Title of Invention

"BED PREFERABLY HOSPITAL OR CARE BED"

Abstract Bed, comprising a lower frame (1) and an upper frame (2) with a supporting surface for a mattress, and where the upper frame (2) is connected to the lower frame (1) so that the upper frame can be raised and lowered in proportion to the lower frame by means of one or more adjusting means (5, 6) driven by an electric motor. In order to prevent squeezing between the upper and lower frame when the upper frame is lowered, the bed is provided with anti squeezing means. These comprise a light source and a receiver positioned in a corner of the lower frame. The light source sends a light beam which follows the lower frame all the way around and runs just above the top side of the lower frame. When the light beam is interrupted the control unit reac...
Full Text The invention relates to a bed, preferably a hospital or care bed as stated in the preamble of claim 1.
Hospital and care beds typically comprise a lower frame furnished with drive wheels and an upper frame being connected to a lower frame, so that the upper frame, as a whole, can be elevated or tilted, so that the patient can be positioned head down or head up (Trendelenburg, anti Trendelenburg position respectively). The movement is brought about either by means of lifting columns or actuators in connection with a link mechanism. An example of such a bed is for instance known from EP 0 488 582A2 to Huntleigh Technology plc. Altogether, it is definitely dangerous in case a person is directly squeezed in such a construction or indirectly for instance with an implement such as a floor mop. It is also experienced, that patients fall out of bed and land on the foot switches, and thereby setting the bed in motion. In order to counter squeezing the use of contact strips, which cut off the current for the motors, are for instance suggested in DE 198 14 269 to Okin and US 4 534 077 to Martin. JP 2002 12 5807 to Paramount deals with a bed, where two parallel light sources with corresponding photoelectric cells are mounted under the upper frame, or more specifically at the connection of the link mechanism to the upper frame, and when the light beam is interrupted the upper frame is stopped alternatively elevated. In WO 03/088885 Al to Hill-Rom a number of embodiments for squeeze protection are described based on light carpets and sophisticated positioning of light sources and light receivers.
The present invention relates to the type of sgeezing protection, indicated in Fig. 12 of WO 03/088885 Al, where a light source and corresponding receiver are positioned above each side of the lower frame, at its side members. To avoid interference the light sources are located opposite each other on the two side members, so that the light is sent in opposite directions. A further light source and receiver is located at the foot of the bed. These are positioned oft the external facade of the traverse, so that they do not collide with the light beams above the side members. As the light source is located on the side of the traverse, it does not provide any direct protection against squeezing from the upper frame. At the bed head of the bed, no protection against squeezing is provided even though hospital and care beds are frequently transported and left standing freely.
The purpose of the invention is to provide a more complete covering squeezing protection of this type.
This is achieved according to the invention by designing the bed as stated in claim 1. By positioning the light source so that the light beam is sent all the way around along the top side of the lower frame i.e. both the side members and both ends, it is directly prevented that something is squeezed under the bed. If a person rests his foot on the lower frame the upper frame is prevented from moving, correspondingly if a child tries to climb under the bed. Washing of the floor under the bed by means of a mop, where the mop interrupts the light beam will also prevent the bed from moving. This differs from the squeezing protection with contact strips as stated in DE 198 14 2 69 to Okin and the construction in JP 2002125807 to Paramount where the upper frame is in motion, and does not cut off the current for the motor
for stopping the movement until contact is made. As a consequence of the inertia of the upper frame some degree of squeezing will occur anyhow unlike the construction according to the invention, where the upper frame cannot move at all if an unfamiliar object under the bed interrupts the light beam. One could object that it is not possible to adjust the bed while resting a foot on the lower frame, but on the other hand this beforehand prevents the foot from being squeezed. Compared with the above-mentioned construction in WO 03/088885 Al to Hill-Rom a protection against squeezing is obtained all the way around the bed, which among other things is of importance seeing that the beds are being transported around in hospitals or nursing homes and are often temporarily left standing freely in the room or in the hall ways. In addition the experience shows that even though a bed is positioned with its bed head against a wall, it does not prevent passage this way under the bed.
The light beam can be broadcasted over the top side of the upper frame in various ways, for example with mirrors positioned in the three comers and a light source and receiver in the last corner. A safer and more unambiguous-working embodiment is, however, to place a master unit with light source and receiver connected to the control unit in one corner of the lower frame while a slave, repeating the light signal, is placed in the other corners.
