Title of Invention

A DAIRY PRODUCT AND A MEHTOD FOR MANUFACTURING THEREOF

Abstract A diary product contains dairy proteins, the product being at least semi-solid and containing greater than 0.15 % by weight of casein macropeptide (CMP). The mass ratio of CMP to whey protein is 1:4.9 or greater. The product may be a natural cheese or a processed cheese. To obtain the desired product, a natural casein isolate protein (NCI) source is combined with a moisture and a fat source and coagulated.
Full Text A DAIRY PRODUCT AND A METHOD FOR MANUFACTURING THEREOF
Introduction
The invention relates to a dairy product.
Manufacture of cheese from milk is traditionally accomplished by coagulating milk
using rennet enzyme. The coagulum has the tendency to contract into a curd as it
expresses whey. The removal of whey from the curd is then effected. The curd may
be further processed in different ways to become the final cheese. Casein
macropeptide (CMP) is cleaved from the casein protein as a result of the action of
the rennet on kappa casein and about 90% of this CMP is typically removed with
the whey. Thus traditional cheese is an excellent source of nutrition, rich in
minerals and protein while being low in whey proteins but also low in CMP.
CMP is known to be therapeutically beneficial. A number of researchers have
reported that CMP has significant bioactivity in regulating the digestive system
(Stan et al. (1983) Fiziol Zh SSSR 69, 855-859). Research (Otani et al
Milchwissenschaft 47 (8) 1992) has also shown that CMP was able to inhibit
mitogenesis and that this could modulate the immune system to help prevent atopic
reactions to food antigens. CMP was also found to have Bifidogenic (prdbiotic)
properties (Azuma et al (1984) Agric. Biol. Chem., 48 (8), 2159-2164). Additionally
CMP has been found to be effective against the cholera toxin (Kawasaki et al.,
(1992)Biosci. Biotech. Biochem., 56, 195-198) and has demonstrated inhibition of
all strains of influenza virus (Kawasaki et al. (1993) Biosci. Biotech. Biochem., 57,
1214-1215). The characteristics and potential uses of CMP are reviewed by Abd E1-
Salam et al. (1996) in the Int. Dairy Journal 6, 327-341.
CMP is a heterogeneous group of proteins. CMP contains all the genetic variations
and post-translational modifications of kappa casein (Yvon et al Reprod Nutr Dev
(1994) 34, 527-537). As a result of this CMP may have two amino acid sequence
(variants type A and B), differing degrees of phosphorylation and most significantly
a range in the level, position and type of carbohydrate moieties. The predominant
carbohydrate is sialic acid. Kappa casein is a rich source of the amino acid
threonine with 14 to 15 threonine residues depending on the genetic variant.
However about 80% of the total threonine in kappa casein resides in the CMP
portion. CMP has a molecular weight of about 7,000KDa and as such may be
considered to be more like a small protein. Due to the degree of glycosylation,
CMP occupies a much larger hydrodynamic volume than its molecular weight
would indicate and therefore is retained by ultrafiltration membranes. Casein
macropeptide is variously referred to as casein macropeptide, caseinomacropeptide,
casein-derived peptide, casein glycopeptide and sometimes, erroneously as
glycomacropeptide. CMP has varying levels of carbohydrate moieties. A small
fraction of CMP however, may have very low or no carbohydrate moiety and
therefore is not technically a glycomacropeptide. Glycomacropeptide or GMP
however is the principal (50 to 75%) component of CMP. The carbohydrate content
of the GMP renders it soluble in a 12% trichloroacetic acid solution. A number of
the analytical measurement techniques have a pre-treatment, which involves a TCA
solution, this may remove at least a portion of the non-glycosylated CMP. For
example the method published in The Official Journal of the European
Communities (L228/10 Annex IV). This details a HPLC method for measuring
GMP in dairy products and uses the GMP level to calculate the level of cheese
whey present in a sample. For any specified GMP content it can be assumed that
the corresponding CMP level is 1.33 to 2 times greater. The heterogeneity of CMP
makes it difficult to measure. However there are a number of suitable
methodologies for example that of Leonil et al (Journal of Dairy Research (1991),
58, 321-328) which relies on ion exchange chromatography and eliminates the need
for a TCA treatment and therefore measures the CMP rather than just the GMP.
Indirect techniques to determine the level of CMP in a cheese would include
measuring the level of sialic acid or Threonine levels.
In comparison to CMP whey proteins, particularly beta lactoglobulin (BLg) and
alpha lactalbumin (ALA) are known milk allergens (Internet Symposium on Food
Allergens 2(l):9-74 (2000) http:/www.food-allergens.de). The presence of whey
proteins in cheese also have an adverse effect on functionality, particularly in
mozzarella cheese.
Faquant et al. Technique Laitiere & Marketing 1988 No. 1028, 21-23 describes the
separation of whey proteins from casein proteins utilising microfiltration.
EP-A-0 542 583 describes a process using microfiltration to remove soluble whey or
serum proteins and subsequently subjecting the deserumproteinised material to a
heat treatment to make a dairy material which is said to be suitable for
transformation into cheese. The process involves the removal of about 80% of the
cheese milk volume in a whey separation step so that 80% of the CMP is also
removed. This results in at most a doubling of the CMP present in the finished
cheese compared to traditional cheese, however a processor would still incur the
cost of processing /disposing the retained whey.
PCT/NZ95/00086 describes a process for making a whey protein depleted milk
protein concentrate (wpdMPC) and the use of the wpdMPC product in the
manufacture of dairy products.
US-A-5 378 478 describes ultrafiltration and evaporation of skim milk to make a
milk protein concentrate for cheese manufacture. The CMP component and all of
the whey proteins are retained.
EP-A-0 435 573 describes a process for making a skim cheese utilising a Dorr-
Oliver ultrafiltration retentate. The resultant product retains all of the CMP and all
of the whey proteins normally present in milk.
Another approach has been to remove or isolate the whey proteins or CMP from a
raw milk product. The whey proteins or CMP are then re-introduced to a final
product. Such processes, however, involve additional processing steps and
significant levels of whey protein are still present.
WO-A-00 49885 describes the use of a milk protein hydrolysate for addressing bone
or dental disorders. Casein glycomacropeptide (CGMP) is extracted from sweet
whey by a combination of electrodialysis, cation exchange resin, anion exchange
resin, evaporation, spray drying, ultrafiltration and freeze drying. The CGMP is
used to enrich foods or liquid enteral compositions with CMP. The fermented and
gelled milk products are enriched in CMP but the level of whey protein also
remains high.
WO-A-94/15952 describes a method of producing kappa casein glycomacropeptide
or CMP. CMP is removed from casein via rennet whey as a first step. The lactose
and some of the minerals are then removed from the whey by ultrafiltration to
