Title of Invention

A METHOD FOR PRODUCING A METAL

Abstract During the production of steel, a conversion model (10) is used for the cooling line (5). Said model is used to calculate the phase fractions (pi), in addition to the temperature (T) of the steel, along the steel strip in real time. A regulating system, which maintains the phase fractions (Pt) of a steel strip that is wound onto a reeling device (12) at a constant level, is implemented. The method comprises the following steps; in a first step, the degree of conversion, for multi-phase steel e.g. the ferrite fraction, is determined from date obtained from the primary data (P) of the steel strip. In a second step, when the strip enters the cooling line (5), one or more parameters of the cooling strategy, i.e. control values (S), are adapted online in such a way that the ferrite content of the cooled steel on the reeling device (12) is maintained at a constant level.
Full Text 20044P0495 WO PCT/DE2004/000724
Description
Method for producing a metal
The invention relates to a method for producing a metal having a plurality of phase fractions, the hot formed metal being cooled m a cooling line, the temperature and at least one phase fraction of the metal being calculated in a first step in at least one location in the cooling line, using primary data for the metal, by means of a cooling line model. The invention also relates to a calculation means for corresponding control and modeling of a cooling line and to a corresponding unit for producing a metal having a plurality of phase fractions.
A cooling method for a hot-rolled stock, in particular a metal strip, is known from DE 101 29 565 Al. In this known method an initial temperature is acquired for a stock location upstream of the cooling line, a coolant quantity characteristic is determined over time using a cooling line model and stipulated target properties of the stock, a coolant is applied to the stock location according to the coolant quantity characteristic determined over time, an anticipated temperature characteristic over time of the stock at the stock location above the stock cross-section is determined using the cooling line model and the coolant quantity characteristic over time, and to determine the temperature characteristic m the stock in the cooling line model, a heat conduction equation is solved which relates the enthalpy, the thermal conductivity, the degree of phase conversion, the density and the temperature of the stock to each other. In the method described an DE 101 29 565 A] anticipated temperature characteristics of the metal strip are compared with target

2004P044795 WO PCT/DE2004/000724
2 temperature characteristics. A new coolant quantity
characteristic is calculated on the basis of this comparison.
Hot formed metals produced and cooled according to known methods frequently do not satisfy, or do not satisfy with adequate reliability, the properties or material properties required for subsequent use thereof.
The object of the invention is to enable production of metal with high quality material properties, with the required properties or material properties of the metal being as precisely adhered to as possible.
This object is achieved by a method of the type mentioned in the introduction in which, m a second step, at least one temperature measured value is acquired during production of the metal, and using the at least one temperature measured value, at least one anticipated phase fraction of the metal is calculated by means of the cooling line model at the at least one location in the cooling line, the anticipated phase fraction calculated in the second step being compared with the phase fraction calculated in the first step and this comparison being used to adjust at least one correcting variable of the cooling line.
In this manner the phase fractions at the end of the cooling line can be kept substantially constant, viewed by way of the metal, even with varying production conditions during production of the metal. By adjusting at least one correcting variable of the cooling line differences between different strips with the same primary data are also substantially eliminated. In the first step, the at least one phase fraction

PCT/DE2004/000724 / 2004P04795WOUS
3 adjustment of local cooling line correcting variables. A
consistent quality may be ensured significantly better when producing metal according to the invention than with known methods.
To further improve the accuracy of the method according to the invention and to keep the phase fractions at the end of the cooling line constant in an even more reliable manner, it is expedient for the at least one location at which at least one phase fraction of the metal is calculated in the first and second steps of the method", to be located at the end of the cooling line.
A]ternatively the anticipated phase fraction calculated m the second step is advantageously compared in the second step with a stipulated phase fraction. In this case it is no longer necessary to compare the anticipated phase fraction calculated in the second step with the phase fraction calculated m the first step. Direct stipulations of an operator for example when setting the phase fraction are taken into account in this way.
The second step is advantageously iteratively executed online, i.e. m real time, during production of the metal. By repeating the second step, i.e. repeated measured value acquisition, calculation, comparison and optionally adjustment, the accuracy of the method is improved further.
In the second step at least one correcting variable of the cooling line is advantageously adjusted in accordance with the comparison by a cooling line controller. The cooling line controller directly adjusts the correcting variables of the cooling line on the basis of the comparison of the phase