One could consider various options how the control unit must react, which is entirely dependent on the specific embodiment of the construction. Typically, the motor is brought to a halt and the control unit is prevented from lowering the upper frame further, but not from raising the upper frame. If convenient the control unit can be
arranged so that the actuators will automatically reverse for a short time i.e. raise the upper frame a distance, if the light beam is interrupted while the upper frame is on its way down.
An embodiment for the invention will be explained more fully below with reference to the accompanying drawing, in which:
Fig. 1, shows a schematic view of a hospital bed,
Fig. 2, shows a schematic view of the squeezing protection on the bed,
Fig. 3, shows a table,
Fig. 4, shows a timing diagram of IR- transmitter and IR-receiver,
Fig. 5, shows a simplified flow chart of the method of operation of the squeezing protection, and
Fig. 6 shows a perspective view of a master with an IR-transmitter and receiver.
The hospital bed shown in Fig 1 of the drawing comprises a lower frame 1 equipped with drive wheels and an upper frame 2. On the upper frame is mounted an adjustable supporting surface for a mattress, which with actuators can be adjusted to assume Various contours. The upper frame 2 is coupled to the lower frame by means of a link mechanism 3,4 at each end. The upper frame can be raised and lowered by two actuators 5,6 connected to the link mechanism. The actuators are linear actuators driven by a low voltage DC-motor of the type described in EP 531 247
Bl, EP 647 799 Bl or WO 02/29284 all to Linak A/S. The actuators are connected to a control unit 7 comprising a power supply and a control. The actuators are operated by means of a hand control 8,
The bed is equipped with a protection against' squeezing mounted on the top side of the lower frame 1 and the structure of the squeezing protection is suggested in Fig 2. In one corner of the lower frame 1 is mounted a master 9 with a IR-transmitter, which sends a light beam directly along and immediately above one of the side members in the lower frame 1 to the adjacent corner, where a slave 10 is positioned, which receives and repeats the signal, and sends it along and immediately above the traverse by the foot of the bed to the adjacent corner, where a corresponding slave 11 is positioned, which sends the light on along the other side member of the lower frame to yet another slave 12 in the adjacent corner, which finally sends the signal back to the master 9 wherein a receiver is positioned. If the IR-signal is interrupted during its trip around the lower frame, a signal for stopping the actuators is sent to the control unit, and the control unit obstructs lowering the upper frame further, while it is still possible to raise the upper frame if it is found necessary.
In Fig. 6 of the drawing a perspective view of a master 9 comprising an IR-transmitter and receiver is shown. The IR-transmitter sends a light beam through a lens/filter also known as the window 9a. The slaves 10-12 consist of a corresponding housing, but comprise a receiver/repeater, which receives and sends the light beam on until it returns to the master 9, where the light beam enters the window 9a. In order to ease the assembly process the direction of the light beam is indicated with
arrows on top of the housings. In order to block disruptive reflections from the top side of the lower frame the lower part of the lens/filter can have a matt finish 9c. As a matter of form 9d indicates a screw hole for mounting on the lower frame.
The control unit can comprise a bus, to which the various electric units such as actuators, hand controls, control panels etc. can be connected. The master 9 of the squeezing protection can be connected to the bus correspondingly. For initiating the squeezing protection the master transmits six IR-impulses with 38 kHz modulation, and all six signals must be received and be at least 400us in order to be accepted. The master subsequently waits for a RESERVED 1-frame in the bus system and when detected, bit 30 is set to indicate that the squeezing protection system is connected to the control unit. Bit 31 is set, merely, if one of the received IR-impulses is below 400us. Timing diagram for IR-transmitter and IR-receiver is incidentally shown in Fig. 3. The control unit will stop a potential lowering of the upper frame if the system sets bit 31, cf. diagram Fig. 4. A simplified flow chart of the method of operation of the squeezing protection appears from Fig. 5 and this flow chart speaks for itself.
It is not very likely that something will get squeezing between the upper frame 2 and the upper side of the housings which constitute the master 9 and the slaves 10-12 without the light beam being interrupted. But to shut out the possibility, a switch for stopping the actuators if the upper frame is lowered can be positioned on the upper side of the master 9 and the slaves 10-12. Alternatively a spring loaded plate, guided in the housings and protruding through an opening in the upper
side can be located in the housings of the master and the slaves 10-12. If the plates is pressed downwards it is pushed in the course of the light beam and interrupts said light beam. The spring load will see to that the plate of its own again is pulled upwards and away from the course of the light beam when released.
The invention thus brings about a bed with an extensive protection against squeezing all the way around it.