produce a whey protein concentrate (WPC). The major whey proteins are then
removed from the WPC by a process of thermal denaturation and precipitation of
the protein to leave the CMP and some non-protein nitrogen in solution. This
supernatant is then further concentrated by hyperfiltration and spray drying, before
being incorporated into a protein free food product.
US-A-4,919,943 describes a process to remove whey proteins however the whey
protein is then re-introduced to the final product. While this provides a solution to
the functionality problem associated with whey proteins the whey proteins are still
present in the final product and pose a potential allergy problem. Processing costs
are also increased.
There is therefore a need for a dairy product containing dairy proteins that is rich in
CMP with reduced allergenicity and enhanced functionality. There is also a need
for a process for producing such a product on an economic factory scale.
Statements of Invention
The present invention proposes a dairy product containing dairy
proteins, the product being at least semi-solid and containing greater than 0.15% by
weight of casein macxopeptide (CMP) and a mass ratio of CMP to whey protein
being greater than 1:4.9. For clarity, in this specification for example a ratio of 1:2
is greater than a ratio of 1:4, therefore a greater ratio requires lower whey protein
levels.
Accordingly, the present invention provides a dairy product containing
dairy proteins, the product being at least semi-solid and containing from 0.15%
to 1% by weight of casein macropeptide (CMP) and a mass ratio of CMP to
whey protein of from 1:2 to 1:4.
In this specification, "at least semi-solid" refers in particular to any cheese which
offers greater than 450g of peak force of resistance to deformation as measured as
follows.
Firsdy the cheese is cut into 16mm cubes covered with cling film, and tempered in a
5°C incubator for 2 hours. Using the Stable Micro Systems TA.XT2i texture
analyser, on TPA mode with the following settings: -
Test Set-up: The sample is positioned centrally under the cylinder and the test
commenced. The peak force is then determined by selecting the highest force
reading recorded during the entire test.
For many food applications it is advantageous to have a solid or semi-solid food
such as in sandwich and pizza applications. It is very difficult to slice or shred
cheese with a peak force resistance of less than 450g. Generally however, the cheese
needs to be firmer than this for slicing and shredding. The cheese of the present
invention may be made to a wide range of final textures.
The invention also provides an at least semi-solid dairy product containing greater
than 0.15% by weight of casein macro-peptide (CMP), the product having a high
CMP to whey protein ratio and the product has a total solids content as measured
by the method based on I.D.F. 4:1985 of at least 50% by weight.
In another aspect the invention provides an at least semi-solid dairy product
containing greater than 0.15% by weight of casein macropeptide (CMP), and the
product has a total solids content as measured by the method based on I.D.F. 4:
1985 of at least 42% by weight.
In another aspect the invention provides an at least semi-solid dairy product
containing greater than 0.15% by weight of casein macropeptide (CMP) and the
product, on manufacture, has a sodium chloride content of at least 1.0%, preferably
1.5% as determined by B.S. 770 1963. In the context of this specification, the term
"on manufacture" means that the salt can be incorporated into the liquid mix, in
effect directly into the cheese milk, since no whey need be removed and
consequently the salt remains with the product. Thus the salt is present in the
correct proportions at the point the liquid mix becomes a cheese, that is at the point
of rennet coagulation. Thus the necessity for subsequent processing of the cheese
such as milling the cheese and then salting it or immersing the cheese in a brine
solution or rubbing dry salt to the surface of the cheese is eliminated.
In a further aspect the invention provides an at least semi-solid dairy product
containing greater than 0.15% by weight of casein macropeptide (CMP), and
contains a biologically functional additive. Preferably the biologically functional
additive is present in an amount of at least sufficient to produce a desired biological
effect in the consumer. The precise amount required varies considerably depending
on the nature of the additive and the quantity of cheese consumed. While not
wishing to be proscriptive the amount that the product of the current invention can
carry can be as high as 25% by weight of the finished product and greater,
depending on the nature of the additive.
In a preferred embodiment of the invention the product contains a CMP to whey
protein mass ratio of greater than 1:4.5, preferably greater than 1:4.0, most
preferably greater than 1:3.5, ideally greater than 1:3. As the level of whey protein is
reduced the allergenicity of the finished product is reduced for those individuals
that have an allergic reaction to the ALA and BLg whey proteins. Furthermore the
functional properties of the cheese such as texture, flavour, melt and stretch are
improved with lower levels of whey protein. As the Ala and BLg proteins are
allergens and the CMP helps to reduce allergenic response it is particularly
beneficial to have a high ratio of CMP to whey protein.
In one embodiment the product contains greater than 0.25%, preferably greater
than 0.35% by weight of CMP, preferably greater than 0.45% by weight of CMP,
more preferably greater than 0.55%, most preferably greater than 0.75% by weight
of CMP.
In a particularly preferred embodiment the CMP levels are in excess of 0.85% by
weight, most preferably 0.95% by weight, of the cheese.
The advantage of increasing levels of CMP are accomplished by removing less and
less whey, until ultimately no whey is removed at all. Because there are lower levels
of whey to process processing costs are reduced and ultimately eliminated. The
resultant cheese will be more beneficial to the consumer with increasing levels of
CMP in view of the bioactive properties of CMP whilst being substantially free of
whey protein.
Other benefits of an essentially whey-less cheese make are that salt added during
the process is not lost in the whey so the need for mill salting, brine salting or dry
salting is eliminated. Furthermore, water soluble nutrients and ingredients with
physical and biological functionality such as certain vitamins, prebioties like
fructoohgosaccharides can be incorporated into the cheese without contaminating
or being lost to the whey.
The process also allows for the incorporation of insoluble ingredients like fibre,
lipids and oil soluble ingredients with health promoting properties or for other
technical or commercial benefits. In traditional cheese manufacture the whey
separation process results in some of these ingredients being lost to the whey.
The product of the invention contains less than 2.5% by weight of whey protein,
preferably less than 1.75%, most preferably less than 1.4%, ideally less than 1.25%.
The product may be a process cheese product or a natural cheese product. The
process cheese product includes emulsifying salts while the natural cheese product
