Title of Invention

A METHOD FOR RECOVERING CARBON DIOXIDE FROM A CARBON DIOXIDE CONTAINING GAS

Abstract A system for recovering absorbate such as carbon dioxide from an oxygen containing mixture wherein carbon dioxide is concentrated in an alkanolamine containing absorption fluid, oxygen is separated from the absorption fluid, and carbon dioxide is steam stripped from the absorption fluid and recovered
Full Text FORM 2
THE PATENTS ACT 1970
[39 OF 1970]
COMPLETE SPECIFICATION
[See Section 10]
-"CARDON DIOXIBE RECOVERY FROM AN OXYGEN CONTAINING



A METHOD FOR RECOVERING CARBON DIOXIDE FROM A
CARBON DIOXIDE CONTAINING GAS"

PRAXAIR TECHNOLOGY, INC., Technology Licensors, a corporation organized and existing under the laws of the State of Delaware, United States of America, of 39 Old Ridgebury Road, Danbuiy, State of Connecticut 06810-5113, United States of America,
The following specification particularly describes the nature of the invention and the manner in which it is to be performed:-
530/MUM/2000 GRANTED
9 JUN 2000

CARDON DIOXIDE .RECOVERY
FROM AH OXYGEN CONTAINING MIXTURE
Technical Field This invention relates generally to the recovery of carbon dioxide and, more particularly, to the recovery of carbon dioxide from a feed mixture which also contains oxygen.
Background Art
Carbon dioxide has a large number of uses. For
example, carbon dioxide is used to carbonate beverages, to chill, freeze and package seafood, meat, poultry,
baked goods, fruits and vegetables, and to extend the
shelf-life of dairy products. It is an important
environmental component in industrial waste and process
water treatment as a replacement for sulfuric acid to
control pH levels. Other uses include drinking water
treatment, an environmentally-friendly pesticide and an
[atmosphere additive in greenhouses to improve the growth of vegetables.
Generally carbon dioxide is produced by purifying a waste stream which is a by-product of an organic or inorganic chemical process. The waste stream, which comprises a high concentration of carbon dioxide, is condensed and purified in multiple stages and then distilled to produce the product grade carbon dioxide.
As the demand for carbon dioxide continues to increase, alternate sources of carbon dioxide are being used to supply the crude carbon dioxide feed to the purification system1. Such alternate feeds have a much lower concentration of carbon dioxide and thus need to be upgraded, i.e. the concentration of the carbon


dioxide must be increased, before product grade carbon dioxide can be effectively produced. These alternate feeds with much lower carbon dioxide concentrations are referred to as dean feeds An example of such a lean feed is flue gas from, for example, a combustion source such as a boiler, internal combustion engine, gas turbine or lime kiln.
Upgrading of the carbon dioxide concentration in a feed can be carried out in a number of ways. One particularly preferred method is the chemical
absorption of carbon dioxide from the .crude carbon dioxide feed into an alkanolamine based absorbent. The resulting carbon dioxide loaded absorbent then undergoes separation into carbon dioxide product for
recovery and into alkanolamine containing absorbent

which is may be recycled for reuse within the recovery
system.
Often the crude carbon dioxide feed contains significant levels of oxygen which can cause degradation of the alkanolamines reducing their utility in the recovery system and also causing corrosion problems in the system. Those skilled in the art have addressed this problem in one of two ways. In one method, chemical inhibitors are added to the absorber fluid to protect against degradation by inhibiting the
oxidation of the alkanolamines. In another, method,a
combustible fuel is added to the crude carbon dioxide
feed for combustion with the oxygen in a catalytic
combustion reaction. While both methods are effective
they are both characterized by high capital costs and,
moreover, are complicated to operate".
Accordingly, it is an object of this invention to provide a system which can more effectively recover

