Title of Invention

"CDK-INHIBITORY PYRIMIDINE COMPOUNDS OF GENERAL FORMULA I AND PHARMACEUTICAL AGENT COMPRISING THE SAME"

Abstract CDK-inhibitory pyrimidine compounds of general formula I, in which R1 stands for halogen, R2 stands for -CH(CH3)- (CH2)n-R5, -CH- (CH2OH)2, -(CH2)nR7, -CH(C3H7)-(CH2)n-R5, -CH(C2H5)-(CH2)11-R5, -CH2-CN, -CH(CH3) COCH3, -CH(CH3)-C(OH) (CH3) 2, -CH (CH (OH) CH3)OCH3, -CH(C2H5)CO-R5, C2-C4-alkinyl, - (CH2)n-COR5, -{CH2)n-CO-C1- C6-alkyl, -(CH2)n-C (OH) (CH3) -phenyl, -CH(CH3) -C(CH3)-R5, -CH(CH3)-C(CH3) (C2H5)-R5, -CH (OCH3) -CH2-R5, -CH2-CH(OH) -R5, -CH(OCH3)-CHR5-CH3, -CH (CH3) -CH (OH) -CH2-CH=CH2, -CH (C2H5) -CH (OH) - (CH2) n-CH3, -CH (CH3) -CH (OH) - (CH2) n-CH3, -CH(CH3)-CH(OH)-CH(CH3)2, (CH2OAC)2, -(CH2)n-Rs, -(CH2)n-(CF2)n-CF3, -CH (CH2)n-R5)2, -CH (CH3)-CO-NH2, -CH (CH2OH) -phenyl, -CH(CH2OH) -CH(OH) - (CH2) nR5-, -CH(CH2OH)-CH (OH)-phenyl, -CH(CH2OH)-C2H4-R5, -(CH2)n-C=C-C(CH3)=CH-COR5, -CH (Ph) - (CH2) nR5, - (CH2) n-COR5, -(CH2)nPO3(R5}2, -(CH2)n-COR5, -CH((CH2)nOR5)CO-R5.
Full Text The present invention relates to CDK- inhibitory pyrimidine compounds of general formula i and pharmaceutical agent comprising the same.
This invention relates to pyrimidine derivatives, their production as well as their use as medications for treating various diseases.
The CDKs (cyclin-dependent kinase) is an enzyme family that plays an important role in the regulation of the cell cycle and thus is an especially advantageous target for the development of small inhibitory molecules. Selective inhibitors of the CDKs can be used for treating cancer or other diseases that cause disruptions of cell proliferation.
Pyrimidines and analogs are already .described.as active ingredients, such as, for ., example, the 2-anilino-pyrimidines as fungicides (DE 4029650) or substituted pyrimidine derivatives for treating neurological or neurodegenerative diseases (WO 99/19305). As CDK inhibitors, the most varied pyrimidine derivatives are described, for example bis(anilino)-pyrimidine derivatives (WO 00/12486), 2-amino-4-substiruted pyrimidines (WO 01/14375), purines (WO 99/02162), 5-cyano-pyrimidines (WO 02/04429), anilinopyrimidines (WO 00/12486) and 2-hydroxy-3-N,N-dimethylaminopropoxy-pyrimidines (WO 00/39101).
The object of this invention is to provide compounds that have better properties than the inhibitors that are already known. The substances that are described here are more effective, since they already inhibit in the nanomolar range and can be distinguished from other already known CDK inhibitors such as, e.g., olomoucine and roscovitine.