is free of such salts.
A further aspect the invention provides a method to manufacture an at least semi-
solid product which comprises:
(i) combining with the aid of mixing and heating as necessary:-
a) an amount of natural casein isolate (NCI) protein source such that 7% to 85% of
the product by weight is NCI protein;
b) an amount of a moisture source such that 10% to 85% of the product by weight is
moisture;
c) an amount of a fat source such that 0.1% to 60% of the product by weight is fat;
d) a food grade acid, either added externally or generated internally through the
action of microbial fermentation to reduce the pH to about 6.5 to 5.0
(ii) subjecting the mixture thus formed to the action of a coagulant such as rennet
enzyme in sufficient concentration and with sufficient time and temperature to
convert the product to a semi-solid product at room temperature or below.
This provides a semi-solid product with the benefits of high levels of CMP and low
levels suitable for consumption.
In this specification, the term NCI or natural caseinate refers to the product
produced by removing the serum proteins from whole casein. Whole casein refers
to casein, which has not been enzymatically hydrolysed to paracasein. However
any whole casein can be used to produce the product of the invention. This
specification describes in detail the ideal source of whole casein, NCI. However
this description should not be seen as restrictive. Other suitable sources of whole
casein would include caseinate, for example calcium caseinate or calcium sodium
caseinate. A person skilled in the art will immediately recognise how these
products, combined with various salts can be manipulated to generate a variety of
finished product textures and physical functionality.
The process used to produce the at least semi-solid dairy product uses a rennet
enzyme to liberate the CMP from the casein and in this way the fluid material is
converted into a more amenable solid or semi solid.
Preferably the amount of NCI is such that from 7% to 60% of the product by weight
is NCI protein. Most preferably the amount of NCI is such that from 15% to 30%
of the product by weight is NCI protein. While the product may be consumed in a
dry or semi-dry state as it would be with a NCI protein content of 85%, a more
useful product is obtained at lower levels of protein. The higher levels of protein
result in a harder product that may be difficult to consume. When proteins are
present in the lower range, particularly in the 20% to 25% protein range, semi-solid
products are produced that can be easily formed into shapes, sliced, diced and
shredded and are easily consumed.
In one embodiment the amount of moisture is such that from 20% to 76% of the
product by weight is moisture. Ideally the amount of moisture is such that from
30% to 60% of the product by weight is moisture. Most preferably the amount of
moisture is such that from 40% to 55% of the product by weight is moisture.
The lower moisture range provides a product that has improved microbial stability
but less desirable sensory properties. At the higher moisture range the product has
poorer microbial stability and may be a little too soft to be of wide utility. As the
moisture tends towards the intermediate range a very useful product results with
good microbial stability, improved sensory characteristics and yet still retaining the
benefits of low whey protein and high CMP.
In a further embodiment the amount of fat is such that from 0.1% to 50% of the
product by weight is fat. Ideally the amount of fat is such that from 5% to 40% of
the product by weight is fat. Most preferably the amount of fat is such that from
10% to 35% of the product by weight is fat.
At the lower fat levels the resultant product may have poor sensory characteristics,
while at the higher end of the range the resultant products become nutritionally
inferior as fat displaces the more nutritionally useful minerals and proteins.
Preferably the renneting temperatures are in the range of 30 to 65°C. Most
preferably the renneting temperatures is approximately 50°C. This higher
temperature allows the use of higher solids in the mixing stage.
In one aspect the mixture is converted to a semi-solid product by:-
pasteurising the mixture;
cooling the pasteurised mixture; and
inoculating or acidifying the mixture before or after subjecting the mixture to
the action of a rennet enzyme.
in another aspect the mixture is converted to a semi-solid product by:-
subjecting the mixture to the action of a rennet enzyme before or after
acidification; and
pasteurising, packaging and cooling the product thus formed.
Acidification may be carried out by direct acidification with a food grade acid such
as lactic acid, citric acid, phosphoric acid for example or by inoculating with an
acid producing culture and allowing it to ferment for a period of time .
The advantage of acidifying the product is to improve the flavour, microbial
stability of the product and to increase the clotting activity of the enzyme. At the
higher end of the pH range the clotting activity is reduced and processing times are
increased. In addition the shelf stability is low and the flavour may not be acidic
enough. At the lower end of the pH range the shelf stability is good but the stability
of the protein to thermal processing is low (if thermal processing is required). Also
the flavour may be a little too acidic.
It will be immediately obvious to one skilled in the art that the NCI may be at least
partly acidified thus eliminating or reducing the need for acidification during the
conversion process described above. This acidification also assists in
demineralisation of the NCI to provide for a variety of textures and melt behaviours
in the finished cheese.
Brief Description of the Drawings
The invention will be more clearly understood from the following description
thereof given by way of example only with reference to the accompanying drawings
in which:-
Fig. 1 is an overview of natural casein isolate (NCI) production including
ancillary products; and
Fig. 2 is a schematic block diagram of one of the embodiments of the
conversion of NCI into a natural cheese or a process cheese.
Detailed Description
The invention provides a method of manufacture of an at least semi-solid dairy
product, which has a number of unique and useful advantages over existing
technologies. . The invention provides a commercially viable semi-solid dairy
product wherein the CMP to total whey protein is dramatically altered. The CMP
is generated in situ within the food and is retained within it naturally with minimal
processing. Furthermore the invention provides a cheese making procedure that
does not generate whey.
Whey proteins are a heterogeneous group of proteins and may be measured by a
variety of techniques. They are variously referred to as serum protein, albumins and
soluble proteins. The typical distribution of major proteins in cheese whey is beta-
lactoglobulin at 45%, alpha-lactalbumin at 18%, serum albumin, immunoglobulins
and lipoproteins at 5% each, about 2% enzymes and importantly, 15% to 20% CMP
(Marshall S. C. Food Res. Quar. 1991, 51, p81).
In this specification whey proteins include the typical proteins of cheese whey.