carbon dioxide or other absorbate from an oxygen containing feed using an alkanolamine based absorbent to upgrade the feed.
Summary Of The Invention
The above and other objects, which will become apparent to one skilled in the art upon a reading of this disclosure, are attained by the present invention, one aspect of which is:
A method for recovering carbon dioxide comprising:
(A) passing a feed mixture comprising oxygen and
carbon'dioxide in countercurrent mass transfer contact
with absorbent comprising at least one alkanolamine,
and passing oxygen and carbon dioxide from the feed
mixture into the absorbent to obtain carbon dioxide loaded absorbent containing dissolved oxygen;
(B) separating oxygen from the carbon dioxide
loaded absorbent to obtain1 oxygen depleted carbon
dioxide loaded absorbent;
(C) heating the oxygen depleted carbon dioxide
loaded absorbent to obtain heated carbon dioxide loaded absorbent;
(D) separating carbon dioxide from the absorbent to obtain a carbon dioxide rich fluid; and (E) recovering carbon dioxide rich fluid. Another aspect of the invention is: Apparatus for recovering absorbate from an oxygen-containing feed mixture comprising:
(A) an absorption column, means for passing a feed mixture comprising oxygen and absorbate into the lower portion of the absorption column, and means for passing absorbent comprising at least one alkanolamine into the upper portion of the absorption column;



(B) an oxygen separator and means for passing fluid from the lower portion of the absorption column into the oxygen separator;
(C) a heat exchanger and means for passing fluid from the oxygen separator to the heat exchanger;
(D) a stripping column and means for passing fluid from the heat exchanger to the upper portion of the stripping column; and
(E) means for recovering absorbate from the upper
portion of the stripping column.
As used herein, the term "absorption column" means a mass transfer device that enables a suitable solvent, i.e. absorbent, to selectively absorb the absorbate from a fluid containing one or more other components.
As used herein, the term "stripping column" means a mass transfer device wherein a component such as absorbate is separated from absorbent, generally through the application of energy.
As used herein, the term "inhibitor" means a chemical or mixture of chemicals that inhibits or reduces the rate of a reaction. For example, copper carbonate in combination with one or more of dihydroxyethylglycine, alkali metal permanganate, alkali metal thiocyanate, nickel or bismuth oxides with or without alkali metal carbonate inhibits oxidative degradation of an alkanolamine.
As used herein the term "oxygen scavenging gas" means a gas that has an oxygen concentration less than 2 mole percent, preferably less than 0.5 mole percent, and which can be used to strip dissolved oxygen from a liquid.

As used herein, the terms "upper portion" and 'lower portion" mean those sections of a column



respectively above and below the mid point of the column.
As used herein, the term "indirect heat exchange" means the bringing of two fluids into heat exchange relation without any physical contact or intermixing of the fluids with each other.
Brief Description Of The Drawings
The sole Figure is a schematic representation of one particularly preferred embodiment of the invention wherein the oxygen separator comprises an oxyjgen stripping column.
Detailed Description
The invention will be described in greater detail with reference to the Drawing. Referring now to the Figure, feed gas mixture 1, which typically has been cooled and treated for the reduction of particulates and other impurities such as sulfur oxides (SOx) and
nitrogen oxides (NOx), is passed to compressor or blower 2 wherein it is compressed to a pressure generally within the range of from 14.7 to 30 pounds per square inch absolute (psia). Feed gas mixture 1 generally contains from 2 to 50 mole percent carbon
dioxide as the absorbate, and typically has a carbon dioxide concentration within the range of from 3 to 25 mole percent. Feed gas mixture 1 also contains oxygen in a concentration generally within the range of from less than 1 to about 18 mole percent. Feed gas mixture
1 may also contain one or more other components such as trace hydrocarbons, nitrogen, carbon monoxide, water vapor, sulfur oxides, nitrogen oxides and particulates.


Compressed feed gas mixture 3 is passed from blower 2 into the lower portion of absorption column 4 which is operating at a temperature generally within the range of from 40 to 45°C at the top of the column and at a temperature generally within the range of from 50 to 60°C at the bottom of the column. Absorbent 6 is passed into the upper portion of absorption column 4. Absorbent 6 comprises at least one alkanolamine species. Examples of alkanolamines which may be employed in absorber fluid 6 in the practice of this invention are monoethanolamine, diethanolamine, diisopropanolamine, methyldiethanolamine and triethanolamine. Generally the alkanolamines are employed as an aqueous solution. The concentration of the alkanolamine(s) in absorbent 6 will be within the range of from 5 to 80 weight percent, and preferably
from 10 to 50 weight percent. A preferred primary alkanolamine for use in the absorbent fluid in the practice of this invention is monoethanolamine, preferably in a concentration within the range of from 5 to 25 weight percent, more preferably in a concentration within the range of from 10 to 15 weight percent. Preferred secondary alkanolamines for use in the absorbent fluid in the practice of this invention
are diethanolamine and diisopropanolamine.
Within absorption column 4 the feed gas mixture rises in countercurrent flow against downflowing absorbent. Absorption column 4 contains column internals or mass transfer elements such as trays or
random or structured packing. As the feed gas rises, most of the carbon dioxide within the feed gas, oxygen, and small amounts of other species such as nitrogen, are absorbed into the downflowing absorber liquid