(Formula Removed)
It has now been found that compounds of general formula I
(Formula Removed)
in which
R1 stands for hydrogen, halogen, C1-C6 -alkyl, nitro, or for the group -COR5, -OCF3 , -(CH2)nR5, -S-CF3 or -SO2CF3,
R2 stands for C1-C10-alkyl, C2-C10-alkenyl, C2-C10-alkinyl, or C3-C10-
cycloalkyl or for C1-C10-alkyl, C2-C10-alkenyl, C2-C10-alkinyl, or C3-C10-cycloalkyl that is substituted in one or more places in the same way or differently with hydroxy, halogen, C1-C6 -alkoxy, C1-C6 -alkylthio, amino, cyano, C1-C6 -alkyl, -NH-(CH2)n-C3-C10-cycloalkyl, C3-C10-cycloalkyl, C1-C6-hydroxyalkyl, C2-C6 -alkenyl, C2-C6-alkinyl, C1-C6-alkoxy-C1-C6-alkyl, C1-C6-alkoxy-C1-C6-alkoxy-C1-C6-alkyl, -NHC1-C6-alkyl, -N(C, -C6 -alkyl)2, -SO(C, -C6 -alkyl), -SO2 (C1-C6 -alkyl), C1-Ce-alkanoyl, -CONR3R4, -COR5, C1-C6-alkylOAc, carboxy, aryl, heteroaryl, -(CH2)n-aryl, -(CH2)n-heteroaryl, phenyl-(CH2)n-R5, -(CH2)nPO3(R5)2 or with the group -R6 or -NR3R4, and the phenyl, C3-C10-cycloalkyl, aryl, heteroaryl, -(CH2)n-aryI and -(CH2)n-heteroaryl itself optionally can be substituted in one or more places in the same way or differently with halogen, hydroxy, C1-C6 -alkyl, C1 -C6-alkoxy,
heteroaryl, benzoxy or with the group -CF3 or -OCF3, and the ring of the C3 -C10-cycloalkyl and the C1-C10-alkyl optionally can be interrupted by one or more nitrogen, oxygen and/or sulfur atoms and/or can be interrupted by one or more =C=O groups in the ring and/or optionally one or more possible double bonds can be contained in the ring, or R2 stands for the group
(Formula Removed)
X stands for oxygen or for the group -NH-, -N(C1-C3-alkyl) or for
-OC3-C10-cycloalkyl, which can be substituted in one or more places in
the same way or differently with a heteroaromatic compound,
or
X and R2 together form a C3-C10-cycloalkyl ring, which optionally can contain
one or more heteroatoms and optionally can be substituted in one or more places with hydroxy, C1-C6-alkyl, C1-C6-alkoxy or halogen,
A and B, in each case independently of one another, stand for hydrogen, hydroxy, C1-C3-alkyl, C1-C6-alkoxy or for the group -SR7, -S(O)R7, -SO2 R7, -NHSO2 R7, -CH(OH)R7, -CR7 (OH)-R7,
(Formula Removed)
C1-C6 -alkylP(O)0R3 OR4 or -COR7, or for
or A and B together form a C3 -C10 -cycloalkyl ring that optionally can be
interrupted by one or more nitrogen, oxygen and/or sulfur atoms and/or can be interrupted by one or more =C=O or =SO2 groups in the ring and/or optionally one or more possible double bonds can be contained in the ring, and the C3 -C10 -cycloalkyl ring optionally can be substituted in one or more places in the same way or differently with hydroxy, halogen, C1-C6-alkoxy, C1-C6 -alkylthio, amino, cyano, C) -C6-alkyl, C2-C6-alkenyl, C3 -C10 -cycloalkyl, C, -C6-alkoxy-C1-C6-alkyl, -NHQ -C6 -alkyl, -N(C1-C6-alkyl)2, -SO(C1-C6-alkyl), -SO2R7, C1-C6-alkanoyl, -CONR3R4, -COR5. C, -C6-alkoxyOAc, phenyl or with the group R6, whereby the phenyl itself optionally can be substituted in one or more places in the same way or differently with halogen, hydroxy, C1-C6-alkyl, C1-C6-alkoxy or with the group -CF3 or -OCF3, R3 and R4, in each case independently of one another, stand for hydrogen,
phenyl, benzyloxy, C1-C12-alkyl, C1-C6-alkoxy, C2-C4-alkenyloxy, C3-C6-cycloalkyl, hydroxy, hydroxy-C1-C6-alkyl, dihydroxy-C1-C6 -alkyl, heteroaryl, heterocyclo-C3-C10-alkyl, heteroaryl-C1-C3-alkyl, C3-C6-cycloalkyl-C1-C3-alkyl that is optionally substituted with cyano, or for C1-C6-alkyl that is optionally substituted in one or more places in the same way or differently with phenyl, pyridyl, phenyloxy, C3-C6-cycloalkyl, C1-C6-alkyl or C1-C6-alkoxy,
whereby the phenyl itself can be substituted in one or more places in the
same way or differently with halogen, C1-C6-alkyl, C1-C6-alkoxy or with
the group -SO2NR3R4,
or for the group -(CH2)nNR3R4, -CNHNH2 or -NR3R4,
or
R3 and R4 together form a C3-C10 -cycloalkyl ring that optionally can be
interrupted by one or more nitrogen, oxygen and/or sulfur atoms and/or can be interrupted by one or more =C=O groups in the ring and/or optionally one or more possible double bonds can be contained in the ring,
R5 stands for hydroxy, phenyl, C1-C6-alkyl, C3-C6-cycloalkyl, benzoxy, C1 -C6 -alkylthio or C1-C6-alkoxy,
R6 stands for a heteroaryl or C3 -C10-cycloalkyl ring, whereby the ring has the above-indicated meaning,
R7 stands for halogen, hydroxy, phenyl, Cj-C6-alkyl, C2-C6-alkenyl,
C2-C6-alkinyl, C3-C10-cycloalkyl, with the above-indicated meaning, or for the group -NR3R4, or for C1-C10-alkyl, C2-C10-alkenyl, C2-C10-alkinyl or C3-C7-cycloalkyl that is substituted in one or more places in the same way or differently with hydroxy, C1-C6-alkoxy, halogen, phenyl, -NR3R4 or phenyl, which itself can be substituted in one or more places in the same way or differently with halogen, hydroxy, C1-C6-alkyl, C1-C6-alkoxy, halo-C1-C6-alkyl, or halo-C1-C6-alkoxy, orR7 stands for phenyl, which itself can be substituted in one or more places in the same way or
differently with halogen, hydroxy, C1-C6-alkyl or C1-C6-alkoxy, halo-C1-C6-alkyl, orhalo-C1-C6-alkoxy,
R8, R9 and
R10, in each case independently of one another, stand for hydrogen, hydroxy, C1-C10-alkyl, C2-C10-alkenyl, C2-C10-alkinyl, C3-C10-cycloalkyl, aryl, or heteroaryl or for C1-C10-alkyl, C2-C10-alkenyl, C2-C10-alkinyl or C3-C]0--cycloalkyl that is substituted in one or more places in the same way or differently with hydroxy, halogen, C1-C6-alkoxy, C1-Cg-alkylthio, amino, cyano, C1-C6-alkyl, -NH-(CH2)n-C3-C10-cycloalkyl, C3-C,o-cycloalkyl, Cr C6-hydroxyalkyl, C2-C6-alkenyl, C2-C6-alkinyl, C1-C6-alkoxy-C1-C(,-alkyl, C1-C6-alkoxy-C1-C6-alkoxy-C1-C6-alkyl,-NHC1-C6-alkyl,-N(C1-C6-alkyl)2, -SO(C1-C6-alkyl), -SO2(C1-C6-alkyl), C1-C6-alkanoyl, -CONR3R4, -COR5, C1-Cfi-alkylOAc, carboxy, aryl, heteroaryl, -(CH2)n-aryl, -(CH2)n-hcteroaryi, phenyl-(CH2)n-R5, -(CH2)nPO3(R5)2 or with the group -R6 or-NR.JR4, and the phenyl, C3-C]0-cycloalkyl, aryl, heteroaryl, -(CK2)n-aryl and -(CH2)n-heteroaryl itself optionally can be substituted in one or more places in the same way or differently with halogen, hydroxy, C1-C6-alkyl, C1-C6-alkoxy or with the group -CF3 or -OCF3, and the ring of C3-C10-cycloalkyl and the C1-C10-alkyl optionally can be interrupted by one or more nitrogen, oxygen and/or sulfur atoms and/or can be interrupted by one or more =C=O groups in the ring and/or optionally one or more possible double bonds can be contained in the ring, and
n stands for 0-6,
as well as isomers, diastereomers, enantiomers and salts thereof that overcome known drawbacks.
Alkyl is defined in each case as a straight-chain or branched alkyl radical, such as, for example, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, isopentyl, hexyl, heptyl, octyl, nonyl and decyl.
Alkoxy is defined in each case as a straight-chain or branched alkoxy radical, such as, for example, methyloxy, ethyloxy, propyloxy, isopropyloxy, butyloxy, isobutyloxy, sec-butyloxy, tert-butyloxy, pentyloxy, isopentyloxy, or hexyloxy.
Alkylthio is defined in each case as a straight-chain or branched alkylthio radical, such as, for example, methylthio, ethylthio, propylthio, isopropylthio, butylthio, isobutylthio, sec-butylthio, tert-butylthio, pentylthio, isopentylthio or hexylthio.
Cycloalkyl is defined in general as monocyclic alkyl rings, such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl or cyclodecyl, but also bicyclic rings or tricyclic rings such as, for example, norbornyl, adamantanyl, etc.
The ring systems, in which optionally one or more possible double bonds can be contained in the ring, are defined as, for example, cycloalkenyls, such as cyclopropenyl, cyclobutenyl, cyclopentenyl, cyclohexenyl, or cycloheptenyl, whereby the linkage can be carried out both to the double bond and to the single bonds.
If A and B, R3 and R4, X and R2, in each case independently of one another, together form a C3-C10-cycloalkyl ring, which optionally can be interrupted by one or more heteroatoms, such as nitrogen atoms, oxygen atoms and/or sulfur atoms, and/or can
be interrupted by one or more =C=O groups in the ring and/or optionally one or more possible double bonds can be contained in the ring, the above-mentioned definitions, however, are also intended to include heteroaryl radical or heterocycloalkyl and heterocy cloalkenyl.
Halogen is defined in each case as fluorine, chlorine, bromine or iodine.
The alkenyl substituents in each case are straight-chain or branched, whereby, for example, the following radicals are meant: vinyl, propen-1-yl, propen-2-yl, but-l-en-1-yl, but-l-en-2-yl, but-2-en-l-yl, but-2-en-2-yl, 2-methyl-prop-2-en-l-yl, 2-methyl-prop-1-en-l-yl, but-l-en-3-yl, ethinyl, prop-1-in-l-yl, but-1-in-l-yl, but-2-in-l-yl, but-3-en-l-yl, and allyl.
Alkinyl is defined in each case as a straight-chain or branched alkinyl radical that contains 2-6, preferably 2-4, C atoms. For example, the following radicals can be mentioned: acetylene, propin-1 -yl, propin-3-yl, but-1 -in-1 -yl, but-1 -in-4-yl, but-2-in-1 -yl, but-l-in-3-yl, etc.
The aryl radical in each case comprises 3-12 carbon atoms and in each case can be benzocondensed.
For example, there can be mentioned: cyclopropenyl, cyclopentadienyl, phenyl, tropyl, cyclooctadienyl, indenyl, naphthyl, azulenyl, biphenyl, fluorenyl, anthracenyl, etc.
The heteroaryl radical in each case comprises 3-16 ring atoms, and instead of the carbon can contain one or more heteroatoms that are the same or different, such as oxygen, nitrogen or sulfur, in the ring, and can be monocyclic, bicyclic, or tricyclic and in addition in each case can be benzocondensed.
For example, there can be mentioned:
Thienyl, furanyl, pyrrolyl, oxazolyl, thiazolyl, imidazolyl, pyrazolyl, isoxazolyl, isothiazolyl, oxadiazolyl, tnazolyl, thiadiazolyl, etc., and benzo derivatives thereof, such as, e.g., benzofuranyl, benzothienyl, benzoxazolyl, benzimidazolyl, indazolyl, indolyl, isoindolyl, etc.; or pyridyl, pyridazinyl, pyrimidinyl, pyrazinyl, triazinyl, etc., and benzo derivatives thereof, such as, e.g., quinolyl, isoquinolyl, etc., or azocinyl, indolizinyl, purinyl, etc., and benzo derivatives thereof; or quinolinyl, isoquinolinyl, cinnolinyl, phthalazinyl, quinazolinyl, quinoxalinyl, naphthyridinyl, pteridinyl, carbazolyl, acridinyl, phenazinyl, phenothiazinyl, phenoxazinyl, xanthenyl, oxepinyl, etc.
Heterocycloalkyl stands for an alkyl ring that comprises 3-12 carbon atoms, which instead of the carbon contains one or more heteroatoms that are the same or different, such as, e.g., oxygen, sulfur or nitrogen.
As heterocycloalkyls, there can be mentioned, e.g.: oxiranyl, oxethanyl, aziridinyl, azetidinyl, tetrahydrofuranyl, pyrrolidinyl, dioxolanyl, imidazolidinyl, pyrazolidinyl, dioxanyl, piperidinyl, morpholinyl, dithianyl, thiomorpholinyl, piperazinyl, trithianyl, quinuclidinyl, etc.
Heterocycloalkenyl stands for an alkyl ring that comprises 3-12 carbon atoms, which instead of the carbon contains one or more heteroatoms that are the same or different, such as, e.g., oxygen, sulfur or nitrogen, and which is partially saturated.
As heterocycloalkenyls, there can be mentioned, e.g.: pyran, thiin, dihydroacet, etc.
If an acid group is included, the physiologically compatible salts of organic and inorganic bases are suitable as salts, such as, for example, the readily soluble alkali and alkaline-earth salts, as well as N-methyl-glucamine, dimethyl-glucamine, ethyl-
glucamine, lysine, 1,6-hexadiamine, ethanolamine, glucosamine, sarcosine, serinol, tris-
hydroxy-methyl-amino-methane, aminopropane diol, Sovakbase, and l-amino-2,3,4-
butanetriol.
If a basic group is included, the physiologically compatible salts of organic and
inorganic acids are suitable, such as hydrochloric acid, sulfuric acid, phosphoric acid,
citric acid, tartaric acid, i.a.
Those compounds of general formula (I) in which
R1 stands for hydrogen, halogen, C1-C6 -alkyl, nitro, or for the group -COR5,
-OCF3 , -(CH2)nR5, -S-CF3 or -SO2CF3, R2 stands for C1-Cjo-alkyl, C2-C10-alkenyl, C2-C10-alkinyl, or C3-C]0-
cycloalkyl or for C1-C10-alkyl, C2-C10-alkenyl, C2-C10-alkinyl, or C3-C10-cycloalkyl that is substituted in one or more places in the same way or differently with hydroxy, halogen, C1-Co-alkoxy, C1-C6-alkylthio, amino, cyano, Q -C6 -alkyl, -NH-(CH2),rC3-C10-cycloalkyl, C3-C10-cycloalky], C1-C6-hydroxyalkyl, C2 -C6 -alkenyl, C2-C6-alkinyl, C1-C6-alkoxy-C1-C6-alkyl, C1-C6-alkoxy-d -C6-alkoxy-C1-C6 -alkyl, -NHC, -C6 -alkyl, -N(C1-C6-alkyl)2, -SO(C, -C6 -alkyl), -SO2 (C1-C6-alkyl), C1-Ce-alkanoyl, -CONR3R4, -COR5, C1-C6-alkylOAc, carboxy, aryl, heteroaryl, -(CH2)n-aryl, -(CH2)n-heteroaryl, phenyl-(CH2)n-R5, -(CH2)nPO3(R5)2 or with the group -R6 or -NR3R4, and the phenyl, C3-C10-cycloalky), aryl, heteroaryl, -(CH2)n-aryl and -(CH2)n-heteroaryl itself optionally can be substituted in one or more places in the same way or differently with halogen, hydroxy, C1-C6 -alkyl, C1-C6 alkoxy,
heteroaryl, benzoxy or with the group -CF3 or -OCF3, and the ring of the C3 -C10-cycloalkyl and the C1-C10-alkyl optionally can be interrupted by one or more nitrogen, oxygen and/or sulfur atoms and/or can be interrupted by one or more =C=O groups in the ring and/or optionally one or more possible double bonds can be contained in the ring, or R2 stands for the group
(Formula Removed)
X stands for oxygen or for the group -NH-, -N(C1-C3-alkyl) or for
-OC3-C10-cycloalkyl, which can be substituted in one or more places in
the same way or differently with a heteroaromatic compound,
or
X and R2 together form a C3-C10-cycloalkyl ring, which optionally can contain
one or more heteroatoms and optionally can be substituted in one or more places with hydroxy, C1-C6-alkyl, C1-C6-alkoxy or halogen,
A and B, in each case independently of one another, stand for hydrogen,
hydroxy, C1-C3-alkyl, C1-C6-alkoxy or for the group -S-CH3, -SO2-C2H4-OH, -CO-CH3, -S-CHF2, -S-(CH2)nCH(OH)CH2N-R3R4, -CH2P(O)OR3OR4, -S-CF3, -SO-CH3, -SO2CF3, -SO2-(CH2)n-N-R3R4,
(Formula Removed)
-SO2-NR3R4, -SO2R7, -CH-(OH)-CH3 or for
(Formula Removed)
R3 and R4, in each case independently of one another, stand for hydrogen,
phenyl, benzyloxy, C1-C12-alkyl, C1-C6-alkoxy, C2-C4-alkenyloxy, C3-C6-
cycloalkyl, hydroxy, hydroxy-C1-C6-alkyl, dihydroxy-C1-C6-alkyl,
heteroaryl, heterocyclo-C3-C10-alkyl, heteroaryl-C1-C3-alkyl,
C3-C6-cycloalkyl-C1-C3-alkyl optionally substituted with cyano, or for
C1-C6-alkyl that is optionally substituted in one or more places in the same
way or differently with phenyl, pyridyl, phenyloxy, C3-C6-cycloalkyl,
C1-C6-alkyl or C1-C6-alkoxy,
whereby the phenyl itself can be substituted in one or more places in the
same way or differently with halogen, trifluoromethyl, C1-C6-alkyl, C1-C6-
alkoxy or with the group -SO2NR3R4,
or for the group -(CH2)nNR3R4, -CNHNH2 or -NR3R4
(Formula Removed)
which optionally can be substituted with C1-C6-alkyl,
R5 stands for hydroxy, phenyl, C1-C6-alkyl, C3-C6-cycloalkyl, benzoxy, C1-C6 -alkylthio or C1-C6-alkoxy,
R6 stands for the group
(Formula Removed)
R' stands for halogen, hydroxy, phenyl, C1-C6-alkyl, -C2H4OH, -NR3R4, or
the group
(Formula Removed)
R8, R9 and
Rlu, in each case independently of one another, stand for hydrogen, hydroxy,
C1-C6-alkyl, C3-C6-cycloalkyl or for the group
(Formula Removed)
n stands for 0-6,
as well as isomers, enantiomers, diastereomers, and salts thereof, are especially effective.
Those compounds of general formula I in which
R1 stands for hydrogen, halogen, C1-C3 -alkyl, or for the group -(CH2)nR5,
R2 stands for -CH(CH3)-(CH2)n-R5, -CH-(CH2OH)2, -(CH2)nR7, -CH(C3H7)-(CH2)n-R5, -CH(C2H5)-(CH2)n-R5, -CH2-CN, -CH(CH3)COCH3, -CH(CH3)-C(OH)(CH3)2,-CH(CH(OH)CH3)OCH3, -CH(C2H5)CO-R5, C2-C4-alkinyl, -(CH2)n-COR5, -(CH2)n-CO-C1-C6-alkyl, -(CH2)n-C(OH)(CH3)-phenyl,-CH(CH3)-C(CH3)-R5,-CH(CH3)-C(CH3)(C2H5)-R5, -CH(OCH3)-CH2-R5, -CH2-CH(OH)-R5, -CH(OCH3)-CHR5-CH3, -CH(CH3)-CH(OH)-CH2-CH=CH2,-CH(C2H5)-CH(OH)-(CH2)n-CH3, -CH(CH3)-CH(OH)-(CH2)n-CH3,-CH(CH3)-CH(OH)-CH(CH3)2, (CH2OAC)2, -(CH2)n-R6, -(CH2)n-(CF2)n-CF3, -CH(CH2)n-R5)2, -CH(CH3)-CO-NH2, -CH(CH2OH)-phenyl, -CH(CH2OH)-CH(OH)-(CH2)nR5, -CH(CH2OH)-CH(OH)-phenyl, -CH(CH2OH)-C2H4-R5, -(CH2)n-OC(CH3)=CH-COR5, -CH(Ph)-(CH2)n-R5, -(CH2)n-COR5, -(CH2)nPO3(R5)2, -(CH2)n-COR5, -CH((CH2)nOR5)CO-R5, -(CH2)nCONHCH((CH2)nR5)2, -(CH2)nNH-COR5, -CH(CH2)nR5-(CH2)nC3-C10-cycloalkyl,-(CH2)n-C3-C10-cycloalkyl, C3-C10-cycloalkyl; C1-C6-alkyl, C3-C10-cycloalkyl, -(CH2)n-O-(CH2)n-R5, -(CH2)n-NR3R4 that
is optionally substituted in one or more places in the same way or
differently with hydroxy, C1-C6-alkyl or the group -COONH(CH2)nCH3 or
-NR3R4,
-CH(C3H7)-(CH2)n-OC(O)-(CH2)n-CH3,-(CH2)n-R5,
-C(CH3)2-(CH2)n-R5,-C(CH2)n(CH3)-(CH2)nR5,
-C(CH2)n-(CH2)nR5,-CH(t-butyl)-(CH2)n-R5,
-CCH3(C3H7)-(CH2)nR5,-CH(C3H7)-(CH2)n-R5,
-CH(C3H7)-COR5,-CH(C3H7)-(CH2)n-OC(O)-NH-Ph,
-CH((CH2)n(C3H7))-(CH2)nR5,
-CH(C3H7)-(CH2)n-OC(O)-NH-Ph(OR5)3, -NR3R4,
-NH-(CH2)n-NR3R4,R5-(CH2)n-C*H-CH(R5)-(CH2)n-R5,
-(CH2)n-CO-NH-(CH2)n-CO-R5, -OC(O)NH-C1-C6-alkyl or
-(CH2)n-CO-NH-(CH2)n-CH-((CH2)nR5)2,
or for C3-C10-cycloalkyl, which is substituted with the group
(Formula Removed)
or for the group
(Formula Removed)
X stands for oxygen or for the group -NH-, -N(C1-C3-alkyl) or
(Formula Removed)
R stands for the group
(Formula Removed)
X and R together form a group
(Formula Removed)
A and B, in each case independently of one another, stand for hydrogen,
hydroxy, C1-C3-alkyl, C1-C6-alkoxy or for the group -S-CH3, -SO2-C2H4-OH, -CO-CH3, -S-CHF2, -S(CH2)nCH(OH)CH2N-R3R4, -CH2PO(OC2H5)2, -S-CF3, -SO-CH3, -SO2CF3, -SO2-(CH2)n-N-R3R4, -SO2-NR3R4, -SO2R7, -CH(OH)-CH3, -COOH, -CH((CH2)nR5)2, -(CH2)nR5, -COO-C1-C6-alkyl,
-CONR3R4 or for
(Formula Removed)
A and B together can form a group .N
(Formula Removed)
R and R , in each case independently of one another, stand for hydrogen, phenyl, benzyloxy, C1-C12-alkyl, C1-C6-alkoxy, C2-C4-alkenyloxy, C3-C6-cycloalkyl, hydroxy, hydroxy-C1-C6-alkyl, dihydroxy-C1-C6-alkyl, heteroaryl, heterocyclo-C3-C10-alkyl, heteroaryl-C1-C3-alkyl, C3-C6-cycloalkyl-C1-C3-alkyl that is optionally substituted with cyano, or for C1-C6-alkyl that is optionally substituted in one or more places in the same way or differently with phenyl, pyridyl, phenyloxy, C3-C6-cycloalkyl, C1-C6-alkyl or C1-C6-alkoxy, whereby the phenyl itself can be substituted in one or more places in the same way or differently with halogen, trifluoromethyl, C1-C6-alkyl, C1-C6-alkoxy or with the group -SO2NR3R4,
or for the group -(CH2)nNR3R4, -CNHNH2 or -NR3R4 or for
(Formula Removed)
R5 which optionally can be substituted with C1-C6-alkyl,
stands for hydroxy, phenyl, C1-C6-alkyl, C3-C6-cycloalkyl, benzoxy,
C1-C6-alkylthio or C1-C6-alkoxy,
stands for the group
(Formula Removed)
R7 stands for halogen, hydroxy, phenyl, C1-C6-alkyl, -(CH2)nOH, -NR3R4 or the group
R8, R9 and
R10 stand for hydrogen, hydroxy, C1-C6-alkyl or for the group -(CH2)n-COOH, and
n stands for 0-6,
as well as isomers, diastereomers, enantiomers and salts thereof, have proven quite especially effective.
The compounds according to the invention essentially inhibit cyclin-dependent kinases, upon which is based their action, for example, against cancer, such as solid tumors and leukemia; auto-immune diseases such as psoriasis, alopecia, and multiple sclerosis, chemotherapy-induced alopecia and mucositis; cardiovascular diseases such as stenoses, arterioscleroses and restenoses; infectious diseases, such as, e.g., by unicellular parasites, such as trypanosoma, toxoplasma or Plasmodium, or produced by fungi; nephrological diseases, such as, e.g., glomerulonephritis, chronic neurodegenerative diseases, such as Huntington's disease, amyotropic lateral sclerosis, Parkinson's disease, AIDS dementia and Alzheimer's disease; acute neurodegenerative diseases, such as ischemias of the brain and neurotraumas; viral infections, such as, e.g., cytomegalic infections, herpes, Hepatitis B and C, and HIV diseases.
The eukaryotic cell division ensures the duplication of the genome and its distribution to the daughter cells by passing through a coordinated and regulated sequence of events. The cell cycle is divided into four successive phases: the Gl phase represents the time before the DNA replication, in which the cell grows and is sensitive to external stimuli. In the S phase, the cell replicates its DNA, and in the G2 phase, preparations are made for entry into mitosis. In mitosis (M phase), the replicated DNA separates, and cell division is completed.
The cyclin-dependent kinases (CDKs), a family of serine/threonine kinases, whose members require the binding of a cyclin (Cyc) as a regulatory subunit in order for them to activate, drive the cell through the cell cycle. Different CDK/Cyc pairs are active in the various phases of the cell cycle. CDK/Cyc pairs that are important to the basic function of the cell cycle are, for example, CDK4(6)/CycD, CDK2/CycE, CDK2/CycA, CDKl/CycA and CDKl/CycB. Some members of the CDK enzyme family have a regulatory function by influencing the activity of the above-mentioned cell cycle CDKs, while no specific function could be associated with other members of the CDK enzyme family. One of the latter, CDK5, is distinguished in that it has an atypical regulatory subunit (p35) that deviates from the cyclins, and its activity is highest in the brain.
The entry into the cell cycle and the passage through the "restriction points," which marks the independence of a cell from further growth signals for the completion of the cell division that has begun, are controlled by the activity of the CDK4(6)/CycD and CDK2/CycE complexes. The essential substrate of these CDK complexes is the retinoblastoma protein (Rb), the product of the retinoblastoma tumor suppressor gene. Rb is a transcriptional co-repressor protein. In addition to other, still largely little
understood mechanisms, Rb binds and inactivates transcription factors of the E2F type and forms transcriptional repressor complexes with histone-deacetylases (HDAC) (Zhang, H. S. et al. (2000). Exit from Gl and S Phase of the Cell Cycle is Regulated by Repressor Complexes Containing HDAC-Rb-hSWI/SNF and Rb-hSWI/SNF. Cell 101, 79-89). By the phosphorylation of Rb by CDKs, bonded E2F transcription factors are released and result in transcriptional activation of genes, whose products are required for the DNA synthesis and the progression through the S phase. In addition, the Rb-phosphorylation brings about the breakdown of the Rb-HDAC complexes, by which additional genes are activated. The phosphorylation of Rb by CDK's is to be treated as equivalent to exceeding the "restriction points." For the progression through the S phase and its completion, the activity of the CDK2/CycE and CDK2/CycA complexes is necessary, e.g., the activity of the transcription factors of the E2F type is turned off by means of phosphorylation by CDK2/CycA as soon as the cells are entered into the S phase. After replication of DNA is complete, the CDK1 in the complex with CycA or CycB controls the entry into and the passage through phases G2 and M (Fig. 1).
According to the extraordinary importance of the cell-division cycle, the passage through the cycle is strictly regulated and controlled. The enzymes that are necessary for the progression through the cycle must be activated at the correct time and are also turned off again as soon as the corresponding phase is passed. Corresponding control points ("checkpoints") stop the progression through the cell cycle if DNA damage is detected, or the DNA replication or the creation of the spindle device is not yet completed.
The activity of the CDKs is controlled directly by various mechanisms, such as synthesis and degradation of cyclins, complexing of the CDKs with the corresponding
cyclins, phosphorylation and dephosphorylation of regulatory threonine and tyrosine radicals, and the binding of natural inhibitory proteins. While the amount of protein of the CDKs in a proliferating cell is relatively constant, the amount of the individual cyclins oscillates with the passage through the cycle. Thus, for example, the expression of CycD during the early Gl phase is stimulated by growth factors, and the expression of CycE is induced after the "restriction points" are exceeded by the activation of the transcription factors of the E2F type. The cyclins themselves are degraded by the ubiquitin-mediated proteolysis. Activating and inactivating phosphorylations regulate the activities of the CDKs, for example phosphorylate CDK-activating kinases (CAKs) Thrl60/161 of the CDK1, while, by contrast, the families of Weel/Mytl inactivate kinases CDK1 by phosphorylation of Thrl4 and Tyrl5. These inactivating phosphorylations can be destroyed in turn by cdc25 phosphatases. The regulation of the activity of the CDK/Cyc complexes by two families of natural CDK inhibitor proteins (CKIs), the protein products of the p21 gene family (p21, p27, p57) and the pl6 gene family (pl5, pl6, plS, pl9) is very significant. Members of the p21 family bind to cyclin complexes of CDKs 1,2,4,6, but inhibit only the complexes that contain CDK1 or CDK2. Members of the pi 6 family are specific inhibitors of the CDK4 and CDK6 complexes.
The plane of control point regulation lies above this complex direct regulation of the activity of the CDKs. Control points allow the cell to track the orderly sequence of the individual phases during the cell cycle. The most important control points lie at the transition from Gl to S and from G2 to M. The Gl control point ensures that the cell does not initiate any DNA synthesis unless it has proper nutrition, interacts correctly with other cells or the substrate, and its DNA is intact. The G2/M control point ensures the
complete replication of DNA and the creation of the mitotic spindle before the cell enters into mitosis. The Gl control point is activated by the gene product of the p53 tumor suppressor gene. p53 is activated after detection of changes in metabolism or the genomic integrity of the cell and can trigger either a stopping of the cell cycle progression or apoptosis. In this case, the transcriptional activation of the expression of the CDK inhibitor protein p21 by p53 plays a decisive role. A second branch of the Gl control point comprises the activation of the ATM and Chkl kinases after DNA damage by UV light or ionizing radiation and finally the phosphorylation and the subsequent proteolytic degradation of the cdc25A phosphatase (Mailand, N. et al. (2000). Rapid Destruction of Human cdc25A in Response to DNA Damage. Science 288, 1425-1429). A shutdown of the cell cycle results from this, since the inhibitory phosphorylation of the CDKs is not removed. After the G2/M control point is activated by damage of the DNA, both mechanisms are involved in a similar way in stopping the progression through the cell cycle.
The loss of the regulation of the cell cycle and the loss of function of the control points are characteristics of tumor cells. The CDK-Rb signal path is affected by mutations in over 90% of human tumor cells. These mutations, which finally result in inactivating phosphorylation of the RB, include the over-expression of D- and E-cyclins by gene amplification or chromosomal translocations, inactivating mutations or deletions of CDK inhibitors of the pi 6 type, as well as increased (p27) or reduced (CycD) protein degradation. The second group of genes, which are affected by mutations in tumor cells, codes for components of the control points. Thus p53, which is essential for the Gl and G2/M control points, is the most frequently mutated gene in human tumors (about 50%).
In tumor cells that express p53 without mutation, it is often inactivated because of a greatly increased protein degradation. In a similar way, the genes of other proteins thai are necessary for the function of the control points are affected by mutations, for example ATM (inactivating mutations) or cdc25 phosphatases (over-expression).
Convincing experimental data indicate that CDK2/Cyc complexes occupy a decisive position during the cell cycle progression: (1) Both dominant-negative forms of CDK2, such as the transcriptional repression of the CDK2 expression by anti-sense oligonucleotides, produce a stopping of the cell cycle progression. (2) The inactivation of the CycA gene in mice is lethal. (3) The disruption of the function of the CDK2/CycA complex in cells by means of cell-permeable peptides resulted in tumor cell-selective apoptosis (Chen, Y. N. P. et al. (1999). Selective Killing of Transformed Cells by Cyclin/Cyclin-Dependent Kinase 2 Antagonists. Proc. Natl. Acad. Sci. USA 96, 4325-4329).
Changes of the cell cycle control play a role not only in carcinoses. The cell cycle is activated by a number of viruses, both by transforming viruses as well as by non-transforming viruses, to make possible the replication of viruses in the host cell. The false entry into the cell cycle of normally post-mitotic cells is associated with various neurodegenerative diseases. The mechanisms of the cell cycle regulation, their changes in diseases and a number of approaches to develop inhibitors of the cell cycle progression and especially the CDKs were already described in a detailed summary in several publications (Sielecki, T. M. et al. (2000). Cyclin-Dependent Kinase Inhibitors: Useful Targets in Cell Cycle Regulation. J. Med. Chem. 43, 1-18; Fry, D. W. & Garrett, M. D. (2000). Inhibitors of Cyclin-Dependent Kinases as Therapeutic Agents for the Treatment
of Cancer. Curr. Opin. Oncol. Endo. Metab. Invest. Drugs 2, 40-59; Rosiania, G. R. & Chang, Y. T. (2000). Targeting Hyperproliferative Disorders with Cyclin-Dependent Kinase Inhibitors. Exp. Opin. Ther. Patents 10, 215-230; Meijer, L. et al. (1999). Properties and Potential Applications of Chemical Inhibitors of Cyclin-Dependent Kinases. Pharmacol. Ther. 82, 279-284; Senderowicz, A. M. & Sausville, E. A. (2000). Preclinical and Clinical Development of Cyclin-Dependent Kinase Modulators. J. Natl. Cancer Inst. 92, 376-387).
To use the compounds according to the invention as pharmaceutical agents, the latter are brought into the form of a pharmaceutical preparation, which in addition to the active ingredient for enteral or parenteral administration contains suitable pharmaceutical, organic or inorganic inert carrier materials, such as, for example, water, gelatin, gum arabic, lactose, starch, magnesium stearate, talc, vegetable oils, polyalkylene glycols, etc. The pharmaceutical preparations can be present in solid form, for example as tablets, coated tablets, suppositories, or capsules, or in liquid form, for example as solutions, suspensions, or emulsions. Moreover, they optionally contain adjuvants, such as preservatives, stabilizers, wetting agents or emulsifiers; salts for changing the osmotic pressure or buffers. These pharmaceutical preparations are also subjects of this invention.
For parenteral administration, especially injection solutions or suspensions, especially aqueous solutions of active compounds in polyhydroxyethoxylated castor oil, are suitable.
As carrier systems, surface-active adjuvants such as salts of bile acids or animal or plant phospholipids, but also mixtures thereof, as well as liposomes or their components can also be used.
For oral administration, especially tablets, coated tablets or capsules with talc and/or hydrocarbon vehicles or binders, such as, for example, lactose, corn or potato starch, are suitable. The administration can also be cairied out in liquid form, such as, for example, as a juice, to which optionally a sweetener is added.
Enteral, parenteral and oral administrations are also subjects of this invention. The dosage of the active ingredients can vary depending on the method of administration, age and weight of the patient, type and severity of the disease to be treated and similar factors. The daily dose is 0.5-1000 mg, preferably 50-200 mg, whereby the dose can be given as a single dose to be administered once or divided into two or more daily doses.
Subjects of this invention also include the use of compounds of general formula I for the production of a pharmaceutical agent for treating cancer, auto-immune diseases, cardiovascular diseases, chemotherapy agent-induced alopecia and mucositis, infectious diseases, nephrological diseases, chronic and acute neurodegenerative diseases and viral infections, whereby cancer is defined as solid tumors and leukemia; auto-immune diseases are defined as psoriasis, alopecia and multiple sclerosis; cardiovascular diseases are defined as stenoses, arterioscleroses and restenoses; infectious diseases are defined as diseases that are caused by unicellular parasites; nephrological diseases are defined as glomerulonephritis; chronic neurodegenerative diseases are defined as Huntington's disease, amyotrophic lateral sclerosis, Parkinson's disease, AIDS dementia and
Alzheimer's disease; acute neurodegenerative diseases are defined as ischemias of the brain and neurotraumas; and viral infections are defined as cytomegalic infections, herpes, hepatitis B or C, and HIV diseases.
Subjects of this invention also include pharmaceutical agents for treating the above-cited diseases, which contain at least one compound according to general formula I, as well as pharmaceutical agents with suitable formulation substances and vehicles.
The compounds of general formula I according to the invention are, i.a., excellent inhibitors of the cyclin-dependent kinases, such as CDKl, CDK2, CDK3, CDK4, CDK5, CDK6, CDK7, CDK8 and CDK9, as well as the glycogen-synthase-kinase (GSK-3(3).
If the production of the starting compounds is not described, these compounds are known or can be produced analogously to known compounds or to processes that are described here. It is also possible to perform all reactions that are described here in parallel reactors or by means of combinatory operating procedures.
The isomer mixtures can be separated into the enantiomers or E/Z isomers according to commonly used methods, such as, for example, crystallization, chromatography or salt formation.
The production of the salts is carried out in the usual way by a solution of the compound of formula I being mixed with the equivalent amount of or excess base or acid, which optionally is in solution, and the precipitate being separated or the solution being worked up in the usual way.
Production of the Compounds According to the Invention
The following examples explain the production of the compounds according to the invention, without the scope of the claimed compounds being limited to these examples.
The compounds of general formula I according to the invention can be produced according to the following general diagrams of the process:
Diagram 1
(Diagram 1,2 & 3 Removed)
Example 1
Production of 5-Bromo-N2-(4-difluoromethylthiophenyl)-N4-2-propynyl-2,4-pyrimidine diamine (carried out according to process diagram 1) (compound 23).
245 mg (1 mmol) of 2-chloro-4-2-propynylaminopyrimidine is dissolved in 2 ml of acetonitrile, and a suspension of 4-(difluoromethylthio)-aniline hydrochloride [produced from 352 mg (2 mmol) of 4-(difluoromethylthio)-aniline, 1 ml of acetonitrile and 0.5 ml of aqueous HC1 (4M in dioxane)] is added at room temperature. Then, the reaction mixture is refluxed overnight under N2 atmosphere. After cooling, the mixture is filtered, the remaining solid phase is washed with H2O and dried. A yield of 328 mg (85%) of the product can be expected
(Table Removed)
Example 2
Production of 5-bromo-N-(3 -(oxiranylmethoxy)phenyl)-2-(2-propynyloxy)-2-pyrimidinamine (compound 51) and carried out according to process diagram 2.
1.55 g (4.9 mmol) of compound 20 is dissolved in 5.5 ml of epibromohydrin, and 1.38 g of K2CO3 and 65 mg of tetrabutylammonmm bromide are added to it. The reaction mixture is stirred under nitrogen atmosphere at 100°C for 1 hour. After ethyl acetate is added, the resulting precipitate is collected and recrystalhzed from ethanol. The product yield is 1.15 g (62%) as a white powder.
(Table Removed)
Substance 40 is produced analogously to Example 2.
(Table Removed)
Example 3
Production of 1 -(4-((5-bromo-4-(2-propynyloxy)-pyrimidin-2-yl)-amino)phenoxy)-3-(4-phenylpiperazin-l-yI)-2-propanoI (compound 41).
0.2 ml of a 0.5 M 4-phenylpiperazine solution in DMPU is added to a solution of 19 mg (0.05 mmol) of substance 51 in N,N'-dimethylpropylurea (DMPU). The reaction mixture is kept for 18 hours at a temperature of 80°C. After cooling, 3.5 ml of tertiary butyl methyl ether is added, and the organic phase is extracted 5 times with 1.5 ml of H2O and then evaporated in a vacuum. The remaining residue is chromatographed on 1.7 g (15 \xM) of Lichrosphere Si60 (gradient: dichloromethane/hexane 1:1 to DCM and then dichloromethane/methanol 99:1 to 93:7). A product yield of 17 mg (64%) is achieved.
(Formula Removed)
Similarly produced are also the following compounds:
(Table Removed)
The following compounds were produced similarly to the described examples.
(Table Removed)
The following compounds were produced analogously to the described synthesis processes according to Diagram 1 or 2:
All NMR spectra are measured in the indicated solvent or in DMSO.
(Table Removed)
Compounds Nos. 159, 160, 161, 163, 167, 168, 170, 174, 175,191, 192,203 and 204 that are identified with *) can be produced by the process variants that are described under Example No. 295.
Example 258
Production of 4-(5-bromo-4-morpholin-4-yl-pyrimidin-2-ylamino)-
phenylsulfonamide
(Formula Removed)
202 mg (0.60 mmol) of the compound of Example No. 122 is mixed with 1 ml of water and 0.2 g (1.2 mmol) of bromine and stirred at room temperature. After 24 hours, 0.2 g (1.2 mmol) of bromine is added again, and it is stirred for another 24 hours at room temperature. The solvent is evaporated by means of underpressure, and the remaining residue is purified by chromatography (Flashmaster II, DCM/MeOH 7:3). 17 mg (0.04 mmoI,7%) of the product is obtained as a white solid.
(Table Removed)
Analogously to the process for the production of the intermediate products described under Example 6.0 (see Production of Intermediate Products, page 186), the following compounds were also produced:
(Formula Removed)
Analogously to production example 1, the following compounds were also produced:
(Table Removed)
According to the production variants below, the following compounds are also synthesized:
(Formula Removed)
30 mg (0.0678 mmol) of compound No. 277 is dissolved in 1 ml of methanol/tetrahydrofuran 1:1. After the addition of ~10 mg of sodium borohydride,106
stirring is continued for 2 hours. Then, it is quenched with ≈3-4 drops of glacial acetic acid while being cooled, and it is concentrated by evaporation. Below, the crude product is taken up with a little water, suctioned off, rewashed with acetonitrile and dried in a vacuum at 60°C. Yield: 21 mg (70% of theory) of the desired compound.
(Table Removed)
Example 290
Production of the Oxime Ether-Pyrimidine Compounds of General Formula I
The production of the oxime ether is carried out according to the following general reaction diagram:

