least one of the ducts 610 and 620, namely, the air supply duct 610
and return duct 620, is arranged in one side wall cf the refrigerating compartment 200.
The first heater 851 is arranged on one side wall of the refrigerating compartment 200.
In detail, the ducts 610 and 620 are arranged between the outer wall O and inner
wall I of the refrigerating compartment 200. The first heater 851 is arranged on the
inner wall I of the refrigerating compartment 200. In other words, the first heater 851
is installed on the inner wall I of the refrigerating compartment 200, to increase the
temperature of the inner wall I cf the refrigerating compartment 200. In particular, the
first heater 851 is preferably arranged on one surface of the inner wall I of the re-
frigerating compartment 200 contacting the filled foaming liquid L such that the first
heater 851 is not outwardly exposed.
More preferably, the first heater 851 is arranged adjacent to the first opening 601.
Cold air is introduced into the duct unit 600 through the duct-side air supply port

WO 2006/083111 PCT/KR2006/000357
27
601a, and is discharged out of the duct unit 600 through the duct-side inlet 601b. If
there is no heater arranged near the duct-side air supply port 601a and duct-side inlet
601b, such as the first heater 851, a decrease in temperature occurs around the duct-
side air supply port 601a and duct-side inlet 601b due to the influence of the cold air
flowing through the duct unit 600. For this reason, it is preferred that the first heater
851 be arranged adjacent to the first opening 601.
The first heater 851 heats the inner wall of the refrigerating compartment 200 such
that the temperature of the inner wall of the refrigerating compartment 200 is similar to
the internal temperature of the refrigerating compartment 200.
In detail, it is preferred that the first heater 851 be arranged around each of the duct-
side air supply port 601a and duct-side inlet 601b. The first heater 851 includes a
heating wire having a plurality of bent portions. The heating wire generates heat when
external electric power is applied to the wire.
Although not shown, the refrigerator may further include a temperature sensor
which measures the wall temperature of the refrigerating compartment 200, and a
power controller which selectively turns on or off the heater 130, based on the value
measured by the temperature sensor.
Using the first heater 851 having the above-described configuration, it is possible to
prevent a frosting phenomenon from occurring at the inner surface of the refrigerating
compartment 200 due to the cold air flowing through the duct-side air supply port 601a
and duct-side inlet 601b.
Other configurations cf the refrigerator according to the fifth embodiment of the
present invention are identical to those of the first through fourth embodiments of the
present invention. Accordingly, no repeated description will be given of the identical
configurations.
Hereinafter, a refrigerator according to a sixth embodiment of the present invention
will be described with reference to FIGs. ] 8 to 21.
The basic constituent elements of the refrigerator according to the sixth
embodiment of the present invention are identical to those of the refrigerator according
to at least one of the first through fifth embodiments of the present invention. In the
following description given in conjunction with the refrigerator according to the sixth
embodiment of the present invention, the constituent elements identical to those of at
least one of the first through fifth embodiments of the present invention will be
designated by the same reference numerals as those used in at least one of the first
through fifth embodiments of the present invention, respectively, and no additional de-

WO 2006/083111 PCT/KR2006/000357
28
scription thereof will be given.
FIG. 18 is a perspective view of the refrigerator according to the sixth embodiment
of the present invention, illustrating opened states cf the refrigerating compartment
doors and freezing compartment door. FIG. 19 is a perspective view illustrating a cold
air glide arranged at the barrier cf the refrigerator shown in FIG. 18. FIG. 20 is a
perspective view illustrating a barrier cover which opens or closes the cold air glide
shown in FIG. 19. FIG. 21 is a perspective view illustrating a state in which the cold
air guide is closed by the barrier cover shown in FIG. 20.
♦Referring to FIGs. 18 to 21, the refrigerator according to the sixth embodiment cf
the present invention includes a cold air glide 900 which is arranged in the barrier 210
partitioning the refrigerating compartment 200 and freezing compartment 300.
The cold air guide 900 is configured to connect the duct unit 600 and freezing
compartment 300.
In detail, the cold air guide 900 includes an air supply passage 910 which guides
cold air generated by the heat exchanger 310 to the air supply duct 610.
Where the duct unit 600 further includes the return duct 620, as described above,
the cold air glide 900 firther includes a return passage 920.
In this case, it is preferred that a partition wall 930 be arranged between the air
supply passage 910 and the return passage 920.
The return passage 920 guides cold air, which is guided through the duct unit, in
particular, the return duct 620, after emerging from the ice making compartment 500,
to the freezing compartment 300.
In detail, the air supply passage 910 includes an air supply hole 911 which extends
vertically, and an air supply glide 912 which guides cold air from the air supply hole
911 to the air supply duct 610.
The return passage 920 includes a return hole 921 which extends vertically, and a
return guide 922 which guides cold air from the return duct 620 to the return hole 921.
In addition to the above-described configuration, the barrier 210 includes a cover
211 which opens or closes the cold air glide 900.
The cover 211 is separably coupled to the cold air guide 900. The cover 211
includes an air supply cover 21 la for opening or closing the air supply passage 910,
and a return cover 21 lb for opening or closing the return passage 920. Preferably, the
air supply cover 211a and return cover 21 lb are integrally formed.
The cover 211 also includes a partition groove 211c formed between the air supply

