Title of Invention

A PROCESS FOR THE PREPARATION OF A CRYSTALLINE FORM OF A CEPHALOSPORIN

Abstract No. 2774/CHENP/2005 ABSTRACT A PROCESS FOR THE PREPARATION OF A CRYSTALLINE FORM OF A CEPHALOSPORIN The present invention relates to a process for the preparation of a crystalline form of a cephalosporin of formula I and stirring the mixture; or b) mixing an acid and an organic solvent, and adding cephalosporin of formula III to the solution, and stirring the mixture; or c) suspending cephalosporin of formula III in water and an acid and stirring the mixture. The cephalosporin compound is a hydrochloride hydrate, hydrobromide or hydrobromide hydrate of the cephalosporin of formula I and the acid is selected from hydrochloric acid and hydrobromic acid. The present invention also relates to a pharmaceutical composition comprising the crystalline form of a cephalosporin of formula I and a therapeutically inert carrier particularly for treatment and prophylaxis of infectious diseases.
Full Text I
(
I
(

FIELD OF INVENTION
The present invention relates to cephalosporin in crystalline form and a process for its preparation. Further, the present invention relates to the use of said cephalosporin in crystalline form alone or in combination with other compounds or formulations of said cephalosporin in crystalline fonn as antibiotic compounds.

as well as the process for its preparation of the amorphous form is known from EP 1087980 and EP 0849269.
The cephalosporin of the above formula and its sodium salt (cephalosporin of formula III) have the disadvantage of low stability due to their amorphous form. The problem to be solved by the present invention was to provide a cephalosporin in a more stable forni.
An object of the present invention is to provide cephalosporin of formula 1 in crystalline form which have a higher stability.
It has been surprisingly found that a cephalosporin salt in the form of stable crystals can be obtained by crystallizing a cephalosporin in the presence of an acid.





The present invention also relates to a process for the preparation of cephalosporin which process comprises
a) mixing an acid and an organic solvent, and adding the solution to cephalosporin of formula III, and stirring the mixture; or
b) mixing an acid and an organic solvent, and adding cephalosporin of formula III to the solution, and stirring the mixture; or
c) suspending cephalosporin of formula III in water and an acid and stirring the mixture.
Further, the present invention relates to a cephalosporin obtainable by the process mentioned above.
The present invention also relates to compositions comprising cephalosporin as mentioned above.
Further, the present invention relates to cephalosporin compounds as mentioned above as medicament.
The present invention also relates to the use of cephalosporin compounds as mentioned above for the preparation of a medicament for use as antiinfectiva.
Further, the present invention relates to formulations of above mentioned cephalosporin with:
1) basic salts (e.g. carbonate, hydrogen carbonate). The use of co -solvents such as PEG, PPG, ethanol, propylene glycol, benzyl alcohol or mixtures thereof.
2) The use of buffers and in-situ salt formers (e.g. citrate, acetate, phosphate, carbonate, lysine, arginine, tromethamin, meglumine, ethylenediamine, triethanolamine) alone or in combination or with co-solvents or basic salts as described in 1).
3) The use of complexing agents ( e.g. PVP, cyclodextrines, dextrose) alone or in combination with principles as described in 1) and 2).
4) The use of surfactants (e.g. polysorbate, pluronic, lecithin) alone or in combinations with principles as described in 1), 2) and 3),

5) The principles described in 1), 2),3) and 4) may apply in direct
combination or as separate principle such as an reconstitution solution, used for reconstitution of the cephalosporin salt/s.
The present invention also relates to compositions containing amorphous parts of cephalosporin of formula I and/or II according to any one of claims 1 to 5 or 7 to 8, and amorphous parts of cephalosporin of formula III, and crystalline parts of cephalosporin of formula II according to any one of claims 2 to 5 or 7 to 8, to sum up to 100%.
Further, the present invention also relates to the use of said cephalosporin in crystalline form alone or in combination with other compounds or formulations of said cephalosporin in crystalline form as antibiotic compounds.
The present invention also relates to a pharmaceutical preparation containing a compound as described above and a therapeutically inert carrier, particularly for the treatment and prophylaxis of infectious diseases.
The term "crystallinity" or "crystalline" is used to describe the part of crystalline material compared to amorphous material and is estimated e.g. by the line shape and the background intensity in XRPD patterns as well as from DSC measurements.
According to these methods, a crystallinity of 90% to 100% is estimated. In a more preferred embodiment the crystallinity is within the range of 92% to 100%. In the most preferred embodiment the crystallinity is within the range of 95% to 100%.
The process for the preparation of compound of formula II maybe carried out in either an acid dissolved in organic solvents, an acid or in aqueous acid solutions. Preferred the process is carried out in aqueous acid solutions.
The term "acid", as used within the present invention, means an acids, such as HBr or HCl, preferred HCl. The acid may be used in gaseous form or in dissolved (either in aqueous solution or in an organic solvent) form.
The term "organic solvents" as used within the present invention, means organic solvents such as Ci.4-alkanol (CH3OH, C2H5OH, n-C3H70H, i-C3H70H, i-C4H90H, n-C4H9OH, sec-C4H90H), ketones (aceton, ethylmethylketone), ethers (THF, Dioxan ) acetonitrile, preferably CH3OH, C2H5OH, n-C3H70H, i-C3H70H, i-C4H90H, n-C4H90H. sec-C4H90H, acetone or acetonitrile, most preferred MeOH.
The term "acid solution " as used within the present invention, means HBr or HCl solutions, preferably aqueous HBr or HCl. The aqueous HCl solution in the concentration range of 1% to 30%, riiore preferred in the concentration range of 5% to 25%, most