However this specification teaches that the CMP to whey protein ratio can be
altered. For the purposes of this specification the term whey protein does not extend
to that portion of the CMP that is in excess of that which is normally present. Some
of the more basic techniques for estimating whey protein concentration rely on the
solubility of this group of proteins and therefore consider nitrogen solubility under
defined conditions to be a measure of whey protein concentration. In cheese
however, on maturation, the casein proteins may be hydrolysed to release soluble
peptides, commonly with a molecular weight below 1000. This increases the soluble
nitrogen content, but not the whey proteins as we have defined them and therefore
it is not a suitable measure. While there is some debate over the rate of denatured
whey proteins during cheese maturation, it is agreed that the undenatured whey
proteins alpha lactalbumin and beta lactoglobulin are resistant to hydrolysis during
cheese maturation. It is possible therefore to measure these by HPLC. It is
common to measure a major protein like beta lactoglobulin and calculate the total
whey protein level by comparison with a control, alternatively one might do so by
assuming that beta lactoglobulin comprises 45% of the total whey protein.
Alternatively, though not usually one might measure the alpha lactalbumin content
and calculate the total whey protein by dividing by 0.18. For the purposes of clarity,
it would not be appropriate to determine whey protein content by dividing the
CMP level by 0.2 since this specification teaches how the normal ratio in whey is
altered by the use of the technology herein described. However levels of beta
lactoglobulin and alpha lactalbumin may vary slightly with seasonality. A more
accurate measure would be to measure the content of beta lactoglobulin (BLg),
alpha lactalbumin (Ala) and CMP are determined by chromatography. The minor
proteins and enzymes may be calculated as follows:-
Minor Proteins = BLg x 17/45
The total whey protein content is then calculated as:-
Total whey protein = BLg + Ala + CMP + Minor Proteins
An alternative method is to measure the sulphur amino acid content such as
methionine and cystine. Whey proteins are a rich source of these amino acids
relative to casein and the ratio of sulphur amino acids to total protein might also be
used to determine whey protein levels indirectly. ,
The amount of CMP generated during rennet hydrolysis of casein may vary
depending on the conditions used. Kappa casein represents 10% to 15% of the total
casein protein. CMP represents 36.84% of the kappa casein. Thus 3.68% to 5.5%
CMP (by weight of total casein) can be generated from casein. During cheese
manufacture at least 85% of the CMP must be liberated if the milk is to clot
(Dagleish D. G. J. Dy. Res. 1979, 46, 653). Thus the lower concentration of 3.13%
is possible during cheese manufacture. These figures are consistent with the
estimate that CMP comprises 15% to 20% of whey proteins (Marshall S.C. Fd. Res.
Quart. 1991, 51, 81-91) or a ratio of CMP to whey protein of 1:6.66 to 1:5. As CMP
is very soluble it tends to partition similarly to whey proteins which are also very
soluble. Consequently cheese would be expected to have a ratio of CMP to whey
protein similar to that present in the whey but at a significantly lower overall
quantity. In practise these ratios may be significantly higher. Whey proteins are
much larger than CMP and therefore are more easily physically trapped by the
casein curd. Whey proteins may further aggregate as a result of various processing
conditions to greatly increase the rate at which they are retained in the cheese curd.
Furthermore, whey protein may complex with casein via thiol - disulphide
exchange to be chemically trapped by the casein and retained in the cheese to a
greater extent than the CMP. In practise, cheese may have a CMP to whey protein
ratio of about 1 to 10.
In this specification the term casein macropeptide or CMP is intended to describe
the peptides produced by the action of rennet or any commercial milk coagulant as
a result of cleaving kappa casein between amino acid position 105 and 106.
Currently available technology can provide a cheese with low levels of CMP and
low CMP : whey protein ratio, for example in traditional cheese, or high levels of
CMP and a low CMP : whey protein ratio, for example in cheese from UF milk.
However it does not provide for high levels of CMP with a high ratio of CMP :
whey protein.
It has been found in the present invention that an at least semi-solid dairy product
containing dairy proteins with both a high level of CMP and a high ratio of CMP to
whey protein can be prepared.
The present invention provides the cheese maker with, an alternative method for
making cheese which greatly decreases the capital investment required and
produces both finished and by-products with value added properties. Furthermore
the present invention offers the possibility of eliminating the need for the cheese
maker to have any whey processing equipment. In addition, brining of the cheese
or milling or dry salting is not required in the process.
The process of the present invention is beneficial as the CMP is generated in situ
within the food and retained within it naturally, with minimal processing.
Importantly the present invention provides cheese with key functional attributes
necessary for broad appeal. Specifically the semi-solid product is suitable for
shredding and slicing because of its texture and it exhibits stretch characteristics
required of pizza topping applications.
Traditional cheese making process
Normal cheese making procedures physically separates the whey from the renneted
curd by a variety of processes including cutting, culturing, cooking, washing,
cheddaring and pressing. Thus the levels of CMP and whey proteins are quite low
ranging from about 0.03% up to 0.10% for CMP and 0.28% to 0.62% for whey
protein by wt of the cheese. Of course if the curds are washed both CMP and whey
proteins will be further reduced and to the same extent ie. the ratio of CMP to whey
protein remains largely unaffected.
Traditional cheese using Ultrafiltration to pre-concentrate the milk.
Cheese made utilising ultrafiltration to concentrate the milk protein prior to
coagulation can have CMP levels over 9 times greater than the equivalent cheese
made using milk which has not been ultrafiltered. The actual level depends on the
concentration factor used during the UF process. As with the traditional make
procedure, both CMP and whey protein levels can be reduced to close to zero if the
curds are washed with potable water. It is important to note that both the CMP and
the whey proteins are increased at best proportionately since generally UF
membranes concentrate both CMP and whey proteins to the same extent. So,
regardless of these additional steps and regardless of the extent of ultrafiltration pre-
treatment the ratio of CMP to whey protein is largely conserved. Thus the CMP:
whey protein ratio remains at about 1: 5 or less.
Cheese making utilising the technology of this invention
The invention provides a semi-solid product in which the ratio of CMP to whey
protein is greater than 1:4.9, typically in the range of 1:2 to 1:4. The total level of