WO 2006/083111 PCT/KR2006/000357
29
cover 211a and the return cover 21 lb, to provide a sealing effect between the air
supply passage 910 and the return passage 920.
The cover 211 having the above-described configuration is detachably attached to
the top cf the cold air guide 900.
Where cold air flowing through the duct unit 600 passes through the interior of the
barrier 210, as described above, it is preferred that a second heater 861 be provided at
the barrier 210, in order to prevent a frosting phenomenon from occurring in the
interior of the refrigerating compartment 200.
Preferably, the second heater 861 is arranged at one surface of the barrier 210
fecing the interior of the refrigerating compartment 200, namely, the top surface of the
barrier 210. That is, the second heater 861 is arranged at the bottom of the refrigerating
compartment 200. Electric wires 861a are connected to the second heater 861, to
supply electric power to the second heater 861.
Where the barrier 210 includes the cover 211 for opening or closing the cold air
guide 900, as in this embodiment, it is more preferable for the second heater 861 to be
arranged at the top surface of the cover 211.
Meanwhile, the second heater 861 is configured to operate selectively in
accordance with a predetermined condition.
In detail, the second heater 861 is automatically turned on or off in accordance with
the temperature at the bottom of the refrigerating compartment 200. That is, when the
temperature value measured by a temperature sensor (not shown), which measures the
temperature at the bottom of the refrigerating compartment 200, is lower than a pre-
determined lower limit, the second heater 861 is turned on by a power supply
controller (not shown). On the other hand, when the temperature value measured by
the temperature sensor is higher than a predetermined upper limit, the second heater
861 is turned off by the power supply controller.
Other configurations of the refrigerator according to the sixth embodiment of the
present invention are identical to those of the first through fifth embodiments of the
present invention. Accordingly, no repeated description will be given of the identical
configurations.
Finally, a refrigerator according to a seventh embodiment of the present invention
will be described with reference to FIG. 22.
The basic constituent elements of the refrigerator according to the seventh
embodiment of the present invention are identical to those of the refrigerator according
to at least one of the first through sixth embodiments of the present invention. In the

WO 2006/083111 PCT/KR2006/000357
30
following description given in conjunction with the refrigerator according to the
seventh embodiment of the present invention, the constituent elements identical to
those of at least one of the first through sixth embodiments of the present invention
will be designated by the same reference numerals as those used in at least one of the
first through sixth embodiments of the present invention, respectively, and no
additional description thereof will be given.
FIG. 22 is a perspective view of an ice making compartment applied to the re-
frigerator according to the seventh embodiment cf the present invention, taken at the
rear side.
Referring to FIG. 22, the ice making compartment door 520 in the refrigerator
according to the seventh embodiment cf the present invention is hingably connected to
one side of the opening cf the freezing compartment 510 by hinges 522.
Thus, the ice making compartment door 520 is hingably openable about the hinges
522.
It is preferred that the hinges 522 be arranged on upper and lower corners cf the ice
making compartment door 520 at one edge of the ice making compartment door 520.
The refrigerator according to the seventh embodiment of the present invention
further includes a hinge cover 523 which covers each hinge 522.
To mount the hinge cover 523, a cover mount 524 is provided at the associated
corner of the ice making compartment door 520. The hinge cover 523 has a size and
shape corresponding to those cf the associated cover mount 524.
Accordingly, when the hinge cover 523 is mounted to the associated cover mount
524, the associated hinge 522 is not outwardly exposed.
The hinge cover 523 prevents an accident in that a portion of the body of the user is
caught in the hinge 522 through his carelessness, and makes the appearance of the ice
making compartment beautiful.
Other configurations cf the refrigerator according to the seventh embodiment cf the
present invention are identical to those of the first through sixth embodiments cf the
present invention. Accordingly, no repeated description will be given cf the identical
configurations.
It will be apparent to those skilled in the art that various modifications and
variations can be made in the present invention without departing from the spirit or
scope of the invention.
Thus, it is intended that the present invention cover the modifications and variations
of this invention provided they come within the scope of the appended claims and their