resulting in carbon dioxide depleted top vapor at the top of column 4, and into carbon dioxide loaded absorbent containing dissolved oxygen at the bottom of column 4. The top vapor is withdrawn from the upper
portion of column 4 in stream 5 and the carbon dioxide loaded absorbent is withdrawn from the lower portion of column 4 in stream 7.
Dissolved oxygen eventually causes degradation of alkanolamines thereby leading to corrosion and other
operating difficulties. The level of the dissolved oxygen in the carbon dioxide loaded absorbent is reduced such as by contacting the absorbent with oxygen scavenging gas in a mass transfer device such as the oxygen stripping column illustrated in the Figure.
The carbon dioxide loaded absorbent containing dissolved oxygen in stream 7 is passed from the lower portion of absorption column 4 into the upper portion of additional stripping column 151. It is an important aspect of this invention that the fluid comprising
stream 7 does'not undergo any heating from its
withdrawal from absorption column 4 to its passage into oxygen stripping column 151. Oxygen scavenging gas is passed into the lower portion of stripping column 151 in stream 152. One source of oxygen scavenging gas is
an oxygen free carbon dioxide stream. Examples of such a stream include carbon dioxide rich vapor stream 16, shown in the Figure as stream 71, carbon dioxide from a storage tank, or carbon dioxide from a further downstream process. Other oxygen free gases such as
nitrogen can also be used.
Within stripping column 151 the oxygen scavenging gas rises in countercurrent flow against downflowing carbon dioxide loaded absorbent. Stripping column 151



contains column internals or mass transfer elements such as trays or random or structural packing. As the oxygen scavenging gas rises, oxygen within the absorbent is stripped from the downflowing absorbent
into the upflowing scavenging gas resulting in oxygen containing scavenging gas at the top of stripping column 151, and into oxygen depleted carbon dioxide loaded absorbent at the bottom of stripping column 151. The oxygen containing scavenging gas is withdrawn from
the upper portion of column 151 in stream 150. Stream 150 will typically contain some carbon dioxide in addition to oxygen and other species. This stream can be vented to the atmosphere, used as is, or mixed with the final product carbon dioxide in s_tream 16, as shown
in the Figure as stream 72. The oxygen depleted carbon dioxide loaded absorbent, typically containing less than 2 ' ppm oxygen and preferably less than 0.5 ppm is withdrawn from the lower portion of column 151 in stream 153, passed to liquid pump 8 and from there in
stream 9 to and through heat exchanger 10 wherein it is heated by indirect heat exchange to a temperature generally within the range of from 90 to 120°C, preferably from 100 to 110°C.
The heated carbon dioxide loaded absorbent is
passed from heat exchanger 10 in stream 11 into the upper portion of second or main stripping column 12 which is operating at a temperature typically within the range of from 100 to 110°C at the top of the column and at a temperature typically within the range of from
119 to 125°C at the bottom of the column. As the heated carbon dioxide loaded absorbent flows down through stripping column 12 over mass transfer elements which can be trays or random or structured packing,