preferred in the concentration range of 10% to 20%. The aqueous HBr solution in the concentration range of 1% to 62%, more preferred in the concentration range of 5% to 55%, most preferred in the concentration range of 8% to 20%.
The compound of formula I, II and III are useful as antibiotics having potent and broad antibacterial activity; especially against methicillin resistant Staphylococci (MRSA) and Pseudomonas aeruginosa.
Experimental part:
Crystallization from acid-saturated organic solvents:
The sodium salt of cephalosporin of formula III was prepared according to the methods described in EP 1087980 and HP 0849269.


The reaction is carried out at a temperature in the range of 0-30°C, preferred 5-25**C, most preferred 15-25°C.
The crystalline material obtained contained at least 50% of crystalline material.
Crystallization experiments in an acid (preferred HBr or HCl; more preferred HCl), dissolved in organic solvents as defined above (most preferred methanol), led, according to DSC, elemental microanalytics. X-ray powder diffraction and Raman spectroscopy, to a crystalline cephalosporin of formula II.
The following examples and Fig. 1 are provided to aid the understanding of the present invention.
Figure 1 shows Powder X-ray Diffraction Pattern of crystalline form of cephalosporin of formula II (CUKQ radiation)
Crystallization from acid solution
The following table shows a series of crystallization experiments in suspension.
The crystallization experiments were carried out in that cephalosporin of formula III is suspended in water and an acid (in gaseous form or in aqueous solution; preferred HBr or HCl; more preferred HCl). The resulting suspension is stirred up to 24 hours (preferably 3-20 hours, most preferred 4 - 7 hours), filtered, washed with an organic solvent (preferably acetone) and dried in an air flow for a few minutes.



The reaction is carried out at a temperature in the range of O-SCC, preferred 5-25°C, most preferred 15-25°C.
Crystallization experiments in water and an acid (preferred HBr or HCl; more preferred HCl) led, according to DSC elemental microanalytics and X-ray powder diffraction, to a crystalline cephalosporin of formula II.
Methods of characterizing the cephalosporin material:
Dynamic vapor sorption:
In general, the DVS measurement indicates the investigated crystalline sample exists as a trihydrate form.
Elemental microanalytics
Elemental microanalytics to demonstrate the existence (6R,7R)-7-[(Z)-2-(5-Amino-
[l,2,4]thiadiazol-3-yl)-2-hydroxyimino-acetylamino]-3-[(E)-(R)-r-(5-methyl-2- oxo-[l,3]dioxol-4-ylmethoxycarbonyl)-2-oxo-[l,3']bipyrrolidinyl-3-ylidenemethyl]-8-oxo-5-thia-l-aza-bicyclo[4.2.0]oct-2-ene-2-carboxylic acid Hydrochloride Trihydrate


Methods of proving/characterizing the presence of crystalline parts in the prepared cephalosporin material:
Differential scanning calorimetry (DSC):
DSC measurements were used to identify amorphous parts in samples of the HCl-salt.
DSC investigation and X-ray powder diffraction of selected samples
Selected samples have been investigated by DSC with respect to amorphous parts being present. In principle, two different kind of samples were found: on the one hand samples showing decomposition between about lOO^C and 140*C, on the other hand a set of samples is characterized by an endothermic peak at about 149'C and simultaneous decomposition.
Samples with an endothermic heat flow and presumably very small amorphous parts according to DSC were further investigated by X-ray powder diffraction. In general, these samples showed similar diffraction patterns but differed in the grade of crystallinity.




Storage for 24 hours revealed a very good stability of the crystalline compound II in the whole temperature range of investigation. The amorphous compound I decomposed significantly at temperatures above 5°C.
During 28 days a slight decomposition of crystalline compound II was observed at 25°C. In comparison, the content of compound I in the amorphous compound I decreased at 5°C and even stronger at 25*'C.
After 3 months, the amorphous compound I showed a slight decomposition even at S^C. The content of amorphous compound I strongly decreased at 25°C. In contrast, the crystalline compound II showed no decomposition at 5°C as compared to -20°C, at 25'C a slight decomposition was observed.
The products in accordance with the invention can be used as medicaments, for example, in the form of pharmaceutical preparations for enteral (oral) administration. The products in accordance with the invention can be administered, for example, perorally, such as in the form of tablets, coated tablets, dragees, hard and soft gelatine capsules, solutions, emulsions or suspensions, or rectally, such as in the form of suppositories.
Pharmaceutical compositions containing these compounds can be prepared using conventional procedures familiar to those skilled in the art, such as by combining the ingredients into a dosage form together with suitable, non-toxic, inert, therapeutically compatible solid or liquid carrier materials and, if desired, the usual pharmaceutical adjuvants.