PCT/DE2004/000724 / 2004P04795WOUS
4 fractions according to the calculations from the first or
second step. Hagh control accuracy is thus ensured.
Alternatively a cascaded control structure is provided with the cooling line controller being provided with target values from a superimposed phase fraction controller. In the process the phase fraction controller, in the second step, adjusts at least one target value for the cooling line controller and the cooling line controller adjusts at least one correcting variable of the cooling line by taking into account target values with which it has been provided.
A temperature model is advantageously used in at least one of the two steps, which model calculates the temperature characteristic of the metal in the cooling line. Particularly high control accuracy is thus attained with respect to the temperature of the metal.
The temperature model is advantageously adapted using the at least one measured value. Variations in the production of the metal may be compensated even more effectively in this way.
To improve the control accuracy with respect to the phase fractions, a conversion model is preferably used which calculates the characteristic of the at least one phase fraction m the cooling line.
A multx-phase steel is advantageously produced. It is precisely m multi-phase steels, such as dual phase steels or TRIP steels, that keeping the phase fractions, and thus the degree of conversion, constant in the cooling line is particularly critical and important. These steels have particularly good material properties, for example for the automotive industry.

PCT/DE2004/000724 / 2004P04795WOUS
5
The metal is advantageously cooled in the cooling line in at least two cooling sections. Desired phase fractions/ in particular m the case of multi-phase steels, may be purposefully adjusted m this way.
A holding time is preferably adjusted.
A holding temperature is preferably adjusted. With cooling in a plurality of cooling sections, variables, such as holding time and holding temperature, are particularly critical for the phase fractions in metal.
At least one correcting variable is advantageously adjusted for coolant actuators. Coolant actuators are local actuators in the cooling line and therefore have for example no effects on a finishing train arranged upstream of the cooling line. The finishing train is thus not undesirably affected by the adjustment of the correcting variables for the coolant actuators.
When producing sheet steel at least one correcting variable is advantageously adjusted for the speed of the metal in the cooling line. When producing sheet steel the speed of the metal in the cooling line can substantially be influenced independently of the speed at which the metal passes through unit components arranged upstream of the cooling line.
When producing sheet steel at least one correcting variable is advantageously adjusted for an idle time of the metal. When producing sheet steel the storage time of the metal is a further local correcting variable for setting the phase fractions of the metal.

2004P04795 WO PCT/DE2004/000724
6 producing sheet steel the storage time of the metal is a
further local correcting variable for setting the phase fractions of the metal.
The object underlying the invention is also achieved by a calculation means as claimed in claim 16 or 17.
The invention is also achieved by a unit for producing a metal, comprising a cooling line and comprising a calculation means of this type, the calculation means being coupled via correspondingly configured interfaces to signal transmitters and actuators of the cooling line to control and model the cooling line.
The invention is also achieved by a metal according to claim 19. Particularly uniform material properties in the metal result.
The advantages with respect to the calculation means and the unit result analogously to the advantages of the method.
Further advantages and details emerge from the following description of embodiments in conjunction with the drawings, in which in a basic diagram:
Fig. 1 shows a cooling line,
Fig. 2 shows a temperature characteristic,
Fig. 3 shows a simple control system for the cooling line, and
Fig. 4 shows a cascaded control system for the cooling line.

PCT/DE2004/000724 / 2004P0479SWOUS
7 The rolling stand 4 is for example the last rolling stand of
what is known as a finishing train. A different forming or working device for the metal 1 may however be arranged upstream of the cooling line h. The cooling line 5 and any one or more device(s) arranged upstream of it for forming or working the metal 1 and any devices arranged downstream of the cooling line 5 form a unit for producing a metal 1. In the illustrated example a winding device 12 is arranged downstream of the cooling line 5, with the aid of which device the cooled metal 1 is wound to form a coil. Other devices, not shown in the drawings, for processing and/or storing the metal 1 may however also be arranged downstream of the cooling line 5.
In this case the metal 1 is solid steel. It could however also be at least partially liquid. According to Fig. 1 the metal 1 is formed as a metal strip or slab. However other forms of the metal 1, for example rod-shaped profiles, such as wires, pipes or U-profiles, are also conceivable.
To influence the temperature of the metal 1 the cooling line 5 comprises one or more actuator(s) 2. The temperature T of the metal 1 can be directly or indirectly influenced by means of the actuator 2, usually by cooling, but m individual cases also by heating. An actuator 2 can for example comprise one or more valve(s) for applying a coolant to the metal 1. Water or a mixture of water with other substances can be used as the coolant. The cooling line 5 is controlled by the calculation means 3. The actuator 2 is in particular also controlled by the calculation means 3 according to a correcting variable S. Measuring components 6, 6' are provided by means of which the temperature T of the metal 1 is acquired. At the start of the cooling line, downstream of the final rolling stand 4 in the illustrated example, there is arranged a first measuring component 6 for recording temperature. A further measuring