(Formula Removed)
R8 and R9 have the meanings that are indicated in general formula I.
Production of Example 290
(Formula Removed)
50 mg (0.12 mmol) of compound No. 282, 34 mg of hydroxylammonium chloride and 150 mg of pulverized KOH are refluxed for 2 hours in 2 ml of ethanol. Then, it is poured onto ice water and acidified with glacial acetic acid, extracted 3 times with
dichloromethane/isopropanol 4:1, dried with magnesium sulfate and concentrated by evaporation. The residue is suspended with acetonitrile, suctioned off and dried at 60°C. Yield: 28 mg (54% of theory) of the desired compound.
Mass
ESI:
MH+ 429 (29%)
371 (61%)
289 (91%)
Similarly produced were also the following compounds:

(Table emoved)
Example 294 Reductive Amination
(Formula Removed)
50 mg (0.12 mmol) of compound No. 282 and 7.5 mg (0.132 mmol) of cyclopropylamine are dissolved in 2 ml of 1,2-dichloroethane. After 9.1 mg (0.144 mmol) of sodium cyanoborohydride is added, it is allowed to stir for 12 more hours. Then, it is diluted with dichloromethane/isopropanol 4:1, washed 2 x with water, dried with magnesium sulfate and concentrated by evaporation. The residue is chromatographed on silica gel with dichloromethane/methanol 95:5. Yield: 18 mg (33% of theory) of the desired compound.
(Table Removed)
Produced similarly are also compounds Nos. 159, 160, 161, 163, 167, 168, 170, 174, 175, 191, 192, 203 and 204.
Examples 295 and 296
Produced similarly to Example 1 are also the following two compounds:
(Table Removed)
Production of the Sulfonamides of General Formula I
(Formula Removed)
0.2 mmol of sulfonic acid fluoride is introduced into the reactor of a synthesizer. 1.0 ml of solvent, preferably 2-butanol, is added. 0.2 ml (0.2 mmol) of DMAP -dissolved in a solvent, for example DMSO or 2-butanol - and 0.2 ml (0.2 mmol) of the amine, dissolved in 2-butanol, are added in succession via a pipette. The reaction mixture is then stirred for 20 hours at 80°C. After the reaction is completed, the crude product is pipetted off, and the reactor is rewashed with 1.0 ml of THF. The solution of the crude product is then concentrated by evaporation and purified by HPLC.
The following compounds were produced:
(Table Removed)
produced according to the process that is described under Sulfonamides
Production of the Pyrimidine-Sulfonyl Fluorides of General Formula I
The production of the pyrimidine-sulfonic acid fluorides is carried out analogously to the production of the sulfonic acid amides.
(Table Removed)
Separation of Diastereomer Mixtures of the Compounds According to the Invention
Separation in the Example of the Diastereomer Mixture of Compound No. 274

(Formula Removed)
Diastereomerengemisch = Diastereomer mixture
Chirale HPLC = Chiral HPLC
The diastereomer mixture was separated into the two corresponding racemates (A and B) by means of HPLC. Conditions:
Column: Kromasil C1 8 (5µm) 150 x 4.6 mm
Eluant: 25% acetonitrile/water with 1 ml of NH3/1;
Flow: 1.0 ml/min
Detection: PDA 300 nm
Retention times: Racemate A - 11.6 minutes
Racemate B - 12.4 minutes
(Table Removed)
Below, racemates A and B in each case were separated by means of chiral HPLC. Conditions:
Column: Chiralpak AD (10 µm) 250 x 4.6 mm
Eluant: Hexane/ethanol 80:20
Flow: l.Oml/min
Detection: PDA 3 00 nm
Retention times: Enantiomer Al - 16.6 minutes
Enantiomer A2 - 19.6 minutes Enantiomer Bl - 16.0 minutes Enantiomer B2 - 17.8 minutes
Production of the intermediate stages preferably used for the synthesis of the compounds of general formula I according to the invention.
Example 1.0
Production of N-(2-chloro-5-fluoro-4-pyrimidinyl)-N-2-propynylamine
11.1 g (66 mmoi) of 2,4-dichloro-5-fluoropyrimidine is dissolved in 60 ml of
acetonitrile, and 10.2 ml (73 mmoi) of triethylamine and 6.0 ml (86 mmoi) of
propynylamine are added. The reaction mixture is stirred overnight at room temperature
and then poured into water. The mixture is extracted by means of ethyl acetate, the
combined organic phases are dried on MgSO2, and the solvent is evaporated by means of
underpressure. After the remaining material is recrystallized with diisopropyl
ether/hexane, the yield is 10.6 g (87% of theory) of the product.
(Table Removed)
The 4-(diaminocyclohexyl) derivatives that are described below are synthesized via reductive animations of the described keto derivative with use of triacetoxy borohydride (Abdel-Magid, Carson, Harris, Maryanoff, Sha, J. Org. Chem. 1996, 61, 3849). The keto derivative is obtained by TPAP oxidation (Griffith, Ley, Aldrichimica Acta 1990, 23, 13) of the corresponding alcohol.
Similarly produced are also the following intermediate compounds:
(Table Removed)
Example 2.0
Production of 5-Bromo-2-chloro-4-(4,4,4-trifluorobutoxy)pyrimidine
3.19 g (14 mmol) of 5-bromo-2,4-dichloropyrimidine is mixed with 8.06 g (63 mmol) of 4,4,4-trifluorobutanol, and 0.74 ml (8.4 mmol) of trifluoromethanesulfonic acid is slowly added to it. The reaction mixture is stirred overnight at room temperature and then poured into water. The mixture is extracted by means of ethyl acetate, the combined organic phases are dried on MgSO2, and the solvent is evaporated by means of underpressure. The product is always contaminated with varying amounts of 2,4-bisalkoxypyrimidine. The remaining material is therefore purified by means of gradient chromatography with silica gel as a carrier medium (eluant: hexane and hexane/ethyl acetate at a 9:1 ratio). This process results in a yield of 1.70 g (38%) and also yields 1.93 g (34%) of 5-bromo-2,4-bis-(4,4,4-trifluorobutoxy)pyrimidine (starting compound).
Chromatography: H to H/EA 9:1