CMP depends on the make procedure but is at least 0.15% (wt/wt) and generally in
the range of 0.3% to 1% by weight of the cheese or about 10 times greater than the
levels attainable using traditional cheese making methods.
For example, in the preferred embodiment, whey protein is reduced to 5% or less of
the NCI protein. This NCI has a protein content of about 85% on a fat free dry
basis and is combined with moisture and fat to achieve a final composition of 50%
moisture and 25% protein. This results in a cheese with a CMP level of about 0.74
to 1.1% and a ratio of CMP to whey protein of 1:1.7 to 1:1.1.
The process for manufacturing the product of the invention utilises milk as a
starting material. In the first stage of a two-stage process, the milk has most of the
whey proteins and lactose removed to produce a natural casein isolate (NCI) using
known methods. The second stage of the process involves mixing of the NCI with
other ingredients and subsequent conversion to cheese without requiring the
removal of whey. Throughout the specification unless otherwise specified milk is to
be construed as whole milk, cream, skimmed milk, partly skimmed milk,
evaporated milk, or any combination of these, which may have been heat treated,
fat or protein standardised, pH adjusted, or have some non dairy fat or proteins
added.
In the present invention it was found that temperatures in excess of 50°C could be
used for renneting. The temperature for renneting in cheese is normally 30°C, the
optimum is 40°C and the rennet is inactivated at 55°C (Cheese and Fermented milk
Foods by Frank Kosikowski 2nd ed. 1982 p420 to 421). Surprisingly we found that
temperatures of up to 65°C can be used given the speed of reaction under the
conditions described. This higher temperature allows the use of higher solids in the
mixing stage , specifically total solids in excess of 42%, preferably 50% or greater.
Even higher solids may be attained by using a rermeting enzyme with higher heat
stability. Such enzymes are well known to those skilled in the art and are selected
from any one or more of animal, bacterial, fungal or genetically modified sources.
Referring to Fig. 1 the first stage of the process is outlined schematically. The
preferred embodiment utilises raw whole milk as the starting material. The raw
whole milk is pasteurised, skimmed and subjected to microfiltration to reduce the
whey protein content of the retentate to less than 10%, preferably about 5% to 6%
of the total protein. The milk may be partially acidified, for example by
hydrochloric acid or other suitable food grade acid or by microbial fermentation to
the pH range of 6.4 to 5.2 if desired to solublise some of the milk minerals and to
facilitate their partial removal from the retentate. This will modify the functional
properties of the retentate and the texture, melt and stretch of the resultant cheese.
The retentate is subsequently ultrafiltered (UF) to reduce the lactose content to less
than 6%, preferably to about 1% to 2% of the total solids. The microfiltration
retentate may be coagulated with rennet enzyme prior to ultrafiltration as the UF
membrane largely retains the CMP, and while ultrafiltration also largely retains the
whey protein, these would have been substantially removed by the previous
microfiltration step. However, in the preferred embodiment rennet coagulates at a
later stage. Thus, the whey or serum from the process is uncontaminated by the
microbes or enzymes normally used during cheese manufacture. Furthermore, the
serum is uncontaminated by the by-products of the action of these microbes and
enzymes. As a result, the serum of this process has unique flavour and functional
properties superior to that of traditional cheese whey. The retentate material of the
first stage of this process is known as "Natural Casein Isolate" (NCI) or (Native)
Phosphocaseinate (Faquant et al Technique Laitiere & Marketing 1988 no. 1028, 21-
23). The NCI is further concentrated by moisture removal and preferably dried to a
powder of about 5% moisture, but may be used in a liquid or paste form. The
process is described in more detail in example 1
The second stage of the process is outlined schematically in Fig. 2. The NCI from
the first stage is converted to a semi-solid dairy product with high levels of CMP
and a high ratio of CMP : whey protein, using two methods, a natural cheese
method or a process cheese method.
In both methods the NCI is first reconstituted in water to about 20% protein (by
weight of the finished product). A fat source such as cream, anhydrous milk fat
(AMF), butter oil or vegetable oil is added to achieve about 20% to 25% fat in the
finished product. Salt especially sodium chloride is added to taste.
In Step 1 the ingredients, NCI, water, fat and salt are mixed until homogenous and
free of lumps. Mixing is carried out with a single or twin screw cooker, ribbon
blender or paddle mixer for example a Green Bay Machinery twin screw cooker or
a Damrow single screw. The Stephan or Scanema cookers may be used. Also, for
higher solids, an extruder such as a twin screw co-rotational extruder such as the
type manufactured by Wenger for example may also be used. The mixing is
preferably carried out at a temperature of approximately 50°C.
Process cheese method
In step 2 emulsifying salts well known to those skilled in the art are added to
modify the melt properties or texture of the finished product. These salts also effect
shelf life and flavour of the finished product. The emulsifying salts may be selected
form any one or more of disodium phosphate, monosodium phosphate, trisodium
phosphate, sodium acid pyrophosphate, terra sodium pyrophosphate, sodium
aluminium phosphate, sodium hexa meta phosphate, sodium citrate, di calcium
phosphate, EDTA.
In step 3, a Rennet enzyme preparation such as Chymax from Chr. Hansens or
other commercially available material is added. Concentration may vary but 0.25
ml per kg of mix is adequate. While a temperature of 50°C is considered to destroy
most commercial rennet enzyme preparations, the concentration of the enzyme and
substrate (kappa casein) can be about ten times higher than normal cheese makes.
As a result of this the action of the rennet enzyme proceeds at a pace that allows it
to hydrolyse the casein sufficiently before it is thermally denatured. Rennet may
also be added prior to the addition of the emulsifying salts as shown in Fig. 2.
Step 4 involves any suitable pasteurisation treatment with a time temperature
combination of 72°C for 30 seconds for example. Excessive time temperatures can
damage the flavour and texture of the cheese, while inadequate time temperature
combinations may pose microbial and other quality problems. This may be
accomplished by direct culinary steam injection or by indirect heat. It may be
necessary to maintain a low temperature difference between the product and the
heating medium (delta-T), or to use a swept or scraped heating surface, or a
combination of both, to prevent heat damage to the product.
Step 5 involves acidification to about 6.4 to 5.2 with a suitable food grade acid such
as, but not limited to, vinegar, citric acid, lactic acid, phosphoric acid or glucono-
delta-lactone (GDL), Preferably the acidification is conducted while mixing