1. Bed, preferably hospital or care bed comprising
a lower frame (1), typically equipped with drive wheels and an upper frame (2), wherein a supporting surface for a mattress is mounted, and where the upper frame (2) is connected to the lower framo (1) so that the upper frame can be raised and lowered relative to the lower frame by means of one or more adjusting means (5, 6) driven by an electric motor having a control unit {7} which can be activated with a control (8) and where the bed is equipped with a squeezing protection for preventing anything from being squeezed under the upper frame, said squeezing protection comprises a light source on the top side of the lower frame, which sends a light beam to a receiver connected to the control unit and when interrupted the light beam sends a signal to the control unit for stopping the motor(S), characterized in
that the light source and the receiver are positioned in immediate neighborhood of each other, and that the light beam is sent all the way around or in all essentials all the way around along the lower frame to the receiver.
2. Bed according to claim 1, characterized in that the light beam is sent above the lower frame, preferably immediately above its top side.
3. Bed according to claim 1, characterized in that a master (9) connected to the control, with light source and receiver is positioned in one corner of the lower frame, while a slave (10,11,12), which repeats the light signal is positioned in the other corners.
4. Bed according to claim 1, characterized in that the master
(9) and the slaves (10-12) are build-in in the respective
housings with openings for transmitting and receiving light beams, said housings being designed for mounting on the top side of the lower frame (1).
5. Bed according to claim 4, characterized in that a switch is mounted on the upper side of the housings, which when activated when the upper frame (2) is lowered brings the motor(s) to a standstill.
6. Bed according to claim 4, characterized in that there is a plate in the housings, which with one end by means of a spring load protrudes through an opening in the upper side of the housing and when urged into the housing, the other end of the plate is brought into the light beam and interrupts this.
7. Beds, preferably hospital or care bed, substantially as hereinbefore described with reference to the foregoing description and drawings.

Documents:

http://ipindiaonline.gov.in/patentsearch/GrantedSearch/viewdoc.aspx?id=ve7D1y5cfZEaA2NyLs4fJw==&loc=+mN2fYxnTC4l0fUd8W4CAA==


Patent Number 279929
Indian Patent Application Number 8396/DELNP/2008
PG Journal Number 06/2017
Publication Date 10-Feb-2017
Grant Date 03-Feb-2017
Date of Filing 06-Oct-2008
Name of Patentee LINAK A/S
Applicant Address SMEDEVAENGET 8, GUDERUP, DK-6430 NORDBORG, DENMARK
Inventors:
# Inventor's Name Inventor's Address
1 ANDERSEN, THOMAS, EGELUND DAMGADE 80 A3, DK-6400, SØNDERBORG, DENMARK
2 FOG, MORTEN HILMAR FINSENS GADE 15, 1, SAL, DK-6400 SØNDERBORG, DENMARK
PCT International Classification Number A61G 7/012
PCT International Application Number PCT/DK2007/000200
PCT International Filing date 2007-04-27
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 PA 2006 00596 2006-04-27 Denmark