WO 2006/083111 PCT/KR2006/000357
31
equivalents.
Industrial Applicability
The refrigerator having the above-described configuration has various advantages.
The industrial applicabalityof the refrigerator according to the present invention has
been described in "Best Mode" and "Mode for Invention".
Since the refrigerator according to the present invention typically includes a cold air
guiding device for gliding cold air generated by a heat exchanger to an ice making
compartment arranged in a refrigerating compartment, it is possible to appropriately
select the position of the ice making compartment irrespective of the structure or
capacity of the refrigerator. Accordingly, it is possible to achieve an improvement in
the freedom of design cf the refrigerator, and a reduction in the manufacturing costs cf
the refrigerator, and to maximize the inner space of the refrigerating compartment.
Such advantages become more effective where a freezing compartment is arranged
beneath the refrigerating compartment.

WO 2006/083111 PCT/KR2006/000357
32
Claims
A refrigerator comprising:
a refrigerator body which includes a freezing compartment and a refrigerating
compartment;
an ice making compartment which is arranged in the refrigerating compartment,
to make ice;
a heat exchanger which generates cold air for freezing food stored in the freezing
compartment; and
a cold air gliding device which glides the cold air generated by the heat
exchanger to the ice making compartment, to enable the ice making
compartment to make ice.
The refrigerator according to claim 1, wherein the ice making compartment is
arranged inside a refrigerating compartment door unit which opens or closes an
inner space of the refrigerating compartment.
The refrigerator according to claim 1, wherein the refrigerating compartment is
arranged over the freezing compartment.
The refrigerator according to claim 1, wherein the cold air gliding device
includes a duct unit which communicates with the ice making compartment.
The refrigerator according to claim 4, father comprising:
a cold air supply fen which forcibly supplies the cold air generated by the heat
exchanger to the ice making compartment.
The refrigerator according to claim 4, wherein the duct unit includes:
an air supply duct which supplies the cold air generated by the heat exchanger to
the ice making compartment; and
a return duct which glides the cold air from the ice making compartment to the
freezing compartment.
The refrigerator according to claim 4, wherein the duct unit includes at least one
duct which is provided at one side wall of the refrigerating compartment such
that the duct communicates with the ice making compartment.
The refrigerator according to claim 7, wherein the duct is arranged between an
outer wall and an inner wall which form the side wall of the refrigerating
compartment.
The refrigerator according to claim 8, wherein the duct is spaced apart from the
outer wall and the inner wall.

WO 2006/083111 PCT/KR2006/000357
33
The refrigerator according to claim 9, further comprising:
a spacer which supports the duct such that the duct is spaced apart from the outer
wall and the inner wall.
The refrigerator according to claim 10, wherein the spacer includes two spacing
ribs which are protruded from an outer surface of the duct, to space the duct from
the outer wall and inner wall by the same distance, respectively.
The refrigerator according to claim 11, wherein the spacing ribs are symmetrical
to each other.
The refrigerator according to claim 7, fiirther comprising:
a duct holder which fixes the duct to the side wall of the refrigerating
compartment.
The refrigerator according to claim 13, wherein the duct is internally installed
between the outer wall and the inner wall under a condition in which the duct is
held by the duct holder.
The refrigerator according to claim 14, wherein the duct holder includes:
at least one duct receiver which firmly receives the duct; and
spacing protrusions which are outwardly protruded from the duct receiver, to
space the duct from the outer wall and the inner wall.
The refrigerator according to claim 13, wherein:
the at least one duct comprises a pair of ducts; and
the at least one duct receiver comprises a pair of duct receivers which are
connected to each other such that the duct receivers are integral, the duct
receivers receiving the ducts, respectively.
The refrigerator according to claim 7, fiirther comprising:
a first heater which prevents a frosting phenomenon from occurring in the re-
frigerating compartment due to the cold air flowing through the duct.
The refrigerator according to claim 17, wherein:
the duct is installed in the side wall of the refrigerating compartment; and
the first heater is arranged on an inner surface of the side wall.
The refrigerator according to claim 18, wherein:
the inner wall of the refrigerating compartment has a first opening which forms
one end of the duct unit; and
the first heater is arranged adjacent to the first opening.
The refrigerator according to claim 4, father comprising:
a cold air guide which is arranged in a barrier partitioning the refrigerating