carbon dioxide within the absorbent is stripped from the absorbent into upflowing vapor, which is generally steam, to produce carbon dioxide rich top vapor and remaining absorbent. The carbon dioxide rich fluid is withdrawn from the upper portion of stripping column 12 in top vapor stream 13 and passed through reflux condenser 47 wherein it is partially condensed. Resulting two phase stream 14 is passed to reflux drum or phase separator 15 wherein it is separated into
carbon dioxide rich gas and into condensate. The
carbon dioxide rich gas is removed from phase separator 15 in stream 16 and recovered as carbon dioxide product fluid having a carbon dioxide concentration generally within the range of from 95 to 99.9 mole percent on a
dry basis. By "recovered" as used herein it is meant recovered as ultimate product or separated for any reason such as disposal, further use, further processing or sequestration. The condensate, which comprises primarily water and alkanolamines, is
withdrawn from phase separator 15 in stream 17, passed through liquid pump 18 and as stream 19 into the upper portion of stripping column 12.
Remaining alkanolamine-containing absorbent which also contains water is withdrawn from the lower portion
of stripping column 12 in stream 20 and passed to reboiler 21 wherein it is heated by indirect heat exchange to a temperature typically within the range of from 119 to 125°C. In the embodiment of the invention illustrated in the Figure, reboiler 21 is driven by
saturated steam 48 at a pressure of 28 pounds per
square inch gauge (psig) or higher, which is withdrawn from reboiler 21 in stream 49. The heating of the alkanolamine-containing absorbent in reboiler 21 drives




off some water which is passed as steam in stream 22 from reboiler 21 into the lower portion of stripping column 12 wherein it serves as the aforesaid upflowing vapor. The resulting alkanolamine-containing absorbent is withdrawn from reboiler 21 in liquid stream 23. A portion 24 of stream 23 is fed to reclaimer 25 where this liquid is vaporized. Addition of soda ash or caustic soda to the reclaimer facilitates precipitation of any degradation byproducts and heat stable amine
salts. Stream 27 depicts the disposal of any
degradation byproducts and heat stable amine salts. The vaporized amine solution 26 can be reintroduced into stripping column 12 as shown in the Figure. It can also be cooled and directly mixed with stream 6
entering the top of absorption column 4. Also, instead of the reclaimer 25 shown in the Figure, other purification methods such as ion-exchange or electrodialysis could be employed.
The remaining portion 148 of heated alkanolamine-
containing absorbent 23 is passed to solvent pump 35 and from there in stream 29 to and through heat exchanger 10 wherein it serves to carry out the aforesaid heating of the carbon dioxide loaded absorbent and from which it emerges as cooled
alkanolamine-containing absorbent 34.
Stream 34 is cooled by passage through cooler 37 to a temperature of about 4 0°C to form cooled absorbent 38. A portion 40 of stream 38 is passed through mechanical filter 41, from there as stream 42 through
carbon bed filter 43, and from there as stream 44 through mechanical filter 45 for the removal of impurities, solids, degradation byproducts and heat stable amine salts. Resulting purified stream 46 is



recombined with stream 39 which is the remainder of stream 38 to form stream 55. Storage tank 30 contains additional alkanolamine for makeup. Alkanolamine absorbent is withdrawn from storage tank 30 in stream 31 and pumped by liquid pump 32 as stream 33 into stream 55. Storage tank 50 contains makeup water. Water is withdrawn from storage tank 50 in stream 51 and pumped by liquid pump 52 as stream 53 into stream 55. Streams 33 and 53 together with stream 55 form
combined absorbent stream 6 for passage into the upper portion of absorber column 4 as was previously described.
Although the invention has been described in detail with reference to a certain particularly
preferred embodiment, those skilled in the art will recognize that there are other embodiments of the invention within the spirit and the scope of the claims. For example the invention may be used for separating other compounds other than or in addition to
carbon dioxide, such as hydrogen sulfide. A rigorous definition of such generalized recovery process is: A method for recovering absorbate comprising:
(A) passing a feed mixture comprising oxygen and
absorbate in countercurrent mass transfer contact with
absorbent comprising at least one alkanolamine, and
passing oxygen and absorbate from the feed mixture into the absorbent to obtain absorbate loaded absorbent containing dissolved oxygen;
(B) separating oxygen from the absorbate loaded
absorbent to obtain oxygen depleted absorbate loaded
absorbent;


(C) heating the oxygen depleted absorbate loaded
absorbent to obtain heated absorbate loaded absorber
fluid; and
(D) separating absorbate from the absorber fluid
to obtain an absorbate rich fluid.