(Formula Removed)
Similarly produced are also the following compounds:
(Table Removed)
Analogously to process examples 1 and 2, the following intermediate products are also produced:
(Table Removed)
Example 3.0
Production of Amines
4.5 g (20 mmol) of 2-bromobutyraldehyde diethyl acetyl (Pfaltz-Bauer Company) and 5.2 g (80 mmol) of sodium azide are stirred for 5 days in 15 ml of DMF at 100°C. Then, it is poured onto cold dilute sodium bicarbonate solution, extracted 3 x with ether, the organic phase is dried with magnesium sulfate and concentrated by evaporation: raw yield 1.87 g (50% of theory).
936 mg of the crude product is dissolved in 50 ml of methanol, mixed with palladium on carbon (10%) and stirred for 12 hours under H2 atmosphere. After the catalyst is filtered off and after concentration by evaporation, 457 mg (57% of theory) of the desired amine remains.
(Table Removed)
148 mg (0.5 mmol) of intermediate product compound 1.18 is dissolved in 1 ml of glacial acetic acid. At room temperature, 0.5 ml of 1N hydrochloric acid is added, and
it is stirred for 12 hours. For working-up, it is poured onto ice water and carefully neutralized with pulverized sodium bicarbonate. Then, it is extracted 3 x with ethyl acetate, the organic phase is dried with magnesium sulfate and concentrated by evaporation, crude product 104 mg (83% of theory) of the aldehyde of compound 4.0. The crude product can be used without further purification.
(Table Removed)
Example 5.0
Production of Ketones
(Formula Removed)
100 mg (0.356 mmol) of compound 6.0 and 126 mg of N-methylmorpholine-N-oxide are dissolved in 5 ml of dichloromethane and stirred for 10 minutes with pulverized molecular sieve (4 A). Then, 6 mg of tetrapropylammonium perruthenate is added, and it is stirred for 4 more hours at room temperature. After concentration by evaporation, it is chromatographed on silica gel (hexane/ethyl acetate 4:1 > 2:1). Yield: 75 mg (76% of theory) of the ketone of compound 5.0.
(Table Removed)
Example 6.0
Production of Alcohols
(Formula Removed)
265 mg (1 mmol) of compound 4.2 is dissolved in 20 ml of tetrahydrofuran. While being cooled in an ice bath, 5 equivalents of methylmagnesium bromide (3 molar solution in ether) is added in portions. Then, it is stirred for 3 more hours at room temperature and then quenched with water while being cooled. Then, it is mixed with ammonium chloride solution, extracted 3 x with ethyl acetate, the organic phase is dried with magnesium sulfate and concentrated by evaporation. Flash chromatography (hexane/ethyl acetate 2:1) yields 213 mg (76% of theory) of the alcohol of compound 6.0.
(Formula Removed)
Similarly produced are also the following intermediate products:
(Formula Removed)
Subjects of this invention are thus also compounds of general formula la
(Formula Removed)
in which
D stands for halogen, and X, R1, and R2 have the meanings that are indicated
in general formula (I).
Those intermediate products of general formula la, in which D stands for chlorine and X, R1 and R2 have the meanings that are indicated in the general formula, are especially valuable.
Another subject of this invention are also those compounds that fall under industrial property right DE 4029650, whose action is in the fungicide range and which are not described as CDK inhibitors, however, and also their use for treating cancer is not described.
(Table Removed)
The invention thus relates in addition to pharmaceutical agents that comprise a compound of general formula I in which
R1 stands for halogen or d -C3-alkyl
X stands for oxygen or -NH,
A stands for hydrogen
B stands for hydroxy, -CO-alkyl-R7, -S-CHF2, -S-(CH2)nCH(OH)CH2N-
R3R4, -S-CF3, or-CH-(OH)-CH3, or
A and B, independently of one another, can form a group
(Formula Removed)
R2, R3, R4, R7 and R8 have the meanings that are indicated in general formula I, as well as isomers, diastereomers, enantiomers and salts thereof.
The agents according to the invention can also be used for treating cancer, autoimmune diseases, cardiovascular diseases, chemotherapy agent-induced alopecia and mucositis, infectious diseases, nephrological diseases, chronic and acute neurodegenerative diseases and viral infections, whereby cancer [is defined as] solid tumors and leukemia; auto-immune diseases [are defined as] psoriasis, alopecia and multiple sclerosis; cardiovascular diseases [are defined as] stenoses, arterioscleroses and restenoses; infectious diseases [are defined as] diseases that are caused by unicellular parasites; nephrological diseases [are defined as] glomerulonephritis; chronic
neurodegenerative diseases [are defined as] Huntington's disease, amyotrophic lateral sclerosis, Parkinson's disease, AIDS dementia and Alzheimer's disease; acute neurodegenerative diseases [are defined as] ischemias of the brain and neurotraumas; and viral infections [are defined as] cytomegalic infections, herpes, hepatitis B or C, and HIV diseases.
The following examples describe the biological action of the compounds according to the invention without limiting the invention to these examples.
Example 1
CDK2/CycE Kinase Assay
Recombinant CDK2- and CycE-GST-fusion proteins, purified from baculovirus-infected insect cells (Sf9), were obtained by Dr. Dieter Marine, Klinik fur Tumorbiologie [Clinic for Tumor Biology], Freiburg. Histone HIS, which was used as a kinase substrate, was purchased by the Sigma Company.
CDK2/CycE (50 ng/measuring point) was incubated for 15 minutes at 22°C in the presence of various concentrations of test substances (0 urn, as well as within the range of 0.01-100 µm) in assay buffer [50 mmol of tris/HCl pH 8.0, 10 mmol of MgCl2, 0.1 mmol of Na ortho-vanadate, 1.0 mmol of dithiothreitol, 0.5 urn of adenosine triphosphate (ATP), 10 µg/measuring point of histone IIIS, 0.2 µCi/measuring point of 33P-gamma ATP, 0.05% NP40, 12.5% dimethyl sulfoxide]. The reaction was stopped by adding EDTA solution (250 mmol, pH 8.0, 14 µl/measuring point).
From each reaction batch, 10 µl was applied to P30 filter strips (Wallac Company), and non-incorporated 33P-ATP was removed by subjecting the filter strips to three washing cycles for 10 minutes each in 0.5% phosphoric acid. After the filter strips were dried for one hour at 70°C, the filter strips were covered with scintillator strips (MeltiLex™ A, Wallac Company) and baked for one hour at 90°C. The amount of incorporated 33P (substrate phosphorylation) was determined by scintillation measurement in a gamma-radiation measuring device (Wallac).
Example 2 Proliferation Assay
Cultivated human tumor cells (as indicated) were flattened out at a density of 5000 cells/measuring point in a 96-hole multititer plate in 200 ul of the corresponding growth medium. After 24 hours, the cells of one plate (zero-point plate) were colored with crystal violet (see below), while the medium of the other plates was replaced by fresh culture medium (200 ul), to which the test substances were added at various concentrations (0 um, as well as in the range of 0.01-30 um; the final concentration of the solvent dimethyl sulfoxide was 0.5%). The cells were incubated for 4 days in the presence of test substances. The cell proliferation was determined by coloring the cells with crystal violet: the cells were fixed by adding 20 ul/measuring point of a 11 % glutaric aldehyde solution for 15 minutes at room temperature. After three washing cycles of the fixed cells with water, the plates were dried at room temperature. The cells were colored by adding 100 µl/measuring point of a 0.1% crystal violet solution (pH was set at 3 by adding acetic acid). After three washing cycles of the colored cells with water, the plates were dried at room temperature. The dye was dissolved by adding 100 ul/measuring point of a 10% acetic acid solution. The extinction was determined by photometry at a wavelength of 595 nm. The change of cell growth, in percent, was calculated by standardization of the measured values to the extinction values of the zero-point plate (=O%) and the extinction of the untreated (0 um) cells (=100%).
The results of Examples 1 and 2 are cited in the following tables.
(Table Removed)
Proof of Superiority of the Compounds According to the Invention Compared to the Known Compounds
To prove the superiority of the compounds according to the invention compared to the known compounds, the compounds according to the invention were compared to known reference compounds and structurally-similar known compounds in the enzyme test. The result is cited in the following table:
(Table Removed)
It can be seen from the results of the table that both in the enzyme test and in the cell test, the compounds according to the invention have significantly higher activities in the enzyme and in the MCF-7 cells than the compounds that are known from the prior art. The compounds according to the invention are thus far superior to the known compounds.








WE CLAIM:
1. CDK-inhibitory pyrimidine compounds of general formula I,
(Formula Removed)
in which
R1 stands for halogen,
R2 stands for -CH(CH3)-(CH2)n-R5, -CH-(CH2OH)2, -(CH2)nR7,
-CH(C3H7)-(CH2)„-R5, -CH(C2H5)-(CH2)n-R5, -CH2-CN, -CH(CH3)
COCH3, -CH(CH3)-C(OH) (CH3)2, -CH (CH(OH) CH3)OCH3,
-CH(C2H5)CO-R5, C2-C4-alkinyl, - (CH2)n-COR5, -(CH2)n-CO-C1-
C6-alkyi, - (CH2) n-c(OH) (CH3) -phenyl, -CH(CH3)-C (CH3) -R5,
-CH{CH3)-C(CH3) {C2H3)-R5, -CH(OCH3)-CH2-R5, -CH2-CH{OH) -R5,
-CH (OCH3) -CHR5-CH3, -CH (CH3) -CH (OH) -CH2-CH=CH2,
-CH{C2Hs)-CH{OH)-(CH2)n-CH3/ -CH (CH3) -CH{OH) - {CH2)n-CH3,
-CH(CH3)-CH(OH)-CH(CH3)2, (CH2OAC52, -(CH2)„-R6,
-(CH2)n-(CF2)n-CF3, -CH (CH2)n-R5)2, -CH(CH3)-C6-NH2,
-CH{CH2OH)-phenyl, -CH(CH2OH)-CH(OH) - (CH2}nR5-,
-CH (CH2OH) -CH (OH) -phenyl, -CH (CH2OH) -C2H4-R5,
-(CH2)n-CsC-C(CH3)=CH-COR5, -CH (Ph) - (CH2) nR5, - {CH2)n-COR5,
-{CH2)nPO3(R5}2, -(CH2)n-COR5f -CH ((CH2) „OR5) CO-R5,
-(CH2)nCONHCH((CH2)nR3)2, - (CH2) nNH-COR5, -CH(CH2)nR3-
(CH2)flC3-C10-cycloalkyl, -(CH2)n-C3-C10-cycloalkyl, C3-C10-cycloalkyl; C1-C6-alkyl, C3-C10-cycloalkyl, -(CH2)n-O-(CH2)n-R5r -(CH2)n-NR3R4 that is optionally substituted in one or more places in the same way ox differently with hydroxy, C1-C6-alkyl or the group -CO0NH(CH2)nCH3 or


-NR3R4, -CH(C3H7)-(CH2)n-OC(O)-(CH2)n-CH3-, -(CH2)n-R5r
-C(CH3)2-(CH2)n-R8, -C(CH2}n(CH3}-(CH2)nR5, -C(CH2)n-
(CH2)nR5, -CH(t-butyl)-(CH2)n-R5, -CCH3(C3H7)-(CH2)nR5,
-CH(C3H?)-(CH2)n-R5, -CH(C3H7)-COR5, -CH(C3H7)-
(CH2)a-OC(O)-NH-Ph, -CH((CH2)n(C3H2))-(CH2)aR5, -CH(C3H7)-
(CH2)n-OC(O)-NH-Ph(OR3)3, -NR3R4, -NH-(CH2)n-NR3R4,
R5- (CH2) n-C*H-CH (R5) - (CH2) n-R5, - (CH2) „-CO-NH- (CH2) 3-CO-R5,
-OC(O)NH-C1-C6-alkyl or -(CH2)a-C0-NH-{CH2)a-CH-
((CH2)nR5)2, or for C3-Cl0-cycloalkyl, which is substituted with the group












(Formula Removed)




X stands for oxygen or for the group -NH-, -N(C1-C3-alkyl) or
R2 stands for the group





(Formula Removed)






x and R2 together form a group

(Formula Removed)
A stands for the group -SO2R7, -SO2-C2H4-OH, -SO2CF3 or -SO2-NR3R4,
B stands for hydrogen, hydroxy or C1-C3-alkyl,
or
A and B together can form a group

(Formula Removed)
R3 and R4, in each case independently of one another, stand for hydrogen, phenyl, benzyloxy, C1-C12-alkyl, C1-C6-alkoxy, C2-C4-alkenyloxy, C3-C6-cycloalkyl, hydroxy, hydroxy-C1-C6-alkyl, dihydroxy-C1-C6-alkyl, heteroaryl, heterocyclo-C3-C10-alkyl, hetaroaryl-C1-C3-alkyl, C3-C6-cycloalkyl-C1-C3-alkyl that is optionally substituted with cyano, or for
C1-C6-alkyl that is optionally substituted in one or more places in the same way or differently with phenyl, pyridyl, phenyloxy, C3-C6-cycloalkyl, C1-C6-alkyl or C1-C6-alkoxy, whereby the phenyl itself can be substituted in one or more places in the same way or differently with halogen, trifluoromethyl, C1-C6-alkyl, C1-C6-alkoxy or with the group -SO2NR3R4, or for the group - (CH2)NNR3R4, -CNHNH2 or -NR3R* or for
















(Formula Removed)




which optionally can be substituted with C1-C6-alkyl,
R5 stands for hydroxy, phenyl, C1-C6-alkyl, C3-C6-cycloalkyl, benzoxy, C1-C6-alkylthio or C1-C6-alkoxy,
R6 stands for the group

(Formula Removed)

R7 stands for halogen, hydroxy, phenyl, C1-C6-alkyI, -(CH2)nOH, -NR3R4 or the group


(Formula Removed)

R8, R9 and
R10 stand for hydrogen, hydroxy, C1-C6-alkyl or for the group -(CH2)n-COOH, and
n stands for 0-6,
as well as diastereomers, enantiomers and salts thereof.

2. A pyrimidine compound of formula (I) as claimed in claim 1, wherein the said compound is:
5-Bromo-N2-[4-{2-diethylamtno-ethanesulfonyl)-phenyl]-N4-prop-2-ynyl-
pyrimidine-2,4-diamine,
N2-(3-Benzenesulfonyl-phenyl)-5-bromo-N4-prop-2ynyl-pyrimidine-2,4-
diamine,
5-Bromo-N2-[4-(morpholine-4-sulfony!)-phenyl]-N4-prop-2-ynyl-
pyrimidine-2,4-diamine,
4-[5-Fluoro-4-((R)-1-hydroxymethyl-2-methyl-propylamino)-pyrimidin-2-
ylamino]-benzenesulfonamide,
4-[4-((R)-1-Hydroxymethyl-2-methyl-propylamino)-5-iodo-pyrimidin-2-
ylamino]-benzenesulfonamide,
4-(5-Fluoro-4-prop-2-ynyiamino-pyrimidtn-2-yIamino)-
benzenesulfonamide,
4-{5-Bromo-4-[2-(2-oxo-2,3-dihydro-imidazol-1-yl}-ethylamino]-pyrimidin-
2-ylamino}-benzenesu)fonamide,
4-[5-Bromo-4-(2,2,3,3,3-pentafluoro-propoxy)-pyrimidin-2-ylamino]-
benzenesulfonamide,
4-[[5-Bromo-4-(1l3-bisacetoxy-2-propyloxy)-2-pyrimidinylJamino]-
benzolsulfonamide,
4-[5-Bromo-4-{2-hydroxy-1-hydroxymethyl-ethoxy)-pyrimidln-2-ylamino]-
benzenesulfonamide,

(S)-2-[5-Bromo-2-(4-sulfamoyl-phenylamino)-pyrimidin-4-ylamino]-
propionamide,
5-Bromo-N4-prop-2-ynyt-N2-(3-trifluoromethanesulfonyl-phenyl)-
pyrimidine-2,4-diamine,
3-(5-Bromo-4-prop-2-ynylamino-pyrimidin-2-ylamino)-
benzenesulfonamide,
3-{5-Bramo-4-prap-2-ynylamino-pyrimidin-2-y}amino)-N-butyl-
benzenesulfonamide,
2-[3-(5-Bramo-4-prop-2-ynylamino-pyrimidin-2-ylamino)-benzenesulfonyl]-
ethanol,
4-(5-Bromo-4-prop-2-ynylamino-pyrimidin-2-ylamino)-
benzenesulfonamide,
4-(5-Chloro-4-prop-2-ynylamino-pyrimidin-2-yiamino}-
benzenesutfonamide,
2-[5-Bromo-2-{4-sulfamoyl-phenyIamino)-pyrimidin-4-ylannino]-butyric add
methyl ester,
4-[5-BromcK4^(R}-1-hydroxymethyH2-nnethyl-propy!amino)-pyr!rnidin-2»yl
amino]-benzenesulfonarnide,
2-{5-Bromo-2-[3-(2-hydroxy-ethanesulfonyl}-phenylamino]-pyrimidin-4-
ylamino]-propane-1,3-dioi,
4-[5-Bramo-4-{2-hydroxy-1-hydraxymethyl-ethylarnlno)-pyrirriidin-2-
ylamino]-benzenesutfonamide,
4-[5-Bromo-4-(cyclopropy!methyl-amino)-pyrimidfri-2-ylamino]-
benzenesuffonamide,
4-[5-Bromo-4-{(R)-1-hydroxymethyl-2-methyl-propylamino)-pyrirnidin-2-yl
amino]-N-(2-hydroxy-ethyl)-benzenesulfonamideI
4-[5-BromcH4^(S)-2-methoxy-1-methyl-ethylamino)-pyrimi din-2-ylamino]-
benzenesulfonainide,
2-{3(5-Bromo-4-((S)-2-methoxy-1-methyl-ethylamino)-pyrimJdJn-2-
ylamino]-benzenesulfonylj-ethanol,
243-[5-Bromo-4-(2-morpholin-4-yl-ethylamino)-pyrimidin-2-yiamino]-
benzenesulfonyl}-ethanoi,