WO 2006/083111 PCT/KR2006/000357
34
compartment and the freezing compartment, to connect the duct unit to the
freezing compartment.
*The refrigerator according to claim 20, wherein the barrier includes a cover
which is separably coupled to the cold air glide.
The refrigerator according to claim 20, wherein the cold air glide includes:
*an air supply passage which grides the cold air generated by the heat exchanger
to the duct unit; and
a return passage which glides the cold air guided through the duct unit after
emerging from the ice making compartment to the freezing compartment.
The refrigerator according to claim 20, farther comprising:
a second heater which is provided at one surface cf the barrier fecing an inner
space cf the refrigerating compartment, to prevent a frosting phenomenon from
occurring in the refrigerating compartment due to the cold air guide.
The refrigerator according to claim 23, wherein the second heater operates se-
lectively in accordance with a predetermined condition.
The refrigerator according to claim 4, wherein:
the ice making compartment is provided at a refrigerating compartment door unit
which opens or closes an inner space cf the refrigerator;
the duct unit includes a first opening which is provided at an inner wall cf the re-
frigerating compartment, and forms one end cf the duct unit connected to one
side cf the refrigerating compartment door unit; and
the refrigerating compartment door unit includes a second opening which is
connected to the first opening, to connect the duct unit to an inner space of the
ice making compartment.
The refrigerator according to claim 25, further comprising:
a sealing unit which is provided at at least one cf the first and second openings,
to prevent air from being leaked between the first and second openings.
The refrigerator according to claim 26, wherein the sealing unit includes:
a gasket; and
a gasket fixer which fixes the gasket to at least one of the first and second
openings.
The refrigerator according to claim 27, wherein the gasket fixer includes:
a gasket supporter which is coupled to at least one cf the first and second
openings; and
a gasket holder which fixes the gasket to the gasket supporter.

WO 2006/083111 PCT/KR2006/000357
35
The refrigerator according to claim 4, wherein the ice making compartment
includes a door duct unit which is provided at a refrigerating door unit for
opening or closing an inner space of the refrigerating compartment, to connect
the duct unit to an inner space of the freezing compartment.
The refrigerator according to claim 1, wherein the ice making compartment
includes:
an ice making chamber which receives an ice maker for making ice using the
cold air generated by the heat exchanger; and
an ice making compartment door which opens or closes an opening formed at a
rear side of the ice making chamber.
The refrigerator according to claim 30, wherein the ice making compartment
door is hingably movable by a hinge mounted to one side of the ice making
chamber.
The refrigerator according to claim 31, wherein the ice making compartment
door includes a hinge cover which covers the hinge.

A refrigerator is disclosed which enables the user to easily take ice out of an ice maker without causing a variation
in the capacity of the refrigerator or a limitation on the position of a freezing compartment. The refrigerator includes a refrigerator
body (100) which includes a freezing compartment (300) and a refrigerating compartmen (200), an ice making compartment (500)
which is arranged in the refriderating compartment, to make ice, a heat exchange (310) which generates cold air for freezing food
storing in the freezing compartment, and a cold air guiding device (600) which guides the cold air generated by the heat exchanger
(310) to the ice making compartment (500), to enable the ice making compartment to make ice.

Documents:

http://ipindiaonline.gov.in/patentsearch/GrantedSearch/viewdoc.aspx?id=357BLRGN11/6gxCEf9zgrA==&loc=wDBSZCsAt7zoiVrqcFJsRw==


Patent Number 279829
Indian Patent Application Number 2796/KOLNP/2007
PG Journal Number 05/2017
Publication Date 03-Feb-2017
Grant Date 31-Jan-2017
Date of Filing 31-Jul-2007
Name of Patentee LG ELECTRONICS INC.
Applicant Address 20, YOIDO-DONG, YOUNGDUNGPO-GU, SEOUL
Inventors:
# Inventor's Name Inventor's Address
1 LEE SEUNG MOK 806-1005, BOOYOUNG APT., WOLSAN MAEUL, 881-2, BUGOK-RI, JANGYU-MYEON, GIMHAE-SI,, GYEONGSANGNAM-DO, 621-833
2 YANG CHANG WOAN 3-1001, SAMEOP APT., 316, GUSAN-DONG, GIMHAE-SI,, GYEONGSANGNAM-DO, 621-900,
3 LEE BOK DONG 103-1401, WOOSUNG APT., NAMYANG-DONG, CHANGWON-SI, GYEONGSANGNAM-DO, 641-934
4 HAN KAP ROK 42-1103, HANYANG APT., YEONSAM 9-DONG, YEONJE-GU, BUSAN-SI, 611-752
PCT International Classification Number F25D 17/08
PCT International Application Number PCT/KR2006/000357
PCT International Filing date 2006-02-01
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 102005-0014749 2005-02-23 Republic of Korea
2 102005-0008905 2005-02-01 Republic of Korea
3 102005-0017123 2005-03-02 Republic of Korea
4 102005-0009362 2005-02-02 Republic of Korea
5 102005-0015692 2005-02-25 Republic of Korea