PCT/DE2004/000724 / 2004P04795WOUS
8 component 6' for recording temperature is arranged at the end
o£ the cooling line 5 or, in the illustrated example, upstream of the winding device 12.
The calculation means 3 provides the cooling line actuators 2 with correcting variables S. Measured values, such as the temperature T of the cooling line 5 and/or of devices arranged upstream or downstream of the cooling line, are fed to the calculation means 3. The calculation means 3 may also be provided with the actual speed v of the metal 1. The actual speed v of the metal can be determined by measuring and/or using at least one model. The calculation means 3 can for example also be provided with the rotational speeds of the rollers of a rolling stand 4, as measured values and/or calculated or modeled values. The calculation means 3 is also provided with what is referred to as primary data P. Primary data P is generally used to calculate in advance or pre-set a unit and is dependent on the metal 1 to be produced. Different metal strips or slabs are usually characterized by different primary data. Primary data can also be at least partially based on the required properties of the metal 1 produced.
Fig. 2 shows the characteristic of the temperature T of the metal 1 in the cooling line 5 plotted over time t. The time t is based in this case on the time during which a point in the metal 1, in the form of a strip according to Fig. 1, passes through the cooling line 5.
Alternatively the temperature T could also be plotted over the running direction x of the strip, in other words the position in the cooling line. The temperature T is used in its property as a variable that describes the energy content of the metal 1. The characteristic of the enthalpy over time t or over the

PCT/DE2004/000724 / 2004P04795WOUS
9 running direction x of the strip could therefore also be seen
as an alternative.
Crucial to the material properties of the metal 1 or steel produced are the phase fractions Pj at the end of the cooling line 5 or at the winding device 12. Particularly crucial, but also critical during production, are the phase fractions Pi of a metal 1, in particular m the case of multi-phase steels, such as dual phase and TRIP steels. With steels of this kind a conventional cooling method is cooling divided into three cooling sections. In this case the metal 1 is cooled in the cooling line 5 in a plurality of temporal cooling phases or temporal cooling sections I, II, III. The temporal cooling sections I, II, III can, but do not have to, coincide with physical or component-based cooling sections. In the first cooling section I, or in the first cooling phase, the metal 1 is preferably cooled at a high cooling rate to a holding temperature TH. The holding temperature TH is usually stipulated or dependent on the primary data. Air cooling with a stipulated holding time tH takes place in a second cooling section II. In the second cooling section II the temperature T of the metal 1 or the steel decreases only slightly. Quenching of the metal 1 to temperature T or below the temperature T which is to be attained at the end of the cooling line or immediately before winding by means of the winding device 12, then takes place in a third cooling section III. The metal 1 is preferably quenched below the initial martensite temperature.
To obtain a structure with a phase fraction ?! of approx. 80 % ferrite and a phase fraction 9X of approx. 20 % martensite or bainite for example in dual phase steels, a retained austemte content of typically 20 % is conventionally desired before the start of quenching. With TRIP steels a retained austemte

PCT/DE2004/000724 / 2004P0479'5WOUS
10 content that is metastable at ambient temperature and which is
converted into martensite when shaped also remains.
Both dual phase steels and TRIP steels may be shaped initially with low force expenditure during subsequent use thereof. As shaping increases the rigidity increases as well however, with this behavior being even more pronounced in TRIP steels than in dual phase steels. Typical applications of dual and TRIP steels are body sheets and wheel rims for motor vehicles, where good deep drawing properties, high end strength and high energy absorption capacities are required in the case of further deformation, for example as a result of accidents.
When producing these steels keeping the phase fractions Pj., and therefore the degree of conversion, in the cooling line 5 constant is extremely critical. If, for example, in a hot rolling mill arranged upstream of the cooling line 5 undesirable surface temperature impairments, such as what are referred to as skid marks, are generated on the metal 1, steel slabs in this case, these undesirable skid marks lead to weak points in the metal strip. At such weak points the degree of conversion in the metal 1 has already progressed too far before quenching has begun to form sufficient martensite or bainite. Other variations m the process parameters m the devices arranged upstream of the cooling line 5 can cause further differences from the desired structure and the desired phase fractions Pa in the metal 1.
Fig. 3 and 4 show control systems according to the invention for the cooling line 5. Both Eigures show a calculation means 3 coupled to the cooling line 5 for controlling and modeling the cooling line 5. Interfaces are provided to supply the calculation means 3 with signals for modeling and to supply the cooling line 5 with control or regulating signals.