4-[5-Bromo-4-{2-morpholin-4-yl-ethylamino)-pyrimidin-2-ylamino]-
benzenesulfonamide,
4-[5-Bromo-4-(4,4,4-trifluoro-butoxy)-pyrimidin-2-ylamino]-
benzenesulfonamide,
4-[6-Bromo-4-(2-ethoxy-1-ethoxymethyl-ethoxy)-pyrimidin-2-ylamino]-
benzenesulfonamide,
4-[5-Bromo-2-(4-sulfamoyl-phenylamino)-pyrimidin-4-ylamino]-butyric
acid,
4-[5-Bromo-4-((R)-1-hydroxymethyl-2-methyl-pro pylamino)-pyrimidin-2-yl
amino]-N-(2-hydroxy-ethyl)-benzenesulfonamide,
(R)-2-{5-Bromo-243-(2-hydroxy-ethanesulfonyl)-phenylamino]-pyrimidin-
4-ylamino}-3-methyl-butan-1 -of,
4-[5-Bromo-4(S)-1-hydroxymethyl2-methyl-propylamino)-pyrimidin2-yl
amino]-benzenesuifonamide,
4-[5-Bromo-4-((R)-2-hydroxy-1-phenyl-etbyiarnino}-pyrirnidin-2-ylamino]-
benzenesuffonamide,
4-[5-Bromo-4-((S)-2-methoxy-1-methyl-etbylamino)-pyrimidin-2-ylamino]-
N-methyl-benzenesulfonannide,
4-[5-Bromo-4-((S)-2-methoxy-1-methyl-ethylamino)-pyrimidin-2-ylarnino]-
N,N-dimethyl-benzenesulfonamide,
5-[5-Bromo-2-(4-sulfamoy]-phenylamino)-pyrimidin-4-yIamino]-peritanoic
acid benzyl ester,
6-[5-Bromo-2-(4-sulfamoyl-phenylarnino)-pyrimidin-4-ylamino]-hexanoic
acid methyl ester,
4-(5-lodo-4-prop-2-ynylamino-pyrimidin-2-ylamino)-benzenesulfonamide
4-[5-Bromo-4-((S)-1-hydroxymethyl-3-rnethylsulfanyl-propylarnino)-
pyrimidin-2-ylamino]-benzenesulfonamide,
4-[5-Bromo-4-{(1S,2S)-2-hydroxy-1-hydroxymethyl-2-phenyl-ethylamino)-
pyrimidin-2-ylamino]-benzenesulfonamide,
4-[5-Bromo-4-((R)-2-oxo-tetrahydro-furan-3-ylamino)-pyrimidin-2-
ylamino]-benzenesulfonamide,
4-[5-Bromo-4-((S)-1-hydroxymethyl-2,2-dimethyl-propylamino)-pyrimidin-
2-ylamino]-benzenesulfonamide,


4-{3-[5-Bromo-2-(4-sulfamoyl-phenylamino)-pyrimid{n-4-ylamino]-
propionylamino}-butyric acid methyl ester,
4-(4-Morpholin-4-y(-pyrimldin-2-ylamino)-benzenesulfonamide,
6-[5-Bromo-2-(4-sulfamoyl-phenylamino)-pyrimidin-4-ylamino]-hexanoic
acid,
4-(5-Bromo-4-cyclohexylamino-pyrimidin-2-ylamino)-
benzenesulfonamide,
4-{6-[5-Bromo-2-(4-sulfamoyl-phenylamino)-pyrimidin-4-ylamino]-
hexanoylamino}-butyric acid methyl ester,
6-[5-Brorno-2-(4-sulfamoyl-phenylamino)-pyrimldin-4-ylamino]-hexanoic
acid methyl ester,
4-[5-Bromo-4-((1R,2S)-2,3-dihydroxy-l -hydroxymethyl-propylammo)-
pyrimidirv2-ylamino]-benzenesulfonamide,
4-[5-Bromo-4-((R)-2-cyclohexyl-1-hydroxymethyl-ethylamino)-pyrimidin-2-
ylamino]-benzenesulfonamide.
6-[5-Bramo-2-(4-sulfamoyl-phenylamino)-pyrimidin-4-ylamJno]-hexanoic
acid (2-hydroxy-1 -hydroxymethyl-ethyl)-amide,
4-[5-Bromo-4-((S)-2-hydroxy-1-methyl-ethylamino)-pyrimidin-2-ylamino]-
benzenesulfonamide,
4-[5-Bromo-4-(4-hydroxy-cyclohexy!amino}-pyrimidin-2-ylamino]-
benzenesulfonamide,
4^4-[(Adamantan-1-y!methyl)-aminO3-5-bromo-pyrimidin-2-yIamino}-
benzenesulfonamrde,
4-[5-Bromo-4-((R)-1-hydroxymethyl-2-methyl-propylamino)-pyrimidin-2-yl
amino]-N-methyl-benzenesulfonamide,
{R)-2-{5-Bromo-2-(4-sulfamoyl-phenylamino)-pyrimidin-4-ylamino]-3-
methyl-butyric acid,
4-(5-Bromo-4-cycIohexylamino-pyrimidin-2-ylamino}-N-(2-hydroxy-ethyl)-
benzenesulfonamide,
4-[5~Bromo-4-(2,2,3,3,4,4,4-heptafluoro-butyiamino)-pyrimidin-2-ylamino]-
N-(2-hydroxy-ethyl)-benzenesulfonamide,
4-[5-Bromo-4-({S)-2-methoxy-1-methyl-ethylarnino)-pyrimidin-2-ylamino]-
N-(2-hydroxy-ethyl)-benzenesulfonamide,


Phenyl-carbamic acid (R)-2-[5-bromo-2-(4-sulfamoyl-phenylamino)-
pyrlmidin-4-ylamino]-3-methyl-butyl ester,
(R)-2-{5-Bromo-2-{4-(2-hydroxy-ethylsulfamoyl)-phenylamino]-pyrimidin-
4-ylamino}-3-methyl-butyric acid,
(R)-2-{5-Bromo-2-[4-(2-hydroxy-ethylsulfamoyl)-phenylamino]-pyrimidin-4-
ylamino}-3-methyl-butyric acid methyl ester,
4-{5-Chloro-4-prop-2-ynylamino-pyrimidin-2-ylamino)-N-(2-hydroxy-ethyl)-
benzenesulfonamide,
4-[5-Bromo-4-(2-hydroxy-1,1 -dimethyl-ethylamino)-pyrimidin-2-ylamino]-
benzenesulfonamide,
4-[5-Bromo-4-((S)-1-hydroxymethyl-3-methyl-butylamino)-pyrimidin-2-
ylamino]-benzenesulfonamide,
4-t5-Bromo-4-(tetrahydro-pyran-4-yloxy)-pyrimidin-2-ylamino]-
benzenesulfonamide,
4-[5-Bromo-4-((1S,2S)-2-hydroxy-cyclohexylamino)-pyrirnidin-2-ylamino]-
benzenesulfonamide,
Butyl-carbamic acid 4-[5-bromo-2-(4-sulfamoyl-phenylamino)-pyrimidin-4-
ylamino]-cyclohexyl ester,
(R)-2-[5-Bromo-2-{4-rnethanesuIfonyl-phenyiamino)-pyrirnidin-4-ylaminO3-
3-methyl-butan-l-ol,
(R)-2-{5-Bromo-2-[4-(morpholine-4-sulfonyl)-phenylamino]-pyrimidin-4-
ylamino]-3-methyl-butan-l-ol,
4-[5-Bromo-4-{4-dimethylarnino-cyclahexylarnino)-pyrirnidin-2-ylarnino]-
benzenesulfonamide,
4-[5-Bromo-4-(4-dimethylamino-cyclohexylannino)-pyrimidin-2-ylamino]-
benzenesulfonamide,
445-Bromo-4-(4-piperidin-1-yl-cyclohexyiamino)-pyrirnidin-2-ylarnino]-
benzenesulfonamide,
4-[5-Bromo-4-((R)-1-hydroxymethyl-2-methyl-propylamino)-pyrimidin-2-yl
amino]-3-hydroxy-benzenesulfonamide,
4-[5-Bromo-4-(4-cycfopropylam}no-cyclohexylamino)-pyrimidin-2-ylarnino]
-benzenesulfonamide,
(R)-2-[5-Bromo-2-{3-methanesulfonyl-phenyiamino)-pyrim!din-4-ylamino]-

3-methyl-butan-l-ol,
4-{5-Bromo-4-[2-(2-ethoxy-ethoxy)-ethoxy]-pyrimidin-2-ylamino}-
benzenesulfonamide,
4-{5-Bromo-4-[4-(2-dimethylamino-ethylamino)-cyc)ohexylamino]-
pyrimidln-2-ylamino}-benz8nesulfonamide,
4-{5-Bromo-4-[4-(2-pyrrolidin-1-yl-ethylamino}-cyclohexylamino]-
pyrimidin-2-ylamino}-benzenesulfonamide,
4-{5-Bromo-4-[4-(4-hydroxy-piperid in-1-yl)-cycIohexylamino]-pyrimidin-
2-ylamino}-benzenesulfonamide,
4-{5-Bromo-2-[4-{2-hydroxy-ethylsuifamoyl)-phenylamino]-pyrimidin-4-
ylamino}-butyric acid methyl ester,
4-{5-BrDmo-4-[4-(3-hydroxy-pyrrolidin-1-yl)-cyclohexylamino]-pyrimidin-2-
ylamino]-benzenesulfonamide,
4-{5-Bromo-4-[4-{3-hydroxy-pyrrolidin-1-yl}-cyclohexylanrilno]-pyrirnidin-2-
ylamino]-benzenesulfonamide,
4-[5-Bromo-4-({R)-1-hydroxymethyl-3-methyl-butylamino)-pyrimidin-2-
ylamino]-benzenesulfonamide,
4-{5-Bromo-4-[2-(1-methyt-pyrro!idin-2-yl)-ethylamino]-pyrimidin-2-
ylammo}-benzenesulfonamide,
4-[5-Bromo-4-(piperidin-4-yloxy)-pyrimidin-2-ylamino]-
benzenesulfonamide,
4-[5-Bromo-4-{3-dimethylamino-propylamino)-pyrimidin-2-ylamino]-
benzenesulfonamide,
Acetic acid (R)-2-[5-bromo-2-{4-su!famoyl-phenylamino)-pyrimidin-4-
ylamino]-3-methyl-butyl ester,
4-[5-Bromo-4-(4-hydroxy-cyclohexyiamino)-pyrimidin-2-ylamino]-N-(2-
hydroxy-ethyl)-benzenesulfonamide,
(3,4,5-Trimethoxy-phenyl)-carbaniicacid (R)-2-[5-bromo-2-(4-sulfamoyi-
phenylamino)-pyrimidin-4-ylamino]-3-methyl-butyl ester,
4-(5-8romo-4-cycloheptylannino-pyrimidin-2-ylamino)-
benzenesulfonarnide,
4-[5-Bromo-4-((R)-1-hydroxymethyl-2,2-dimethyl-propyiamino)-pyrlmidin-
2-ylamino]-benzenesulfonamide,

4-[5-Bromo-4-(4-oxo-cyclohexylamino)-pyrimidin-2-ylamino]-
benzenesulfonamide,
(E)-6-{5-Chloro-2-[4-(2-hydroxy-ethylsuifamoyl)-phenylamJno}-pyrimidin-4-
ylamino}-3-methyl-hex-2-en-4-ynoic acid methyl ester,
4-[5-Bromo-4-1-hydroxymethyl-cyclopentylamino)-pyrimidin-2-ylamino]-
benzenesulfonamide,
4-[4-(Bicyclo[2.2.1]hept-2-ylamino)-5-bromo-pyrimidin-2-ylamino]~
benzenesulfonamide,
4-[5-Bromo-4-(4-morpholin-4-yl-cycIohexylamino)-pyrimidin-2-yiamino]-
benzenesulfonamide,
4-[5-Bromo-4-(4-morpholin-4-yl-cyclohexylamino)-pyrimidin-2-ylaminO3-
benzenesuffonamide,
4-[5-Bromo-4-((R)-2-hydroxy-1-methyl-ethylamino)-pyrirnidin-2-ylaminO3-
benzenesulfonamide,
4-({5-Bromo-4-[(R)-(2-hydroxy-1-methylethyl)amino]pyrimidin-2-
yl}amino)benzenesulfonamide,
4-[5-Bromo-4-(2,2,3,3,3-pentafluoro-propylamino)-pyrimidin-2-ylamino]-
benzenesulfonamide,
4-[5-Bromo-4-(4-hydroxy-butylamino}-pyrimidin-2-ylamino]-
benzenesulfonamide,
4-[5-Bromo-4-(1-ethynyl-cyclohexyJamino)-pyrimidin-2-ylamino]-
benzenesulfonamide,
4-[5-Bromo-4-(3-hydroxy-1-phenyl-propylamino)-pyrimidin-2-ylamino]-
benzenesuifonamide,
(+)-4-[5-Bromo-4-(2-methyl-cyclohexylamino)-pyrimidin-2-ylamino]-
benzenesulfonamide,
(-)-4-f5-Bromo-4-{2-methyl-cyclohexylamino)-pynmidin-2-y!amino]-
benzenesulfonamide,
4-{5-Bromo-4-[4-(2-hydroxy-1-hydraxymethyl-ethylamino)-
cyciohexylamino]-pyrimidin-2-ylammo}-benzenesulfonamide,
4-{5-Bromo-4-[4-{2-hyd roxy-1-hydroxymethyl-ethylamino)-
cyclohexylamino]-pyrimidin-2-ylamino}-benzenesulfonamide,

(R)-2-[5-Bromo-2-(4-trifluoromethanesulfonyl-pheny}amino)-pyrimidin-4-
ylamino]-3-methyl-butan-1 -ol,
4-[5-Bromo-4-(4-cyclopropylamino-cyciohexy!amino)-pyrimidin-2-ylamino]
-benzenesulfonamide,
4-[5-Bromo-4-(4-cyclopropylamino-cyclohexylamino)-pyrimidin-2-yIamino]
-benzenesulfonamide,
4-[5-Bromo-4-(tetrahydro-thiophen-3-ylamino)-pyrimidin-2-ylamino]-
ben2enesulfonamide,
2-[5-Bromo-2-(4-sulfamoyl-phenylamino)-pyrimidin-4-ylamino]-3-hydroxy-
propionic acid methyl ester,
4-[5-Bromo-4-((R)-1-hydroxymethyl-2-methyl-propylamino)-pyrimidin-2-yl
amino]-N-pyrimldin-2-yl-benzenesuffonamide,
4-[5-Bromo-4-((R)-1-hydroxymethyl-2-methyl-propylamino)-pyrimidin-2-yl
amino]-N-thiazoi-2-yl-benzenesuifonamide,
4-[5-Bromo-4-(4-hydroxy-butylamino)-pyrimidin-2-ylamino)-N-methyl-
benzenesulfonamide,
4-{5-Bromo-4-[2-(3H-imidazol-4-yl)-ethylamino]-pyrimidin-2-yIamino}-
benzenesulfonamide,
4-[5-Bromo-4-(1-ethyl-1-hydroxymethyl-propylamino)-pyrimidin-2-
ylamino]-benzenesulfonamide,
4-[5-Bromo-4-(1-hydroxymethyl-1,2-dimethyl-propylamino)-pyrimidin-2-
ylamlno]-benzenesulfonamide,
4-[5-Bromo-4-(4-methyl-cyclohexylamino)-pyrimidin-2-ylamino]-
benzenesuffonamide,
4-{5"Bromo-4-[(S)-{tetrahydro-furan-3-yl)amino]-pyrimidin-2-ylamino}-
benzenesulfonamide,
4-[5-Bromo-4-(cyclohexylmethyl-amino)-pyrimidin-2-ylamino]-
benzenesulfonamide,
3-[5-Bromo-2-(4~sulfamoyl-phenylamino)-pyrimidin-4-ylamfno]-propionic
acid,
4-[5-Bromo-2-(4-sulfamoyl-phenylamino)-pyrimidin-4-ylamino]-butyric acid
ethyl ester,