It is contemplated that the compounds are ultimately embodied into compositions of suitable oral or parenteral dosage forms. The compositions of this invention can contain, as optional ingredients, any of the various adjuvants which are used ordinarily in the production of pharmaceutical preparations. Thus, for example, in formulating the present compositions into the desired oral dosage forms, one may use, as optional ingredients, fillers, such as coprecipitated aluminum hydroxide, calcium carbonate, dicalcium phosphate, mannitol or lactose; disintegrating agents, such as maize starch; and lubricating agents, such as talc, calcium stearate, and the like. It should be fully understood, however, that the optional ingredients herein named are given by way of example only and that the invention is not restricted to the use hereof. Other such adjuvants, which are well known in the art, can be employed in carrying out this invention.
Suitable as such carrier materials are not only inorganic, but also organic carrier materials. Thus, for tablets, coated tablets, dragees and hard gelatine capsules there can be used, for example, lactose, maize starch or derivatives thereof, talc, stearic acid or its salts. Suitable carriers for soft gelatine capsules are, for example, vegetable oils, waxes, fats and semi-solid and liquid polyols (depending on the nature of the active substance; no carriers are, however, required in the case of soft gelatine capsules). Suitable carrier materials for the preparation of solutions and syrups are, for example, water, polyols, saccharose, invert sugar and glucose. Suitable carrier materials for suppositiories are, for example, natural or hardened oils, waxes, fats and semi-liquid or liquid polyols.
As pharmaceutical adjuvants there are contemplated the usual preservatives, solubilizers, stabilizers, wetting agents, emulsifiers, sweeteners, colorants, flavorants, salts for varying the osmotic pressure, biiffers, coating agents and antioxidants.
The products in accordance with the invention can be used as medicaments, for example, in the form of pharmaceutical preparations for parenteral administration, and for this purpose are preferably made into preparations as lyophilisates or dry powders for dilution with customary agents, such as water or isotonic common salt or carbohydrate (e.g. glucose) solution.
Depending on the nature of the pharmacologically active compound the pharmaceutical preparations can contain the compound for the prevention and treatment of infectious diseases in mammals, human and non-human, a daily dosage of about 10 mg to about 4000 mg, especially about 50 mg to about 3000 mg, is usual, with those of ordinary skill in the art appreciating that the dosage will depend also upon the age, conditions of the mammals, and the kind of diseases being prevented or treated. The daily dosage can be administered in a single dose or can be divided over several doses. An



b) mixing an acid and an organic solvent, and adding cephalosporin of formula III to
the solution, and stirring the mixture; or
c) suspending cephalosporin of formula III in water and an acid and stirring the
mixture.
2. The process as claimed in claim 1, wherein the cephalosporin compound is a hydrochloride hydrate of the cephalosporin of formula I and the acid is hydrochloric acid.

3. The process as claimed in claim 1, wherein the cephalosporin compound is a
hydrobromide or hydrobromide hydrate of the cephalosporin of formula I and the acid
is hydrobromic acid.
4. A crystalline form of a cephalosporin of formula I prepared by the process as claimed in any one of claims 1 to 3.
5. A pharmaceutical composition comprising the crystalline form of a cephalosporin of formula I as claimed in claim 4 and a therapeutically inert carrier particularly for treatment and prophylaxis of infectious diseases.


Documents:

2774-chenp-2005 abstract-duplicate.pdf

2774-chenp-2005 abstract.pdf

2774-chenp-2005 assignment.pdf

2774-chenp-2005 claims-duplicate.pdf

2774-chenp-2005 claims.pdf

2774-chenp-2005 correspondence-others.pdf

2774-chenp-2005 correspondence-po.pdf

2774-chenp-2005 description (complete)-duplicate.pdf

2774-chenp-2005 description (complete).pdf

2774-chenp-2005 drawings-duplicate.pdf

2774-chenp-2005 drawings.pdf

2774-chenp-2005 form-1.pdf

2774-chenp-2005 form-18.pdf

2774-chenp-2005 form-26.pdf

2774-chenp-2005 form-3.pdf

2774-chenp-2005 form-5.pdf

2774-chenp-2005 pct.pdf

2774-chenp-2005 petition.pdf


Patent Number 229836
Indian Patent Application Number 2774/CHENP/2005
PG Journal Number 13/2009
Publication Date 27-Mar-2009
Grant Date 20-Feb-2009
Date of Filing 27-Oct-2005
Name of Patentee BASILEA PHARMACEUTICA AG
Applicant Address Grenzacherstrasse 487, CH-4005 Basel,
Inventors:
# Inventor's Name Inventor's Address
1 BERGHAUSEN, Joerg ECKENBACHWEG 17, 79541 LORRACH,
PCT International Classification Number C07D 50/150
PCT International Application Number PCT/EP2004/002667
PCT International Filing date 2004-03-15
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 03006815.9 2003-03-27 EUROPEAN UNION