vigorously and using a dilute solution at or below 10% total solids (TS) so as to
minimise localised pH drop. A pH at or below 6.6 is preferable for swift action of
the rennet enzyme. However a pH above 5.0 is desirable to avoid thermal
denaturation and coagulation of the protein during the pasteurisation step. While
susceptibility to thermal coagulation is dependant on a variety of factors known to
one skilled in the art such as concentration of protein, ionic environment, type of
pasteurisation equipment and time temperature combination, a pH of about 6.40 to
5.4 generally provides adequate thermal stability and a swift clotting time. The
acidification step may be carried out before or after renneting, step 3.
If all the required acidification is not accomplished before step 3 then final pH
adjustment may take place at this point. Again the usual food grade acids may be
used. Also if gradual pH decline after packaging is desired, glucono delta lactone
or indeed starter cultures, particularly thermophillic cultures may be added after
pasteurisation. Equally, a relatively static pH can be achieved in the packaged
product by a number of means, firstly pasteurisation will tend to eliminate acid
producing cultures or by limiting the amount of fermentable substrate.
Natural cheese making process
After mixing the NCI, water, fat and salt in step 1 pasteurisation (step 6) as
described for the process cheese method, step 4, is carried out.
In step 7 cooling of the reaction mixture is accomplished by a number of methods
known to those skilled in the art such as indirect cooling by addition of ice, infusing
CO2 or indeed quiescent cooling. A temperature high enough to keep the product
plastic and suitable for pumping and filling into containers is generally desirable
and this depends on the compositional characteristics such as fat level and type,
moisture content and pH. Generally a temperature of above 40°C is adequate. The
temperature should be low enough to allow acidification. If a food grade acid is
used, the temperature should preferably be below approximately 70°C to avoid
coagulation induced by elevated temperatures and localised low pH. If
thermophillic cultures are used a temperature of 52°C or below is required
(depending on the thermal sensitivity of the culture used). In general a temperature
of approximately 50°C is adequate.
In step 8 commercially available dairy cultures and more specifically thermophilic
cultures are used to provide the necessary acidification depending on the
availability of a fermentable carbohydrate substrate . For example a fermentation of
an available lactose content of 1 to 2g per 100g of finished product by a Chris
Hansen DVS thermophilic culture ABT-21, TCC 4 or TCC 21 might be used with
to produce a suitable pH drop. The residual lactose in the NCI can provide this or
any fermentable carbohydrate can be added. The amount of lactose is not narrowly
critical and it depends on the initial pH, desired final pH and the buffering capacity
of the product. Generally about 2% lactose is adequate. Those skilled in the art will
recognise that more or less lactose can be added limited only by the requirement for
certain textural, sensory or shelf life requirements. Cultures may also be used
including non-starter lactic acid bacteria for the development of probiotic properties
or flavour during storage or exo-polysaccharide producers to alter the texture.
In step 9, the same enzymes as described in step 3 for the process cheese method are
used. However the level used will be about a half to a tenth of the levels used in step
3. Much less heat denaturation of the enzyme will occur in the "Natural" method,
if it is added after pasteurisation, as compared with the "Process" method and
generally high levels of residual rennet enzyme activity is not desirable if bitter
flavour development is to be avoided. It is also possible with the natural process to
add the rennet enzyme before pasteurisation or during the heating up phase prior to
pasteurisation, as described elsewhere temperatures in the range of 50°C work well.
Process Cheese Method & Natural Cheese Method
Packaging in step 10 is readily accomplished as at this point the product is a plastic
mass and is easily pumped and moulded. The product may be cooled to 15°C to
10°C and stored for some time if flavour development is desired. Temperatures of
below 10°C should be used for longer term storage. The product will firm up to a
semi-solid on storage and may be subsequently demoulded and sliced or shredded
as required.
One of the principal benefits of the process of the invention is that the cheese maker
using either process does not generate any whey during manufacture. The benefits
of this are tremendous since traditional cheese plants must process about 19 parts of
highly perishable milk and whey for every 1 part of cheese produced at considerable
capital, operational and often environmental expense. The process of the current
invention provides for the processing of about 0.5 parts of shelf stable dry
ingredients (although perishable ingredients like liquid NCI and cream are not
excluded) together with 0.5 parts of water (the water may be provided partly or
completely by liquid cream or liquid NCI if they are used) to produce 1 part of
cheese with unique nutritional properties. The capital savings this process offers are
enormous and conservatively estimated to be a ten-fold reduction on a traditional
plant with the same production capacity. Other benefits are that the stability of the
ingredients and simplicity of the conversion process allows for this cheese to be
manufactured in regions where there is no native milk supply. In addition the
conversion or cheese making process could easily be performed in store or
restaurant. The make time of minutes is significantly less than the hours required
for conventional methods.
EXAMPLE 1: Manufacture of the NCI
Microfiltration/Ultrafiltration
For the micronltration steps, a Crossflow Microfiltration system (MFS-7, Terra Pak
Filtration, Aarhus, Denmark) is used. The unit consisted of 7 ceramic membrane
elements, each having a surface area of 0.2 m2, giving a total membrane area of
1.4m2. The membranes used (Societe des Ceramiques Technique-Membralox,
Bazet, France) have an average pore diameter of 0.1µ., a channel diameter of 4mm
and are aluminium based ceramic membranes. This plant is operated in a
continuous mode.
For the ultrafiltration step, a batch concentration ultrafiltration system is used. The
unit comprises 2 membranes each having a surface area of 6.4m2, giving a total
membrane area of 12.8m2. The membranes used are KOCH type - HFK131. These
membranes are spiral wound, polyethersulfone having a nominal molecular weight
cut off(MWCO) in the range 5,000-8,000 Dalton.
Operating conditions
The microfiltration plant operates using the Terra Pak designed Uniform
Transmembrane Pressure (UTMP) control system. This system results in a uniform
transmembrane pressure all over the membrane area.
The microfiltration is carried out at 50°C. The pressure at the retentate inlet and
outlet is 4.5 bar and 2.6 bar, and at the permeate inlet and outlet it is 3.8 and 2,2
bar.
When operating the plant, the difference between the inlet and outlet Trans
Membrane Pressures (TMP) is maintained at a value of 0.3. This difference was