{3-[5-Bromo-2^4-sulfamoyl-phenylamino)-pyritTiidin-4-ylaminO3-propyl}-
phosphonic acid diethyl ester,
4-{5-Bromo-4-[(3-pyridin-3-yl-isoxazol-4-ylmethyl)-amino]-pyrimidin-2-
ylamino]-benzenesulfonamide,
{[5-Bromo-2-(4-sulfamoyl-phenylamino)-pyrimFdin-4-ylamino]-methyl}-
phosphonic acid dimethyl ester,
{[5-Bromo-2^4-sulfamoyl-phenylamino)-pyrimidirT-4-yfarnino]-methyl}-
phosphonic acid monomethyl ester,
4^5-Bromo-4--[{pyridirH4-ylmethyl)-amJnoJ-pyrimidin-2-ytarnino}-
benzenesulfonamide,
4-{5-Bromo-4-[(thiophen-2-ylmethyl)-amfno]-pyrimidin-2-ylarnmo}-
benzenesulfonamide,
4^5-Bromo-4-[{pyridin-2-ylrnethyl)amino]-pyrSrnidin-2-ylamino}-
benzenesuffonamide,
4-[5-Bromo-4-(4-fluoro-benzylamino)-pyrimidin-2-ylamino]-
benzenesuJfonamide,
4-[5-Bromo-4-{4-methoxy-benzylam!no)-pyrimidin-2-ylam!no]-
benzenesulfonamide,
{3-[5-Bromo-2-{4-su!famoyl-pheriylamino)-pyrirnidin-4-ylamino]-propyl}-
phosphonic acid,
4-[5-Bromo-4-{2-hydroxy-ethylamino)-pyrimidin-2-yiamino]-
benzenesulfonamide,
4-[5-Bromo-4-(1-phenyf-ethylamino)-pyrimidin-2-ylamino]-
benzenesulfonamide,
N-Allyloxy-4-[5-bromo-4-{(R)-1-hydroxymethyl-2-methy)-propylamino)-
pyrimidin-2-ylamino]-benzenesulfonamide,
3-[5-Bromo-4^(R)-1-hydroxymethyl-2-methyl-propylamino)-pyrimi din-2-yl
amino]-N-(5-hydroxy-pentyl)-benzenesulfonamrde,
3-[5-Bramo^((R)-1-hydroxymethyl-2-mettiyl-propylarnino)-pyrimidin-2-yi
amino]-N-(2-hydroxy-1-hydroxyrnethyl-ethyl)-benzenesulfonamide,
3-[5-Bromo-4-^(R)-1-hydroxymethyl-2-methyl-propyiamino)-pyrirnidin-2-
ylamino]-N-{3-hydroxy-propyl)-benzenesulfonamide,

N-BenzyIoxy-4-[5-bromo-4-{(R)-1-hydroxymethyl-2-methyl-propyiamino)-
pyrimidin-2-ylamino]-benzenesu!fonamide,
4-[5-Bromo-4^(R)-1-hydroxymG{hyl-2-methyl-propylamino)-pynrnidin-2-
ylamlno]-N-(2-hydroxy-butyl)-benzenesulfonamide,
445-Bromo-4-((R)-1-hydroxymethy]-2-methyhpropylamino)-pyrimidin-2-yl
amfnoj-N-cyclopropylmethyl-benzenesulfonamide,
4-[5-Bromo-4-((R)-1-hydroxymethyl-2-methyl-propylamino}-pyrimidin-2-
ylamino]-N-(4-cyano-cydohexylmethyl)-benzenesulfonamide,
4-[5-Bromo-4-((R)-1-hydroxymetfiyl-2-methyl-propytamino)-pyrimidin-2-
ylamino]-N-(5-hydroxy-pentyl)-benzenesulfonamide,
4-[5-Bromo-4-((R)-1-hydroxymethyl-2-rnethyl-propytamino)-pyrinriidin-2-
ylamino]-N-(tetrahydro-ftiran-2-y!methyl)-benzenesulfonamide,
4-[5-Bromo-4-((S)-1-hydroxymethyl-2-rnethyl-propylaiTiino)-pyrimidin-2-
ylamino]-N-hydroxy-berrzenesulfonamide,
4-[5-Bromo-4-{(S)'1-hydroxymethyl-propylamino)-pyrimidin-2-yiamino]-
benzenesulfonamide,
4-[5-Bromo-4-((R)-1-hydroxymethyl-2-methyl-propylamino)-pyrimidin-2-
ylamino]-N-(2-hydroxy-1-hydroxymethyl-ethyl)-benzenesulfonamide,
4-[5-Bromo-4-({R)-1-bydroxymethyl-2-methyl-propylamino)-pyrimidin-2-
y!amino]-N-(3-hydroxy-propyl)-benzenesuIfonamide,
4-[5-Bromo-4-{(R)-1-hydroxymethyl-2-nnethyl-propylamino)-pyrimidin-2-
ylamino]~N-hydroxy-benzenesulfonamide,
5-[5-Bromo-4-({R)-1-hydroxymethyl-2-methyl-propylamino)-pyrimidin-2-
y!amino]-2-methyl-benzenesu!fonamide,
3-[5-Bromo-4-((R)-1-hydroxymethyl-2-methyl-propylamino)-pyrimidin-2-
ylamino]-N-ethoxy-benzenesulfonarnide,
N-Aliyloxy-3-[5-bromo-4-({R)-1-hydroxymethyl-2-methyl-propyiamino)-
pyrimidin-2-ylamino]-benzenesulfonamide,
4-(5-BrDmo-4-nriorphoiin-4-y!-pyrimidin-2-ylamino)-benzenesulfonamlde,
7-[(5-Bromo-4^[{R)-2-hydroxy-1-m&thylethyl]amino}pyrimidin-2-yl)airilno]-
3,4-dihydro-2H-1,2-benzothiazine 1,1-dioxide,
4-[5-Bromo-4-(2-hydroxy-2-phenyf-propylamlno)-pyrimidfn-2-ylamino]-
benzenesulfonamide,

4-[5-Bromo-4-(2-hydroxy-1,2-dimethyl-propylamino)-pyrirriidin-2-ylamino]-
benzenesulfonamrde,
4-[5-Bromo-4-{2-hydroxy-1t2-dimethyl-butytamino)-pyi1midin-2-yiamino]-
benzenesulfonamide,
4-[5-Bramo-4-(2-oxo-2-phenyf-ethylamino)-pyrimidin-2-ylamino]-
benzenesulfonamide,
4-[5-Bromo-4-{2-hydroxy-propy}amino)-pyrim!din-2-ylamino]-
benzenesulfonamide,
4-[5-Bromo-4-(2-hydroxy-1-methyl-propy!amino)-pyrimidin-2-ylamino]-
benzenesulfonamide,
4-(5-Bromo-4-sec-butylamino-pyrimidin-2-ylamino)-benzenesulfonarnide!
4-[5-Bromo-4-{2-hydroxy-1-methyl-butylarnino)-pyrirri!din-2-ylamino]-
benzenesulfonamide,
4-[5-Bromo-4-(3,3-dimethyl-2-oxo-butylamino)-pyrimidin-2-yiamino]-
benzenesulfonamide,
4-[5-Brorno-4-(2-hydroxy-1-methyl-3-phenyl-propylarnino)-pyrimJdJn-2-
y!amino]-benzenesu!fonamide,
4-[5-Bromo-4-(2-hydroxy-butylamino)-pyrfmJd!n-2-ylamino]-
benzenesulfonamide,
4-[5-Bromo-4-{2-hydroxy-1-rnethyl-pent-4-enylamino)-pyiimidin-2-
yiamino]-benzenesulfonamide,
4-[5-Bromo-4-(2-hydroxy-1-methyl-pentylamino}-pyrimidin-2-ylamino]-
benzenesulfonamide,
4-[5-Bromo-4-(1-methyl-2-oxo-propylamino)-py!imidin-2-ylamino]-
benzenesulfonamide,
4-[5-Bromo-4-(2-hydroxy-1,3-dimethyl-butylamino)-pyrimidin-2-ylamino]-
benzenesulfonamide,
4-[4-((1R,2R)-2-Benzyloxy-cyclopentylamino)-5-bromo-pyrimidin-2-
ylamino]-benzenesiifbnamide,
4-[4-{(1S,2S)-2-8enzyloxy-cyclopentyiamino)-5-bromo-pyrimidin-2-
yiamino]-benzenesulfonamide,
4-[5-Bromo-4-(1-ethyl-2-hydroxy-propylamino)-pyrimidin-2-y!ammol-
benzenesulfonamide,

4-[5-Bromo-4-(1-ethyl-2-hydroxy-butylamino)-pyrimidin-2-y!aminO3-benzenesulfonamide,
4-[5-Bromo-4-{2-hydroxy-2-phenyl-ethylamino)-pyrimfd!n-2-ylaminO3-benzenesulfonamide,
4-[5-Bromo-4-(2-hydroxy-3,3-dimethyl-butylamino)-pyrimidin-2-ylaminO3-benzenesulfonamide,
4-[5-BromcH4^2-hydroxyimino-1-methyl-propylamino)--pyrimfdin-2-ylamjno]-benzenesuifonarriide,
4-(5-Bromo-4-{2-[{E)-methoxyimino]-1-methyl-propylamino}-pyrimidin-2-ylamino)-benzenesulfonamide,
4^5-Bromo-4-{2-[(E)-tert-butoxyirnirio}-1-methyl-propylamino}-pyrimid]n-2-ylamino)-benzen8Su!fonamide,
[2-[5-Bromo-2-(4-suifa moy[-phenylamfno)-pyrimidin-4-ylamino]-1-methyl-prop^ E)-ylidenearninooxy]-acetic acid,
4-[5-Bromo-4-(2-cyclopropylamino-1-methyl-propylamino)-pyrimidin-2-ylamino]-benzenesuffonamide,
4-[5-Bromo-4-(2-hydroxy-1-methoxymethyl-ethylamino)-pyrimidin-2-ylamino]-benzenesulfonamide,
4-[5-Bromo-4-(2-hydroxy-1-methoxymethyl-propylamino)-pyrimidin-2-ylamino]-benzenesulfonamide,
5-[5-Bromo-4-((R)-1-hydroxymethyl-propylamino}-pyrimidin-2-ylamino]-N-cyclohexylmethyl-2-methyl-benzenesuifonamide, 5-[5-Bromo-4-((R)-1-hydroxymethyl-propylamino}-pyrimidin-2-ylamino]-2-methyl-N-(4-phenyl-butyl)-benzenesulfonamide,
5-[5-Bromo-4-((R)-1-hydroxymethyl-propylamino)-pyrimidin-2-ylamino]-N-(3,3-diphenyl-propyl)-2-methyl-benzenesuffonamide, 5-[5-Bromo-4-((R)-1-hydroxyniGthyl-propylamino)-pyrimidin-2-ytamino]-N-(2-dimethylamJno-ethyl)-2-methyl~benzenesulfonamide, 5-[5-Bromo-4--((R)-1-hydroxymethyl-propylamino)-pyrimidin-2-ylamino]-N-3-imidazol-1-yl-propyl)2-methyl-benzenesulfonamide, 5-[5-Bromo-4-((R)-1-hydroxymethyl-propyiamJno}-pyrifriidin-2-yiamino]-2-methyl-N-{3-lrifluoromethyl-benzyl)-benzenesulfonamlde,

5-[5-Bromo-4-((R)-1-hydroxymefhyl-propyiarnino)-pyrimidJn-2-ylamino]-N-
heptyi-2-methyl-benzenesulfonamide,
5-[5-Bromo-4-{(R)-1-hydroxymethyl-propylamino)-pyrimidin-2-ylamino]-2-
methyl-N-octyl-benzenesulfonarnide,
5-[5-Bramo-4-((R)-1-hydrDxymethyl-propylamino)-pyrimidin-2-ylamino]-2-
methyl-N-nonyl-benzenesulfonamide,
5-{5-Bromo-4-((R)1-hydroxymethyl-propylamino)-pyrimldin-2-yIarrimo]-N-
decyl-2-methyl-benzenesulfonamide,
5-[5-Bromc)4-((R)-1-hydroxymethyl-propylarTiino)-pyrimidin-2-ylamfno]-N-
furan-2-y]methyl-2-methyl-benzenesulfonamide,
545-BrDmo-4-((R)-1-hydroxymethyl-propylamino)-pyrimidin-2-ylamino]-2-
methyl-N-(4-trifluoromethyl-benzyl)-benzenesulfonamide,
545-Bromo-4-((R)-1-hydroxymethyl-propylarnino)-pyrimidin-2-ylamino]-2-
methyl-N-(3-phenyJ-propyl)-benzenesulfonamide,
5-[5-Bromo-4-((R)-1-hydroxyme{hyl-propylamino)-pyrimidin-2-ylamino]-2-
meihyl-N-[3-(2-oxo-pyrrolidin-1-yl)-propyl]-benzenesulfonamJde,
5-[5-Bromo-4-((R)-1-hydroxym8thyl-propylamino)-pyrimld!ri-2-)damino]-2-
methyl-N-(3-methyl-butyl)-benzenesulfonamide,
5-[5-Bromo-4-{(R)-1-hydro xymethyl-propylamino)-pyrimidin-2-ytamino]-N-
hexy!-2-methyl-benzenesulfonamide,
545-Bromo-4-{(R)-1-hydroxymethyl-propylamino)-pyrimidin-2-y[arnino]-N-
(3-dimethylamino-propyl)-2-methyl-benzenesu(fonamide,
5-[5-Bromo-4-((R)-1-hydraxymethyl-propylamino)-pyrimidin-2-ylamfno]-N-
(2-diisopropylamino-ethyl)-2-methyl-benzenesulfonamide,
5-[5-Brorno-4-((R)-1-hydroxymethyl-propylamino)-pyrimi din-2-ylamino]-N-
cycJopropyi-2-methyl-benzenesulfonamide,
5-[5-Bromo-4-((R)-1-hydroxyrnethyl-propylamino)-pyrimidin-2-yiamino]-N-
{4-cyano-cyclohexylmethyl}-2-methyl-benzenesulfonamide,
5-[5-Bromo-4-((R)-1-hydroxymethyl-propyiamino)-pyrimidin-2-ylamino]-2-
methyl-N-phenethyl-benzenesutfonamide,
545-Bromo-4-({R)-1-hydroxymethyl-propylamino)-pyrimidin-2-ylamino]-N-
{2-(4-ch!oro-phGnyl)-ethyl]-2-methyl-benzenesulfonamide,

5-[5-Brorno-4-((R)-1-hydroxymethyl-propylamino)-pyrimidin-2-yiamlno]-2-
methyl-N-(5-methyl-furan-2-ylmethyl)-benzenesuffonamide,
5-[5-Bromo-4(R)1-hydroxymethyl-propylamino)-pyrimidin-2-ylamlno]-2-
methyl-N-(2-morpholin-4-yl-ethyl)-benzenesulfonamid8,
5-[5-Bromo-4-((R)-1-hydroxymethyl-propylamino)-pyrimidin-2-y!amino]-N-
(2-methoxy-ethyl)-2-methyl-benzenesulfonamide,
5-[5-Bromo-4^(R)-1-hydrt)xymethyl-propylamino)-pyrimidin-2-ylamino])2-
methyl-N-thiophen-2-ylmethyl-benzenesulfonamide,
5-[5-Bromo-4-({R)-1-hydroxymethyl-propylamino)-pyrimidin-2-ylamino]-N-
[2-(4-methoxy-phenyi)-ethyl3-2-methyl-benzenesulfonarnide,
5-[5-Bromo-4-{(R)-1-hydroxymethyl-propylamino)-pyrimidin-2-ylamino]-2-
methyl-N-(2-pyrrolidin-1-yl-ethyl)-benzenesuifonamide,
5-[5-Bromo-4-((R)-1-hydroxymethyl-propylamino)-pyrimidin-2-ylamino]-2-
methyl-N-(2-piperidin-1-yl-ethyl)-benzenesulfonamide,
5-[5-Bromo-4-((R)-1-hydroxymethyl-propylamino)-pyrimidin-2-ylamino]-N-
(S-fluoro-benzyl^-methyl-benzenesulfonamide,
545-Bromo-4-{{R)»1-hydroxyrnethyl-propylarnlno)-pyrimidm-2-y!arTiino]-2-
methyl-N-[2-(1-methyl-pyrrolidin-2-yl)-ethyl]-benzenesulfonamide,
5-[5-Bromo-4-((R)-1-hydroxymethyl-propylamino)-pyrjmidin-2-yIamino]-2-
methyl-N-pyridin-3-ylmethyl-benzenesulfonamide,
5-[5-Bromo-4-((R)-1-hydroxymethyl-propylamino)-pyrimidin-2-ylamino]-N-
{4-fluoro-benzyl)-2-methyl-benzenesulfonamide,
5-[5-Bromo-4-((R)-1-hydroxymethyl-prapylamino)-pyrimidin-2-y!amino]-2-
methyl-N-pyridin-4-ylmethyl-benzenesulfonamide,
5-[5-Bromo-4-((R)-1-hydroxymethyl-propylarnino)-pyrim!din-2-ylamino]-2-
methyl-N-(2-phenoxy-ethyl}-benzenesulfonamide1
5-[5-Bramo-4-((R)-1-hydroxymethyl-propylamino)-pyrimidin-2-ylamino]-N-
(2-rnethoxy-benzyl)-2-methyl-benzenesulfonamideJ
5-[5-Bromo-4-{(R)-1-hydroxymethyl-propylamino)-pyrimidin-2-ylarnino]-2-
methyl-N-[2-(4-suifamoyl-phenyl)-ethyl]-benzenesulfonamide,
5-[5-Bromo-4-((R)-1-hydroxymethyl-propylamino)-pyrimidin-2-ylamino]-2-
methyl-N-(4-methyl-ben2y])-benzenesulfonamide,