PCT/DE2004/000724 / 2004P04795WOUS
12 fraction controller 11. In terms of control engineering the
phase fraction controller 11 is superimposed on the cooling line controller 8. The phase fraction controller 11 thus provides the cooling line controller 8 with at least one target value, for example TH or tH, on the basis of the comparison of the phase fraction P1. calculated in the first step and the anticipated phase fraction P1. calculated in the second step. With a cooling sequence with a plurality of cooling sections I, II, III or cooling phases, as is shown for example in Fig. 2, the phase fraction controller 11 preferably provides the cooling line controller 8 with a holding time tH and/or a holding temperature TH. The cooling line controller 8 adjusts the correcting variables S of the cooling line 5, and takes the target presets of the phase fraction controller 11 into account in the process.
Both control systems, i.e. both the control system according to Fig. 3 and the control system according to Fig. 4, preferably operate in such a way that the second step is iteratively executed online, i.e. in real time, during production of the metal 1.
The phase fraction Px is calculated in the same way in both the first and second steps, i.e. using the same computing methods or models. Calculation in the two steps differs however with respect to the data underlying the calculation, in particular with respect to the input data for the calculation.
As an alternative to the phase fraction P1 calculated on the basis of the primary data P in the first step, a phase fraction Px stipulated by an operator for example m a first step can also be compared in the second step with the anticipated phase fraction px calculated in the second step. To ensure consistently high quality of the metal 1 at the end of

PCT/DE2004/000724 / 2004P04795WOUS
13 the cooling line 5, at least one phase fraction P2 of the metal
1 is calculated at the end of the cooling line.
As an alternative, or additionally, at least one phase fraction P1 of the metal can be calculated in at least one other location in the cooling line 5. If, for example, it is not expedient to measure at the end of the cooling line 5, at least one phase fraction p1 of the metal can be calculated in both the first and second steps of the method at a different location in the cooling line 5, for example at a location at which it is assumed that the fundamental part of the phase conversion within the cooling line 5 has already finished.
The calculation means 3 and the cooling line model 7 preferably comprise a temperature model 9 which calculates the temperature characteristic of the metal 1 in the cooling line 5 over time t or over the running direction x of the strip. The temperature model 9 is advantageously adapted using at least one measured value. The at least one measured value is preferably a measured value for the temperature T of the metal 1 which is acquired by means of a measuring component 6, 6' at the entrance to or exit from the cooling line 5. The measured value may alternatively or additionally be acquired at a different cooling line 5 location. A conversion model 10 is preferably provided which calculates the characteristic of the at least one phase fraction V± of the metal 1 in the cooling line 5 over time t and/or the running direction x of the strip. As an alternative or in addition to temperature T, the cooling line model 7 and/or the temperature model 9 may also use or calculate the enthalpy or a different energy content-describing variable.
While a conversion model 10 is not shown in Fig. 4 for the sake of clarity, it is expedient in the embodiment according

PCT/DE2004/000724 / 2004P04795WOUS
14 to Fig. 4. A conversion model 10 must provide at least the
phase fraction P1 of the metal 1 in at least one cooling line 5 location, preferably at the end of the cooling line 5.
The position of valves for example for coolants or the flow of coolant in the cooling line 5 is controlled via the correcting variables S for the actuators 2 of the cooling line 5. Local correcting variables S of this kind, i.e. correcting variables which do not have any effect on the unit components arranged upstream of the cooling line 5, may however, when producing steel plate, also be the speed v of the metal 1 in the cooling line and an idle time of the metal 1.
The inventive idea may substantially be summarized as follows:
When producing steel a conversion model 10 is used for the cooling line 5, with the aid of which the phase fractions P± along the strip of steel may be calculated in real time m addition to the temperature T of the steel. A control system is implemented which keeps the phase fractions P1 of the steel strip wound on a winding device 12 constant. For this purpose the following steps are carried out: the degree of conversion, for example the ferrite content in multi-phase steels, is determined in a first step from data, which is given by the primary data P of the steel strip. In a second step, as the strip enters the cooling line 5, one or more parameter (s) of the cooling strategy, i.e. correcting variables S, are adapted online in the sense of a control in such a way that the feirite content of the cooled steel at the winding device 1 is kept constant. In the case of cooling featuring a plurality of cooling sections, the holding temperature TH may be modified for this purpose. Elevation of the holding temperature TH reduces the ferrite content; reduction of the holding temperature TH increases it.