calculated as follows:
Retentate in (PBS) = 4.5 bar
Permeate in (PPi) = 3.8 bar
TMP inlet = 0.7 bar
Retentate out (PRo) = 2.6 bar
Permeate out (PPo) = 2.2 bar
TMP inlet = 0.4 bar
Difference (TMPi-TMPo) = 0.3 bar
The plant is operated at a concentration factor (CF) of 2.5X and a permeate flux of
50 L/m2/h. The concentration factor for MF is calculated as follows:
CF = (retentate flow + permeate flow)/retentate flow
The ultrafiltration plant is operated at an inlet pressure of 4 bar and an outlet
pressure of 1.5 bar.
NCI Process conditions
The process is illustrated in Fig. 1.
Pasteurised skimmed milk was obtained from a production run at Glanbia
Ingredients, Ballyragget Factory, Co. Kilkenny. This material was heated to 50°C
and processed through the MF plant at a CF of 2.5X and a permeate flux off 50
L/mVh. The micellar casein is retained during MF and is further washed using
diafiltration.
The diafiltration was carried out in a batch mode by diluting the MF retentate to
8% TS with the diafiltration water and passing it through the MF plant again. The
MF was again operated at 50°C, CF of 2.5X and a permeate flux off 50 L/m2/h.
The MF retentate from the DF step was diluted to 10% total solids. This material
was HTST pasteurised at 72°C x 16 sec. Ultrafiltration and diafiltration of this
material was then carried out at 50°C.
The UF retentate (NCI) was dried at 50°C and 20-25%TS. A spray dryer (APV
Anhydro, Copenhagen, Denmark) with nozzle atomisation was used. The inlet and
outlet air temperatures were 200°C and 98°C, respectively.
It will be appreciated that this example of NCI manufacture is not intended to be
proscriptive. Indeed alternative operating parameters are attainable, for example
higher flow rates and CF factors are attainable. Also an evaporation step may be
employed prior to or in-place of the spray-drying step. Indeed the MF/UF retentate
may be utilised if a sufficiently high protein is attained. Furthermore, as is known to
those skilled in the art lower pH during UF and MF facilitates the removal of some
of the calcium.
The invention is not limited to the embodiments herein described and may be
varied in detail. For example oils of plant, marine or other origins may be used in
place of the cream described herein. Other ingredients with physical or biological
functionality may be added to further enhance the finished product to the tastes of
the local market. Indeed since no whey need be removed, this technology is ideally
suited to these modifications since the added ingredients will remain with the
product and not tend to be largely lost in the whey.
WE CLAIM:
1. A dairy product containing dairy proteins, the product being at least semi-
solid and containing from 0.15% to 1% by weight of casein macropeptide
(CMP) and a mass ratio of CMP to whey protein of from 1:2 to 1:4.
2. A product as claimed in claim 1 having less than 2.5% of whey protein.
3. A product as claimed in claim 1 or 2 having a total solids content of at least
42% by weight.
4. A product as claimed in any of claims 1 to 3, the product, on manufacture,
having a sodium chloride content of 1% or more.
5. A product as claimed in any of claims 1 to 4 containing a biologically
functional additive.
6. A product as claimed in any preceding claim which is a cheese product.
7. The product as claimed in claim 6 wherein the cheese product is a natural
cheese product.
8. The product as claimed in claim 6 or 7 wherein the cheese product is a cheese
food.
9. A dairy product substantially as hereinbefore described.
10. A method for manufacturing an at least semi-solid dairy product as claimed in
any of claims 1 to 9 which comprises:
(i) combining with the aid of mixing and heating as necessary:-
a) an amount of natural casein isolate (NCI) protein source such
that 7% to 85% of the product by weight is NCI protein;
b) an amount of a moisture source such that 10% to 85% of the
product by weight is moisture;
c) an amount of a fat source such that 0.1% to 60% of the
product by weight is fat; and
(ii) subjecting the mixture thus formed to the action of a coagulant
such as rennet enzyme sufficient to convert the mixture to an
at least semi-solid product at room temperature or below
and/or to hydrolyse at least 50% of the kappa casein between
amino acid residue 105 and 106 present in the mixture.
11. A method as claimed in claim 10 wherein the amount of NCI is such thkt
from 7% to 60% of the product by weight is NCI protein.
12. A method as claimed in claim 10 wherein the amount of NCI is such that
from 15% to 30% of the product by weight is NCI protein.
13. A method as claimed in any of claims 10 to 12 wherein the amount of
moisture is such that from 20% to 76% of the product by weight is moisture.
14. A method as claimed in any of claims 10 to 13 wherein the amount of
moisture is such that from 30% to 60% of the product by weight is moisture.
15. A method as claimed in any of claims 10 to 14 wherein the amount of
moisture is such that from 40% to 58% of the product by weight is moisture.
16. A method as claimed in any of claims 10 to 15 wherein the amount of fat is
such that from 0.1% to 50% of the product by weight is fat.
A method as claimed in any of claims 10 to 16 wherein the amount of fat is
such that from 5% to 40% of the product by weight is fat.
A method as claimed in any of claims 10 to 17 wherein the amount of fat is
such that from 10% to 35% of the product by weight is fat.
A method as claimed in any of claims 10 to 18 wherein the renneting
temperature is in the range of 30 to 65°C.
A method as claimed in claim 19 wherein the renneting temperature is
approximately of 50°C.
A method as claimed in any of claims 10 to 20 comprising an acidification
step.
A method as claimed in claim 21 wherein the acid is a food grade acid which
may be selected from any one or more of vinegar, lactic acid, citric acid,
phosphoric acid, glucono-delat lactone.
A method as claimed in claim 21 wherein acidification is accomplished by the
action of a starter culture, especially a thermophillic culture.
A method as claimed in any of claims 10 to 23 wherein the mixture is
converted to a semi-solid product by:-
pasteurising the mixture;
cooling the pasteurised mixture;
acidifying by the use of food grade acid or through the action of a
culture on the mixture; and
subjecting the mixture to the action of a rennet enzyme.
25. A method as claimed in any of claims 10 to 23 wherein the mixture is
converted to a semi-solid product by:-
acidifying the mixture
subjecting the mixture to the action of a rennet enzyme;
adding food grade emulsifying salts;
acidifying the mixture; and
pasteurising the product thus formed.
26. A method as claimed in claim 24 or 25 wherein the semi-solid dairy product is
produced in a period of from 5 to 15 minutes.
27. A product whenever produced by a method as claimed in any of claims 10 to
26.
A diary product contains dairy proteins, the product being at least semi-solid and containing greater than 0.15 % by
weight of casein macropeptide (CMP). The mass ratio of CMP to whey protein is 1:4.9 or greater. The product may be a natural
cheese or a processed cheese. To obtain the desired product, a natural casein isolate protein (NCI) source is combined with a moisture
and a fat source and coagulated.