5-[5-BrorrKD-4-((R)-2-hydroxy-1-methyl-ethylamino)-pyrirriidiiri-2-ylamino]-
N-cyclohexylmethyl-2-methyl-benzenesulfonamide,
5-[5-Bromo-4-{(R)-2-hydroxy-1-methyl-ethylamtno)-pyrimidin-2-ylarnino]-
2-methyl-N-(4-phenyl-butyi)-benzenesulfonamide(
5-[5-Bromc)4^(R)-2-hydroxy-1-methyl-ethylamino)-pyrimidin-2-ylamino]-
N^-dimethylamino-ethyl^-methyl-benzenesuifonamide,
5-[5-Bromo-4-((R)-2-hydroxy-1-methyl-ethylamino)-pyiimidin-2-ylaminO3-
N-(3-imidazol-1-yl-propyl)-2-methyl-benzenesulfonamide,
5-[5-Bromo-4-((R)-2-hydraxy-1-methy[-ethylamino)-pyrimidin-2-ylamino]-
2-methyl-N-(3-trifluoromethyl-benzyf)-benzenesulfonamide,
545-Bromo-4^(R)-2-hydroxy-1-methyl-ethylamino)-pyrimidin-2-ylamino]-
N-furan-2-ylmethyl-2-methyl-ben2enesulfonamide,
5-[5-Bromo-4-((R)-2-hydroxy-1-methyl-ethy)amino)pyrimidin-2-ylamino]-
2-methyl-N-(4-trifluoromethyl-benzyl)-benzenesulfonamide,
5-[5-Bromo-4-((R)-2-hydroxy-1-methyl-ethylamino)-pyrirnidin-2-ylaminO3-
2-methyl-N-{3-phenyl-propyl)-benzenesulfonamide!
5-[5-Bromo-4-((R)-2-hydroxy-1-methyl-ethylarnino)-pyrimidin-2-ylamino]-
2-methyl-N-[3-{2-oxo-pyrrolidin-1-yl)-propyl]-benzenesulfonamide,
5-[5-Bromo-4-((R)-2-hydroxy-1-methyl-etbylannino)-pyrimidin-2-yiamino]-
2-methyl-N-(3-methyl-bLityl)-benzenesulfonamide!
5-[5-Bromo-4-((R)-2-hydroxy-1-methyl-ethylamino)-pyrimidin-2-yIarnino]-
N-hexyl-2-methyl-benzenesulfonamide,
5-[5-Bromo-4--((R}-2-hydroxy-1-methy1-ethylamino)-pyrirnidin-2-ylamJnO3-
N-(3-dimethylamino-propyl)-2-methyl-benzenesulfonamide,
5-[5-Bromo-4-((R)-2-hydroxy-1-methyl-ethylamino)-pyrimidin-2-y1amino]-
N-(2-diisopropylamino-ethyl)-2-methyl-benzenesuifonamide,
5-[5-Bromo-4-((R)-2-hydroxy-1-methyl-ethylamino)-pyrirnidin-2-ylamino]"
N-cyclopropyl-2-methyl-benzenesulfonamide,
5-[5-Bromo-4-{(R)-2-hydroxy-1-methyl-ethylamino}-pyrimi din-2-ylamino]-
N-(4-cyano-cyclohexyljnethyl)-2-methyl-benzenesulfonamide(
5-[5-Bromo-4-({R)-2-hydroxy-1-methyl-ethySamino)-pyrinnidin-2-yIamino]-
2-methyl-N-phenethyl-benzenesuffonamide,

5-[5-Bromo-4-((R)-2-hydroxy-1-methyl-ethylamino)-pyrimidin-2-ylamJno]-
N-[2-(4-ch!oro-phenyl)-ethyl}-2-methyl-benzenesulfonam[de,
5-[5-Bromo-4^(R)-2-hydroxy-1-methyl-eUiylamfno)-pyrimidin-2-ylamino]-
2-methyl-N-(5-methyl-furan-2-ylmeihyl)-benzenesu!fonamide,
5-[5-Bramo^((R)-2-hydroxy-1-me%l-ethylamino}-pyrimidin-2-ylamino]-
2-methyl-N-(2-morpho{in-4-yl-ethyl)-benzenesulfonamide,
5-{5-Brt)mo-4^(R)-2-hydroxy-1-methyl-ethylam!no)-pyrirnidf!ri-2-ylamino]-
N-(2-methoxy-ethyl)-2-methyl-benzenesulfonamide,
5-[5-Bromo-4-((R)-2-hydroxy-1-methyl-ethylamino}-pyrimidin-2-ylamJno]-
2-methy]-N-thiophen-2-ylmethyl-benzenesutfonamide,
5-[5-Bromo-4-{(R)-2-hydroxy-1-methyl-ethylamino)-pyrimidin-2-ylamino]-
N-[2-{4-methoxy-phenyf)-ethyl]-2-methyl-benzenesulfonamide,
5-[5-Bromo-4-({R)-2-hydroxy-1-methyl-ethylamino)-pyrimidin-2-ylamino]-
2-methyl-N-(2-pyrro!idin-1-yl-ethyl)-benzenesulfonamidel
5-[5-Bromo-4-((R)2-hydroxy-1-methyl-ethylamino)-pyrimldin-2-ylamino]-
2-methyl-N-(2-piperidin-1-yl-ethyl)-benzenesulfonamide,
5-[5-Bromo-4-((R)-2-hydroxy"1-m8thyl-ethylamino)-pyrimidin-2-y!aminO3-
N-(3-fluoro-benzyl)-2-methyl-benzenesulfonamide,
5-[5-Bromo-4-^(R)2-hydroxy-1-methyl-ethylamino)-pyrirnidin-2-y!amino]-
2-methyl-N-[2-(1-methyl-pyiTolidin-2-yl)-ethyl]-benzenesulfonamide,
5-[5-Bromo-4-({R)-2-hydroxy-1-methyl-ethylamino)-pyrimidin-2-ylamino]-
2-methyl-N-pyridin-3-ylmethyl-benzenesulfonamide,
5-[5-Brorno-4-((R)-2-hydroxy-1-methyl-ethylamino)-pyrimidin-2-ylam}no]-
N-(4-fluoro-benzyl)-2-methyl-benzenesulfonamide,
5-[5-Bromo-4-((R)-2-hydroxy-1-methyl-ethylamino)-pyrimidin-2-ylamino]-
2-methyl-N-pyridin-4-ylmethyl-benzenesulfonamide,
545-Bromo-4-((R)-2-hydroxy-1-methyl-ethylamino)-pyrimidJn-2-yIaiTiino]-
2-methyl-N-(2-phenoxy-ethyl)-benzenesulfonamide,
5-[5-Bramo-4-{(R)-2-hydroxy-1-methyl-ethylairiino)-py!irni din-2-ylamino]-
N-(2-methoxy-benzyl)-2-methyl-benzenesulfonamide,
5-(5-Bromo-4-((R)-2-hydroxy-1-methyl-ethylarnino)-pyrimidin-2-ylamfno]-
2-methyl-N-{2-(4-su!famoyl-phenyl)-ethyl]-benzenesuffonamide,

5-[5-Bromo-4-((R)-2-hydroxy-1-methyl-ethylamino)-pyrimidin-2-ylamino]-
2-methyl-N-{4-me1hyl-benzyl)-benzenesu]fonamide,
3-[5-Bromo-4-((R)-1-hydroxymethyl-propylamino)-pyi1midin-2-ylamino]-N-
cyclohexylmethy]-benzenesulfonamide,
3-[5-Bromo-4-((R)-1-hydroxymethyl-propylamino}-pyrimidin-2-ylamino]-N-
(3-imidazol-1-yl-propyl)-benzenesuifonamlde,
3-[5-Bromo-4-((R)-1-hydroxymethyl-propylamino)-pyrimidin-2-ylarnino]-N-
(3-trifluoromethyl-benzyl)-benzenesulfonamide,
3-[5-Bnomo-4-({R)-1-hydroxymethyl-propylamino)-pyrimidin-2-yiamino]-N-
furan-2-ylmethyl-benzenesulfonamide,
3-[5-Bromo-4-((R)-1-hydroxymethyl-propylamino)-pyrimidin-2-ylamino]-N-
(4-trifluoromethyl-benzyl)-benzenesulfonamidel
3-[5-Bromo-4-((R)-1-hydroxymethy]-propylamino)-pyrimi din-2-ylamino]-N-
(3-phenyl-propyl)-benzenesulfonamide,
3-[5-Bromo-4-((R)-1-hydroxyrnethyl-propylamino)-pyrimidin-2-ylamino]-N-
[3-(2-oxo-pyrrolidin-1-yl)-propyl]-benzenesulfonamide,
3-[5-Bromo-4-((R)-1-hydroxymethyl-propylamino)-pyrimidin-2-ylamino]-N-
(3-methyl-butyl)-benzenesuifonamide,
3-[5-Bromo-4-((R)-1-hydroxymethyl-propylamino)-pyrimidin-2-ylamino]-N-
(3-dimethylamino-propyl)-benzenesulfonamide,
3-[5-Bromo-4-((R)-1-hydroxymethyl-propylamino)-pyrimidin-2-y]amino]-N-
(2-diisopropylamino-ethyl)-bsnzenesulfonamide,
3-[5-Bromo-4-{{R)-1-hydroxymethyl-propylamino)-pyrimidin-2-ylamino]-N-
(4-cyano-cyclohexylmethyl}-benzenesulfonamide,
3-[5-Brorno-4-((R)-1-hydroxymethyl-propylamino)-pyrirnidin-2-ylamino]-N-
phenethyl-benzenesulfonamide,
3-[5-Bromo-4-({R)-1-bydroxymethyl-propylamino}-pyrimidin-2-ylamino]-N-
[2-{4-chloro-phenyl)-ethy]]-benzenesulfonamide,
3-[5-Bromo-4--((R)-1-hydroxymethyl-propylamino)-pyrimidin-2-ylamino]-N-
(5-methyl-furan-2-yImethyl)-benzenesulfonarnide,
3-[5-Bromo-4-{(R}-1-hydroxymethyl-propylamino)-pyrimidin-2-ylamlno]-N-
(2-morpholin-4-yf-ethyl)-benzenesulfonamide,

3-[5-Bromo-4-((R)-1-hydroxymethyl-propylamino)-pyrimidin-2-ylamino]-N-
(2-methoxy-ethyl)-benzenesulfonamide,
3-[5-Bromo-4-{(R)-1-hydroxymethyl-propylamino)-pyrimidin-2-ylarnino]-N-
thiophen-2-ylmethyl-benzenesulfonamide,
3-[5-Bromo-4-((R)-1-hydroxymethyl-propylarnino^pyrinnidin^-ylamino]-N-
(2-pyirolidirv1-y^ethyl)-benzenesulfonamide,
3-[5-Bromo-4-((R)-1-hydroxymethyhpropylamino)-pyrimidin-2-yIamino]-N-
(2-piperfdin-1-yl-ethyl)-benzenesuffonamide,
3-f5-Bromo-4-((R)-1-hydroxymethyl-propy!amino)-pyrimidin-2-ylamino]-N-
(3-fluoro-benzyl)-benzenesulfonamide,
3-[5-Bromo-4-({R)-1-hydroxymethyl-propylamino)-pyrimidin-2-ylamino]-N-
[2-(1-methyl-pyrrolidin-2-yl}-ethyl]-benzenesulfonamide)
3-[5-Bromo-4-({R)-1-hydroxymethyl-propylamino)-pyrimidJn-2-ylafT»ino]-N-
pyridin-S-ylmethyl-benzenesulfonamide,
3-[5-Bromo-4-((R)-1-hydroxymethyl-propylamino}-pyrimi din-2-ylammo]-N-
(4-fluoro-benzyl)-benzenesulfonamide,
3-[5-Bronno-4-{(R)-1-hydroxyimethyl-propylamino)-pyrimidsn-2-y!amino]-N-
pyridin-4-ylmethyl-benzenesulfonamide,
345-Bromo-4-({R)-1-hydroxymethyl-propylamino}-pyrimidfn-2-ylamino]-N-
{2-phenoxy-ethyl)-benzenGsulfonamide,
3-[5-Bromo-4-((R)-1-hydroxymethyl-propyiarnino)-pyrimidin-2-ylamino]-N-
(2-methoxy-benzyl)-benzenesulfonamide,
3-f5-Bromo-4-((R)-1-hydroxyniethyl-propy]amino)-pyrimidin-2-ylamino]-N-
(4-methyl-benzyl)-benzenesulfonamide1
3-[5-Bromo-4-((R)-1-hydroxymethyl-propylamino)-pyrimidin-2-ylamino]-N-
(5-methylsuifany!-1 H-[1,2,4]triazol-3-yi)-benzenesulfonamide,
3-I5-Bromo-4-{(R)-2-hydroxy-1-methyl-ethylamino)-pyrimidin-2-yiamino]-
N-(2-dimethylamino-ethyl)-benzenesulfonamide,
3-[5-Bromo-4--((R)-2-hydroxy-1-methyl-ethy(amino)-pyriniidin-2-ylamino]-
N-(3-imidazol-1-yl-propyl)-benzenesulfonamide,
3-[5-Bromo-4-((R)-2-hydroxy-1-methyl-ethylam!no)-pyrirnidin-2-ylamino]-
N-(3-trifluoromethyl-benzyI)-benzenesulfonamide,

3-[5-Bromo-4-({ R)-2-hydroxy-1 -methyl-ethylamino)-pyrimidin-2-ylamino]-
N-furan-2-ylmethyl-benzenesulfonamide,
345-Bromo-4-{(R)-2-hydroxy-1-methyl-Gthylamino)-pyrimidin-2-y!amino]-
N-(4-trifluoromethy[-benzy])-benzenesulfonamide,
3-[5-Bromo-4-((R)-2-hydraxy-1-methyl-ethylamino)-pyrimidi'n-2-ylamino)
N-[3-{2-oxo-pynrolidin-1-yl}-propyl]-benzenesulfonamideI
345-Bromo-4-((R)-2-hydroxy-1-methyl-ethylamino)-pyrimidin-2-ylamino]-
N-(3-methyl-butyl)-benzenesulfonamide,
3-[5-Bromo-4-((R)-2-hydroxy-1-methyl-ethy]ainino)-pyrimidin-2-ylamino]-
N-tS-dirnethylamino-propyl^benzenesulfonamide,
3-[5-Bromo-4-((R)-2-hydroxy-1-methyl-ethylamino)pyrimidin-2-ylam!no]-
N-(2-diisopropyiamino-ethyl)-benzenesulfonamide,
3-[5-Bromo-4--{{R}-2-hydroxy-1-methyl-ethylamino)-pyrimidin-2-ylamino]-
N-{4-cyano-cyclohexylmethyl)-benzenesu!fonamide,
3-[5-Bromck4^(R)-2-hydroxy-1-methyl-ethylamino)-pyrimidin-2-ylamino]-
N-phenethyl-benzenesulfonamide,
3-[6-Bromo-4-((R)-2-hydroxy-1-methyl-ethylamino)-pyrimidin-2-y!aminO3-
N-[2-(4-chloro-phenyl)-ethyl]-benzenesulfonamide,
3-[5-Bromo-4-((R)-2-hydroxy-1-methyl-Gthylamino)-pyrimidin-2-ylamino]-
N-(5-methyl-furan-2-ylmethyl)-benzenesulfonamide,
3-[5-Bromo-4-((R)-2-hydroxy-1-methyl-ethylannino)-pyrimidin-2-ylamino}-
N-{2-morpholin-4-yl-ethyl)-benzenesulfonamfde,
3-|5-BrorrK)-4-({R)-2-hydnoxy-1-methyl-ethylamino)-pyrimidin-2-ylamino]-
N-(2-methoxy-ethyl)-benzenesulfonamide,
3-[5-Bromo-4-{(R)-2-hydroxy-1-methyl-elhylamino)-pyrimidin-2-ylarninO3-
N-thiophen-2-ylmethyl-benzenesulfonamide,
3-[5-Bromch4-((R)-2-hydroxy-1-methyl-ethylamino)-pyrimidin-2-ylamino]-
N-(2-pyrrolidin-1-yl-ethyl)-benzenesulfonaimide,
3-[5-Bromo-4-((R)-2-hydroxy-1-methyl-ethylamino)-pyrimfdin-2-ylamino]-
N-(2-piperidin-1-y1-ethyl)-bGnzenesulfonamide)
3-[5-Bromo-4-({R)-2-hyd roxy-1 -methyl-ethylamino)-pyrimid in-2-ylammo]-
N-fS-fluoro-benzyl^benzenGsutfonamide,

3-[5-Bromo-4-((R)-2-hydroxy-1-methyl-ethylamino)-pyrimidin-2-ylamino]-
N-[2-(1-methyl-pyrrolidin-2-yl)-ethyl3-benzenesulfonamide,
3-[5-Bromo-4-{(R)-2-hydroxy-1--methyl-ethylamino)-pyriiTiid[n-2-ylammo]-
N-pyridin-3-ylmethyl-benzenesulfonamide,
3-[5-Bromo-4-((R)-2-hydroxy-1-methyl-ethy}amino)-pyrimidin-2-ylamino]-
N-(4-tluoro-benzyI)-benzenesulfonamide,
3-[5-Bromo-4-((R)-2-hydroxy-1-rnethyl-ethylamino)-pyrimid[n-2-ylammo)
N-pyridin-4-ylmethyl-benzenesulfonamide,
3-[5-Bromo-4-((R)-2-hydroxy-1-methyl-ethylamino)-pyrimidin-2-ylamino]-
N-{2-phenoxy-ethyl)-benzenesulfonamide,
3-[5-Bromo-4-((R)-2-hydroxy-1-methyl-ethylamino)-pyrimid!n-2-ylamino]-
N-(2-methoxy-benzyl)-benzenesulfonamide,
3-[5-Bromo-4-((R)-2-hydroxy-1 -methyl-ethylamino)-pyrf mid in-2-yiam ino]-
N-{4-methyl-benzyl)-benzenesulfonamide,
3-[5-Bromo-4-((R)-2-hydroxy-1-methyl-ethylamino)-pyrimi din-2-ylamino]-
N-(5-methylsulfanyl-1H-[1,2,4]triazo!-3-yl)-benzenesulfonamide,
4-[5-Bromo-4-{(R)",1-hydroxymethyl-propy!amino)-pyrimidin-2-y!amino]"
benzenesulfonamide,
3-[5-Bromo-4-{(R)-2-hydroxy-1-rnethyl-ethylamino)-pyrimidin-2-ylamino}-
benzenesulfony! fluoride,
5-[5-Bromo-4-({R)-2-hydroxy-1-me1iiyl-ethylamino)-pyrimidin-2-ylamino]-
2-methyl-benzene$ulfonyl fluoride,
3-[5-Broma-4-((R)-1-hydroxymethyl-propylam!no)-pyrirnidin-2-ylamino]-
benzenesulfonyl fluoride,
5-[5-Bromo-4-((R)-1-hydroxyrnethyl-propylamino)-pyrirnidin-2-ylamino]-2-
methyl-benzenesulfonyf fluoride,
3-[5-Bromo-4-({S)-1-hydroxymethyl-2-methy]-propylamino)-pyrirnidin-2-
ylamino]-benzenesulfonyl fluoride,
345-Bromo-4--((S)-1-hydroxymethyl-2-methyl-prapyJamino)-pyrimJdin-2-
ylamino]-benzenesulfonyl fluoride,
4-[5-Bromo-4-((R)-2-hydroxy-1-methyl-ethylamino)-pyrimidin-2-ylarnino]-
benzenesulfonyl fluoride,