WE CLAIM:
1. A method for recovering carbon dioxide from a carbon dioxide containing gas, comprising:
a) passing a gas comprising carbon dioxide and oxygen in countercurrent contact with an absorbent solution comprising at least one alkanolamine and transferring carbon diqxide and oxygen from said gas into said absorbent solution;
b) separating oxygen from the carbon dioxide and oxygen containing absorbent solution by countercurrently contacting the carbon dioxide and oxygen containing absorbent solution with an oxygen scavenging gas to obtain an oxygen depleted, carbon dioxide containing absorbent solution;
c) heating the oxygen depleted, carbon dioxide containing absorbent solution to obtain a heated oxygen depleted, carbpn dioxide containing absorbent solution;
d) separating carbon dioxide /from the heated oxygen depleted, carbon dioxide containing absorbent solution, and
e) • recovering carbon dioxide from the absorbent solution to obtain a
regenerated absorbent solution and a carbon dioxide rich fluid.
2 The method as claimed in claim 1, wherein the carbon dioxide is separated from the heated oxygen depleted, carbon dioxide containing absorbent solution by countercurrently contacting the heated oxygen depleted, carbon dioxide containing absorbent solution with steam.


3. The method as claimed in claim 1, wherein the heat of the regenerated absorbent solution is transferred to the oxygen depleted, carbon dioxide containing solution via indirect heat exchange to obtain said heated oxygen depleted, carbon dioxide containing absorbent solution.
4. The method as claimed in claim 1, wherein said oxygen scavenging gas comprises at least a portion of said carbon dioxide rich fluid and/or nitrogen,
5. The method as claimed in claim 1, wherein oxygen scavenging gas is passed into said carbon dioxide rich fluid.
6. A method for recovering carbon dioxide from a carbori dioxide containing gas substantially as hereinbefore described with reference to accompanying drawings.
Dated this 9th day of June, 2000.
{RANJNA-MEHTA-DUTT)
OF REMFRY & SAGAR
ATTORNEY FOR THE APPLICANTS


Documents:

530-mum-2000-abstract-(26-10-2004).doc

530-mum-2000-abstract-(26-10-2004).pdf

530-mum-2000-canceled page(26-10-2004).pdf

530-mum-2000-claim (granted)-(26-10-2004).pdf

530-mum-2000-claim( granted)-(26-10-2004).doc

530-mum-2000-correspondence(26-10-2006).pdf

530-mum-2000-correspondence(ipo)(22-1-2004).pdf

530-mum-2000-drawing(9-6-2000).pdf

530-mum-2000-form 1(26-10-2006).pdf

530-mum-2000-form 1(9-6-2000).pdf

530-mum-2000-form 19(26-6-2003).pdf

530-mum-2000-form 2(granted)-(26-10-2004).doc

530-mum-2000-form 2(granted)-(26-10-2004).pdf

530-mum-2000-form 3(20-11-2000).pdf

530-mum-2000-form 3(26-10-2006).pdf

530-mum-2000-form 3(9-6-2000).pdf

530-mum-2000-other document(30-8-2000).pdf

530-mum-2000-petition under rule of 137(26-10-2006).pdf

530-mum-2000-petition under rule of 138(26-10-2006).pdf

530-mum-2000-power of aouthority(26-10-2006).pdf

530-mum-2000-power of aouthrity(4-12-2000).pdf

abstract1.jpg


Patent Number 207037
Indian Patent Application Number 530/MUM/2000
PG Journal Number 43/2008
Publication Date 24-Oct-2008
Grant Date 16-May-2007
Date of Filing 09-Jun-2000
Name of Patentee PRAXAIR TECHNOLOGY INC.
Applicant Address 39 OLD RIDGEBURY ROAD, DANBURY, STATE OF CONNECTICUT 06810-5113,
Inventors:
# Inventor's Name Inventor's Address
1 SHRIKAR CHAKRAVARTI 185-6 PALMDALE DRIVE, WILLIAMSVILLE, NEW YORK 14221,
2 AMITABH GUPTA 5584 KIPPEN DRIVE, EAST AMHERST, NEW YORK 14051,
PCT International Classification Number C01B 31/20
PCT International Application Number N/A
PCT International Filing date
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 NA