PCT/DE2004/000724 / 2004P04795WOUS
15
Deviations from the target structure are already discovered online according to the inventive method and not only after measurements of the structural fractions in the laboratory (sections} or in tension tests.
With known methods the constancy of the structural fractions along the strip is conventionally assessed by quality assurance in the steel works using only the temperature record for intermediate temperature and winder temperature. The method according to the invention on the other hand allows the phase fractions Px at the winding device 12 to be kept substantially constant along the metal strip, even with variations in production conditions and varying speed v of the metal strip. Differences between various metal strips with the same primary data P are largely eliminated because the variations in the unit do not enter the first determination of the reference degree of conversion and the variations xn the unit are largely compensated by subsequent control to the reference degree of conversion. First determination of the reference degree of conversion or at least one phase fraction Pj depends only on the primary data P. Subsequent determinations of the degree of conversion or a phase fraction Pi take account of the variations during production. Steel or metal 1 of consistent quality may hence be produced and the requirements placed on the material properties of the metal 1 or the steel are satisfied much more reliably than before.

2004P04795 WO PCT/DE2004/000724
16 Claims
1. A method for producing a metal (1) having a plurality of
phase fractions, the hot formed metal (1) being cooled in a
cooling line (5), the temperature (T) and at least one phase
fraction (P.J of the metal (1) being calculated m a first step
in at least one location in the cooling line (7), using
primary data (P) for the metal (1), by means of a cooling line
model (7), characterized in that in a second step
- at least one temperature measured value is acquired during
production of the metal (1)/
- using the at least one temperature measured value, at least
one anticipated phase fraction (P1 of the metal (1) is
calculated by means of the cooling line model (7) at the at
least one location in the cooling ]ine (5),
- the anticipated phase fraction (Pi) is compared with the
phase fraction (P1 calculated in the first step and
- this comparison is used to adjust at least one correcting
variable (S) of the cooling line (5).

2. The method as claimed in claim 1, characterized in that
the at least one location at which at least one phase fraction
(Pi) of the metal (1) is calculated in the first and second
steps is located at the end of the cooling line (5) .
3. The method as claimed in claim 1 or claim 2,
characterized in that in the second step the anticipated phase
fraction {P1) is compared with a stipulated phase fraction
(PJ •
4. The method as claimed in any one of claims 1 to 3,
characterized in that the second step is iteratively executed
online.

2004P04795 WO PCT/DE2004/000724
17
5. The method as claimed in any one of claims 1 to 4,
characterized in that in the second step a cooling line
controller (8) adjusts at least one correcting variable (S) of
the cooling line (5) in accordance with the comparison.
6. The method as claimed in any one of claims 1 to 4,
characterized m that in the second step

- a phase fraction controller (11) adjust at least one target
value for a cooling line controller (8) in accordance with the
comparison and
- the cooling line controller (8) adjusts at least one
correcting variable (S) of the cooling line (5) by taking into
account target values with which it has been provided.

7. The method as claimed m any one of claims 1 to 6,
characterized m that a temperature model (9} is used in at
least one of the two steps, the model calculating the
temperature characteristic of the metal (1) in the cooling
line (5) .
8. The method as claimed m claim 7, characterized in that
the temperature model (9) is adapted using the at least one
measured value.
9. The method as claimed in any one of claims 1 to 8,
characterized m that a conversion model (10) is used which
calculates the characteristic of the at least one phase
fraction (P^ in the cooling line (5) .
10. The method as claimed in any one of claims 1 to 9,
characterized in that a multi-phase steel is produced.

2004P04795 WO PCT/DE2004/000724
19 claimed in any one of the preceding claims, comprising at
Jeast one cooling line model (7) and at least one cooling line controller (8), the cooling line model (7) comprising at least one temperature model (9), a phase fraction controller (11) being provided for adjusting the target values of the cooling line controller (8).
19. A unit for producing a metal (1) having a plurality of phase fractions, comprising a cooling line (5) and comprising a calculation means (3) as claimed in claim 17 or 18, the calculation means (3) being coupled via correspondingly configured interfaces to signal transmitters (6, 6') and actuators (2) of the cooling line (5) to control and model the cooling line (5).
During the production of steel, a conversion model (10) is used for the cooling line (5). Said model is used to calculate the phase fractions (pi), in addition to the temperature (T) of the steel, along the steel strip in real time. A regulating system, which maintains the phase fractions (Pt) of a steel strip that is wound onto a reeling device (12) at a constant level, is implemented. The method comprises the following steps; in a first step, the degree of conversion, for multi-phase steel e.g. the ferrite fraction, is determined from date obtained from the primary data (P) of the steel strip. In a second step,, when the strip enters the cooling line (5), one or more parameters of the cooling strategy, i.e. control values (S), are adapted online in such a way that the ferrite content of the cooled steel on the reefing device (12) is maintained at a constant level.