4-[5-Bramo-4-((R)-1-hydroxyrnethy]-propylamino)-pyrim!din-2-ylamino]-
benzenesulfonyl fluoride,
4-[5-Bromo-4-((S)-1-hydroxymethyl-2-rnethyl-propylamino)-pyrimtdin-2-
ylamino]-benzenesulfonyl fluoride,
4-[5-Bromo-4-((R)-2-hydroxy-1-methyl-ethy1amino)-pyrimldin-2-ylamino]-
N-cyclohexylmethyl-benzenesulfonamide,
4-[5-Bromo-4-((R)-2-hydroxy-1-methyl-ethylamino)-pyrimidin-2-ylamino]-
N-(4-phenyl-butyl)-benzenesulfonamide,
4-[5-Bromo-4-((R)-2-hydroxy-1-methyl-ethylamino)-pyrimidin-2-ylamino]-
N-(2-dimethylarri!no-ethyl)-benzenesulfonamide,
4-[5-Bromo-4-((R)-2-hydroxy-1-methyl-ethylamino)-pyrimidin-2-yIamino]-
N-(3-imidazol-1-yl-propyl)-benzenesulfonamide,
4-[5-Bnomo-4-((R)-2-hydroxy-1-methyl-ethylamino)-pyrimidin-2-ylamino]-
N-{3-trifluoromethyl-benzyl)-benzenesulfonamide,
4-[5-Bromo-4-{(R)-2-hydroxy-1-rnethyl-ethy]amino)-pyrirnidin-2-y}amino]-
N-(4-trifluoromethyl-benzyl)-benzenesulfonamide,
4-[5-Bromo-4-((R)-2-hydroxy-1-methyl-ethylamino)-pyrimidin-2-ylamino]-
N-(3-phenyl-propyl)-benzenesulfonarnide,
4-[5-Bromo-4-((R)-2-hydroxy-1-methyl-ethylamino)-pyrimidin-2-y!amino]-
N-[3-(2-oxo-pyrrolidin-1-yl)-propyi3-benzenesu!fonamide,
4-[5-Bromo-4-((R)-2-hydroxy-1-methyl-ethylamino)-pyrimidin-2-ylamino]-
N-(3-methyl-bLrtyl}-benzenesulfonamide,
4-[5-Bramo-4-((R)-2-hydroxy-1-methy1-ethylamino)-pyrimidin-2-ylam[no]-
N-(2-dilsopropylamino-ethyl)-benzenesulfonamide,
4-[5-Bromo-4-({R)-2-hydroxy-1-methyl-ethylarnino)-pyr1rriidin-2-y!arTiino]-
N-cyc!opropyl-benzenesulfonamide,
4-[5-Bromo-4-{(R)-2-hydroxy-1-methyl-ethylamino)-pyrimidin-2-ylamino]-
N-(4-cyano-cyclohexylmethyl)-benzenesulfonamide,
4-[5-Bromo-4-(R)-2-hydroxy-1-methyl-ethylamino)pyrimidin-2-ylamino]-
N-phenethyl-benzenesulfonamide,
4-[5-Bromo-4-((R)-2-hydroxy-1-methyl-ethylamino)-pyrimtdin-2-y]amino]-
N-[2-(4-chloro-phenyl)-etbyl]-benzenesuifonamide,

4-[5-Bromo-4-{(R)-2-hydroxy-1-methyl-ethylamino)-pyrimidin-2-ylamino]-
N-(5-rnethyl-furan-2-ylmethyl}-benzGnesulfonamide,
4-[5-Bromo-4-({R)-2-hydroxy-1-methyl-ethylamino)-pyrimidin-2-ylamino]-
N-(2-morpholin-4-yf-ethyl)-benzenesutfonamide,
4-[5-Bromo-4-((R)-2-hydraxy-1-methyl-ethy1amino)-pyrimidin-2-ylam[no]-
N-(2-methoxy-ethyl)-benzenesulfonamide,
4-[5-Bromo-4-((R)-2-hydroxy-1-methyl-ethylamino}-pyrimidin-2-ylamino]-
N-thiophen-2-ylmethyl-benzenesulfonamide,
4-[5-Bromo-4-((R)-2-hydroxy-1-methyl-ethylamino)-pyrimidin-2-ylamino]-
N-[2-{4-methoxy-phenyl)-ethyl3-benzenesulfonamide,
4-[5-Bromo-4-((R)-2-hydroxy-1-rnethyl-ethylamino)-pyrlmidin-2-ylamino]-
N-(2-pyrrolid in-1 -yj-ethyl)-benzsnesulfonamide,
4-[5-Bromo-4-({R)-2-hydroxy-1-methyl-ethylamino)-pyrimidin-2-y!arntrio]-
N-(2-piperidin-1-yl-ethyl)-benzenesuffonamide,
4-[5-Bromo-4-{{R)-2-hydroxy-1-methyl-ethylamino)pyrimidin-2-ylamino]-N-
(3-fluoro-benzyl)-benzenesulfonamide,
4-[5-Bromo-4-((R)-2-hydroxy-1-rnethyl-ethylamino)-pyrimidin-2-ylamino]-
N-[2-(1-methyl-pyrrotidin-2-yl)-ethyl]-benzenesulfonamide,
4-[5-Bromo-4-((R)-2-hydroxy-1-methyl-ethylamino)-pyrimidin-2-ylamino]-
N-pyridin-3-ylmethyl-benzenesulfonamide,
4-[5-Bromo-4-((R)-2-hydroxy-1-methy]-ethylamino)-pyrimidin-2-ylamino]-
N-(4-fluoro-benzyl)-benzenesuifonamide,
4-f5-Bromo-4-((R)-2-hydroxy-1-methyl-ethylarnino)-pyrimidin-2-ylamino]-
N-pyridin-4-ylrnethyl-benzenesulfonamide,
4-[5-Bromo-4-({R)-2-hydroxy-1-methyl-ethylamino)-pyrimidin-2-ylamino]-
N-(2-phenoxy-ethyl)-benzenesu!fonamide,
4-[5-Bromo-4-({R)-2-hydroxy-1-methyl-ethylamino)-pyrimidin-2-ylamino]-
N-(2-methoxy-benzyl)-benzenesuffonamide,
4-[5-Bromo-4-((R)-2-hydroxy-1-methyl-ethylamino)-pyrimidin-2-ylamino]-
N-(4-methyl-benzyl)-benzenGsulfonamide,
4-[5-BrorTK)-4^(R)-2-hydroxy-1-methyl-ethylamino)-pyrimidin-2-ytarnino]-
N-(5-methylsulfanyl-1H-[1,2,4]triazol-3-yl)-benzenesuifonamide,

4-[5-Bromo-4-((R)-1-hydroxymethyl-propylamino)-pyrimidin-2-ylamino]-N-
cyclohexylmethyl-benzenesulfonamide,
4-[5-Bromo-4-({R)1-hydroxymethyl-propylamino)-pyrimidin-2-ylamino]-N-
(2-dimethylamino-ethyl)-benzenesulfonamide,
4-[5-Bromc)-4-(R)-1-hydroxymethyl-propylamino)-pyrimrdin-2-ylamlno]-N-
(3-imidazol-1-yl-propyl)-benzenesulfonamide,
4-[5-Bromo-4-((R)-1-hydroxymethyl-propylarnmo)-pyrimidin-2-ylamino]-N-
(3-trifluoromethyl-benzyl)-benzenesulfonamfde,
4-[5-Bromo-4-((R)-1-hydroxymethyl-propylamino)-pyrimidin-2-ylamino]-N-
furan-2-ylmethyl-benzenesuIfonamide,
4-[5-Bromo-4-{(R)-1-hydroxymethyl-propylamino)-pyrimidin-2-ylamino]-N-
(4-trifluoromethyl-benzyl)-benzenesulfonamide,
4-[5-Bromo-4-((R)-1-hydroxymethyl-propylamino}-pyrimidin-2-ylamino]-N-
(3-phenyl-propyl}-benzenesulfonamide,
445-Bromo-4-((R)-1-hydroxymethyl-propylamino)-pyrimidin-2-ylamino]-N-
[3-(2-oxo-pyrrolidin-1-yl)-propyl]-benzenesulfonamide,
4-[5-Bromo-4-{(R}-1-hydroxymiethyl-propyiarnino)-pyrimidin-2-y!amino]-N-
(3-methyl-butyl)-benzenesulfonamide,
4-[5-Bromo-4-({R)-1-hydroxymethyl-propylamino)-pyrimidin-2-ylaminO3-N-
(3-dimethylamino-propyl)-benzenesulfonamide,
4-[5-Bromo-4-((R)-1-hydroxymethyl-propy!ammo)-pyrimidin-2-ylamino]-N-
(2-diisopropylam]no-ethyl)-benzenesulfonamide,
4-[5-Bromo-4-((R)-1-hydroxymethyl-propylamino}-pyrimidin-2-ylamino]-N-
cyclopropyl-benzenesulfonamide,
4-[5-Bramo-4-((R)-1-hydroxymethyl-propylamino)-pyrimidin-2-ylaminGj-N-
(4-cyano-cyclohexyJmeihyl)-benzenesulfonamide,
4-[5-Bromo-4-{(R)-1-hydroxymethyl-propylamino)-pyriiTi!din-2-ylarnino]-N-
phenethyl-benzenesulfonamide,
4-{5-Bromo-4-((R)-1-hydroxymethyl-propylamino)-pyrimidin-2-ylamino]-N-
(3,4-dimethoxy-benzyl)-benzenesulfnamide,
4-[5-Bromo-4-((R)-1-hydroxymethyl-propylamino)-pyrimidin-2-ylamino]-N-
[2-{4-chloro-pheny))-ethyl]-benzenesulfonamide,

4-[5-Bromo-4-((R)-1-hydroxyethyt-propylamino)-pyrimidin-2-ylamino]-N-
(5-methyl-furan-2-ylmethyl)-benzenesulfonamide,
4-[5-Bromo-4-((R)-1-hydroxymethyl-propylamino)-pyrirnidin-2-ylamino]-N-
(2-morpholin-4-yl-ethyl)-benzenesulfonarnide,
4-[5-Bromo-4-{{R}-1-hydroxymethyl-propylamino)-pyrimidin-2-ylamino]-N-
(2-methoxy-ethyl)-benzenesuifonamide,
4-[5-Bromo-4-(R)-1-hydroxymethyl-propylamino)-pyrirnidin-2-y!amino]-N-
thiophen-2-ylmethyl-benzenesulfonamide,
4-[5-Bromo-4-((R)-1 -hydro xymethyl-propylamino)-pyrimidin-2-ylamlno]-N-
[2-{4-methoxy-phenyl)-Gthyl]-benzenesutfonamidG,
4-[5-Bromo-4-{(R)-1-hydroxymethyl-propylamino)-pyrimidin-2-ylamino]-N-
(2-pyrroIidin-1-yl-ethyl)-benzenesulfonamide,
4-[5-Bromo-4-((R)-1-hydroxymethyl-propylamino)-pyrimidin-2-ylamino]-N-
{2-piperidin-1-yl-ethyl)-benzenesulfonamide,
4-[5-Bromo-4-((R)-1-hydroxymethyl-propylamino)-pyi1midin-2-ylamino]-N-
(3-fiuoro-benzyl)-benzenesutfonamide,
4-[5-Bromo-4-((R)-1-hydroxymethyl-propylamino)-pyrimidin-2-ylamino]-N-
[2-(1-methyl-pyrrolidin-2-yl)-ethyl]-benzenesutfonamide,
4-[5-Bromo-4-((R)-1)hydroxymethyl-propylamino)-pyrimidin-2-ylamino]-N-
pyridfn-3-ylmethyl-benzenesulfonamide,
4-[5-Bromo-4-((R)-1-hydroxymethyl-propylarnino)-pyrimidin-2-ylamino]-N-
(4-fluoro-benzyl)-benzenesulfonamide,
4-[5-Bromo-4-{(R)-1-hydroxymethyl-propyJamino)-pynrnidin-2-ylamino]-N-
pyridin-4-ylmethyl-benzenesulfonamide,
4-[5-Bromo-4-((R)-1-hydroxymethyl-propyiamino)-pyrimidin-2-ylamino]-N-
(2-phenoxy-ethyl)-benzenesutfonamide,
4-[5-Bromo-4-{(R)-1-hydroxymethyl-propylamino)-pyrimidin-2-ylarnino]-N-
(2-methoxy-benzyl)-benzenesulfonamide,
4-[5-Bromo-4-((R)-1-hydroxymethyl-propy1amino)-pyrimidin-2-ylamino]-N-
(4-methyl-benzyl)-benzenesulfonamide or
4-[5-Bromo-4-((R)-1-hydroxymethyl-propylamino)-pyrimidin-2-ylamino)N-
(5-methylsuifany!-1 H-[1,2,4]triazol-3-yl)-benzenesulfonamide.
-
3. Pharmaceutical agents as and when prepared by using at least one pyrimidine compounds as claimed in claim 1 or 2.

Documents:

02240-delnp-2003-abstract.pdf

02240-delnp-2003-claims.pdf

02240-delnp-2003-correspondence-others.pdf

02240-delnp-2003-description (complete).pdf

02240-delnp-2003-drawings.pdf

02240-delnp-2003-form-1.pdf

02240-delnp-2003-form-18.pdf

02240-delnp-2003-form-2.pdf

02240-delnp-2003-form-3.pdf

02240-delnp-2003-form-5.pdf

02240-delnp-2003-gpa.pdf

02240-delnp-2003-pct-210.pdf

02240-delnp-2003-pct-301.pdf

02240-delnp-2003-pct-304.pdf

2240-DELNP-2003-Abstract-(14-03-2008).pdf

2240-DELNP-2003-Abstract-(16-02-2009).pdf

2240-DELNP-2003-Abstract-(26-11-2008).pdf

2240-DELNP-2003-Claims-(09-07-2004).pdf

2240-DELNP-2003-Claims-(14-03-2008).pdf

2240-DELNP-2003-Claims-(16-02-2009).pdf

2240-DELNP-2003-Claims-(26-11-2008).pdf

2240-delnp-2003-complete specification (granted).pdf

2240-DELNP-2003-Correspondence-Others-(14-03-2008).pdf

2240-DELNP-2003-Correspondence-Others-(25-11-2008).pdf

2240-DELNP-2003-Correspondence-Others-(26-11-2008).pdf

2240-DELNP-2003-Description (Complete)-(09-07-2004).pdf

2240-DELNP-2003-Description (Complete)-(14-03-2008).pdf

2240-DELNP-2003-Description (Complete)-(16-02-2009).pdf

2240-DELNP-2003-Description (Complete)-(26-11-2008).pdf

2240-DELNP-2003-Drawings-(14-03-2008).pdf

2240-DELNP-2003-Form-1-(14-03-2008).pdf

2240-DELNP-2003-Form-1-(26-11-2008).pdf

2240-delnp-2003-form-13-(25-11-2008).pdf

2240-DELNP-2003-Form-2-(09-07-2004).pdf

2240-DELNP-2003-Form-2-(14-03-2008).pdf

2240-DELNP-2003-Form-2-(26-11-2008).pdf

2240-DELNP-2003-Form-3-(14-03-2008).pdf

2240-DELNP-2003-GPA-(14-03-2008).pdf

2240-DELNP-2003-Petition-137-(14-03-2008).pdf

2240-DELNP-2003-Petition-138-(14-03-2008).pdf


Patent Number 233401
Indian Patent Application Number 02240/DELNP/2003
PG Journal Number 13/2009
Publication Date 27-Mar-2009
Grant Date 30-Mar-2009
Date of Filing 22-Dec-2003
Name of Patentee SCHERING AKTIENGESELLSCHAFT
Applicant Address MULLERSTRASSE 178, 13342 BERLIN, GERMANY.
Inventors:
# Inventor's Name Inventor's Address
1 MARTINA SCHAFER OSSIETZYSTRASSE 7, D-13187 BERLIN, GERMANY
2 GERHARD SIEMEISTER REIMERSWALDER STEIG 26, D-13503 BERLIN, GERMANY
3 ULRICH LUCKING BERGSTRASSE 62, D-11115 BERLIN, GERMANY
4 CHRISTOPH HUWE SANDHAUSER STRASSE 111, D-13005 BERLIN, GERMANY
5 THOMAS BRUMBY LEPSIUSSTRASSE 60, D-12163 BERLIN, GERMANY.
6 ROLF JAUTELAT DRIESENERSTRASSE 1, D-10439 BERLIN, GERMANY
7 OLAF PRIEN LUTZENSTRASSE 12, 10711 BERLIN, GERMANY
PCT International Classification Number C07D 239/48
PCT International Application Number PCT/EP02/05669
PCT International Filing date 2002-05-23
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 101 27 581.1 2001-05-29 Germany
2 102 12 098.6 2002-03-11 Germany