Documents:

379-kolnp-2003-granted-abstract.pdf

379-kolnp-2003-granted-assignment.pdf

379-kolnp-2003-granted-claims.pdf

379-kolnp-2003-granted-correspondence.pdf

379-kolnp-2003-granted-description (complete).pdf

379-kolnp-2003-granted-drawings.pdf

379-kolnp-2003-granted-examination report.pdf

379-kolnp-2003-granted-form 1.pdf

379-kolnp-2003-granted-form 18.pdf

379-kolnp-2003-granted-form 3.pdf

379-kolnp-2003-granted-form 5.pdf

379-kolnp-2003-granted-gpa.pdf

379-kolnp-2003-granted-reply to examination report.pdf

379-kolnp-2003-granted-specification.pdf

379-kolnp-2003-granted-translated copy of priority document.pdf


Patent Number 225437
Indian Patent Application Number 379/KOLNP/2003
PG Journal Number 46/2008
Publication Date 14-Nov-2008
Grant Date 12-Nov-2008
Date of Filing 01-Apr-2003
Name of Patentee BOPA IRELAND LIMITED
Applicant Address GLANBIA HOUSE, KILKENNY
Inventors:
# Inventor's Name Inventor's Address
1 MCCARTHY ANTHONY 10, BURGESS COURT, KELLS COUNTY KILKENNY
2 MCDONOUGH, ELIZABETH 40, GLENDINE HEIGHTS, CASTLECOMER ROAD, KILKENNY
3 O'CONNOR, JOHN ANTHONY 93, MELVILLE HEIGHTS KILKENNY
PCT International Classification Number A23C 19/028
PCT International Application Number PCT/IE01/00129
PCT International Filing date 2001-10-10
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 00650145.6 2000-10-10 EPO