Documents:

03041-kolnp-2006 abstract.pdf

03041-kolnp-2006 assignment.pdf

03041-kolnp-2006 claims.pdf

03041-kolnp-2006 correspondenc others.pdf

03041-kolnp-2006 description(complete).pdf

03041-kolnp-2006 form1.pdf

03041-kolnp-2006 form2.pdf

03041-kolnp-2006 form3.pdf

03041-kolnp-2006 form5.pdf

03041-kolnp-2006 internationnal publication.pdf

03041-kolnp-2006 internationnal search authority report.pdf

03041-kolnp-2006 pct others.pdf

03041-kolnp-2006 priority document.pdf

03041-kolnp-2006-correspondence others-1.1.pdf

03041-kolnp-2006-correspondence-1.2.pdf

03041-kolnp-2006-form-18.pdf

3041-KOLNP-2006-(26-08-2011)-ABSTRACT.pdf

3041-KOLNP-2006-(26-08-2011)-AMANDED CLAIMS.pdf

3041-KOLNP-2006-(26-08-2011)-CORRESPONDENCE.pdf

3041-KOLNP-2006-(26-08-2011)-DESCRIPTION (COMPLETE).pdf

3041-KOLNP-2006-(26-08-2011)-DRAWINGS.pdf

3041-KOLNP-2006-(26-08-2011)-FORM 1.pdf

3041-KOLNP-2006-(26-08-2011)-FORM 2.pdf

3041-KOLNP-2006-(26-08-2011)-FORM 3.pdf

3041-KOLNP-2006-(26-08-2011)-OTHERS.pdf

3041-KOLNP-2006-(26-08-2011)-PETITION UNDER RULE 137.pdf

3041-KOLNP-2006-ABSTRACT 1.1.pdf

3041-KOLNP-2006-AMANDED CLAIMS.pdf

3041-KOLNP-2006-CORRESPONDENCE 1.1.pdf

3041-KOLNP-2006-CORRESPONDENCE 1.2.pdf

3041-KOLNP-2006-CORRESPONDENCE 1.3.pdf

3041-KOLNP-2006-DESCRIPTION (COMPLETE) 1.1.pdf

3041-KOLNP-2006-EXAMINATION REPORT.pdf

3041-KOLNP-2006-FORM 18.pdf

3041-KOLNP-2006-FORM 2 1.1.pdf

3041-KOLNP-2006-FORM 3.pdf

3041-KOLNP-2006-FORM 5.pdf

3041-KOLNP-2006-GPA.pdf

3041-KOLNP-2006-GRANTED-ABSTRACT.pdf

3041-KOLNP-2006-GRANTED-CLAIMS.pdf

3041-KOLNP-2006-GRANTED-DESCRIPTION (COMPLETE).pdf

3041-KOLNP-2006-GRANTED-FORM 1.pdf

3041-KOLNP-2006-GRANTED-FORM 2.pdf

3041-KOLNP-2006-GRANTED-LETTER PATENT.pdf

3041-KOLNP-2006-GRANTED-SPECIFICATION.pdf

3041-KOLNP-2006-OTHERS.pdf

3041-KOLNP-2006-REPLY TO EXAMINATION REPORT.pdf

abstract-03041-kolnp-2006.jpg


Patent Number 251840
Indian Patent Application Number 3041/KOLNP/2006
PG Journal Number 15/2012
Publication Date 13-Apr-2012
Grant Date 11-Apr-2012
Date of Filing 20-Oct-2006
Name of Patentee Siemens Aktiengesellschaft
Applicant Address Wittelsbacherplatz 2, 80333 Munchen, Germany.
Inventors:
# Inventor's Name Inventor's Address
1 KLAUS WEINZIERL Eisenteiner Str.12 90480 Nurnberg Germany (citizen of Germany)
PCT International Classification Number B21B37/76; C21D11/00
PCT International Application Number PCT/DE2004/000724
PCT International Filing date 2004-04-06
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 PCT/DE04/000724 2004-04-06 Germany