Title of Invention

"PROCESS FOR THE PREPARATION OF THIOCARBOXYLATE SILANE."

Abstract An aqueous process is described in which thiocarboxylale silane is produced from haloalkyl silane by reaction of the haloalkyl silane with an aqueous solution of thiocarboxylale salt. Also described is a process for the preparation of aqueous thiocarboxylate salt from a sulfidc and/or hydrosulfide and an acid chloride and/or acid anhydride.
Full Text PROCESS FOR THE PREPARATION OF THIOCARBOXYLATE SILANE CROSS REFERENCE TO RELATED APPLICATION
This application claims the benefit of U.S. Provisional Application Serial Number 60/484,962, filed July 3, 2003.
BACKGROUND OF THE INVENTION
A large body of prior art exists in conjunction with the composition of matter, preparation, and uses of polysulfide silanes and to a lesser extent, mercaptosilanes, in rubber and other applications. In nearly all of this prior art, the methods taught forthe preparation of these silanes involve solvents other than water and anhydrous conditions. In fact, it is taught that the presence .of water during preparation or storage is detrimental to the stability and/or integrity of the silane compositions. The prior art describes preparation methods which require elaborate means to achieve and maintain anhydrous conditions such as the use of large quantities of hazardous metallic sodium and hydrogen sulfide.
SUMMARY OF THE INVENTION
An aqueous process is described in which thiocarboxylate silane is produced from haloalkyl silane by reaction of the haloalkyl silane with an aqueous solution of a salt of a thiocarboxylic acid in the presence or absence of a phase transfer catalyst.
Also described is a novel, simple and efficient process for the preparation of the aqueous thiocarboxylate salt (also known as thioalkanoic acid salt and as thioalkanoate salt) intermediate employing readily available carboxylic acid derivatives, in particular, acid chlorides and acid anhydrides.
The present invention teaches a process of the manufacture of thiocarboxylate silanes from aqueous solutions of sodium sulfide or sodium hydrosulfide, carboxylic acid chlorides or anhydrides, and haloalkyl-functional alkoxysilanes. In one embodiment, the process requires no solvent other than water, uses existing aqueous sulfide waste
streams as the sulfur source, and requires no hazardous alkali metals or hydrogen sulfide as a feedstock.
DETAILED DESCRIPTION OF THE INVENTION Thiocarboxvlafe Silane
The thiocarboxylate silanes, whose preparation by an aqueous route is described herein, may be represented by Formulae 1, 2. and 3:
(Formula Removed)
wherein Y is carbony), C(=O); each occurrence of R' is chosen independently from the set of groups comprising hydrogen, alkyi groups that may or may not contain unsaturation, alkenyl groups, alkynyl groups, aryl groups and aralkyl groups, with each R containing from 0 to about 30 carbon atoms; each separate occurrence of G is independently R1 or a polyvalent group derived by substitution of an alkyl, alkenyl, aryl or aralkyl group, wherein G1 can contain from I to about 40 carbon atoms; each separate occurrence of G2 is independently a polyvalent (divalent or higher-valent) group derived by substitution of an alkyl, alkenyl, aryl or aralkyl group, wherein G* can contain from 1 to about 40 carbon atoms; each occurrence of X is independently a member selected from the group consisting of RO-, R2C=NO-, R3NO- or R2N-, -R, and -(OSiR2)(OSiR.3), wherein each R is as above for R1; at least one X is not -R and each occurrence of the subscript t is an integer from 0 to about 50; each occurrence of the subscript a is independently an integer from 1 to about 6; each occurrence of the subscript h is independently an integer from I to about 100; each occurrence of the subscript c is independently an integer from 1 to 6; and, each occurrence of the subscript J is independently an integer from 1 to about 100.
As used herein, alkyl includes straight, branched and cyclic alkyl groups; alkenyl includes any straight, branched, or cyclic alkenyl group containing one or more
carbon-carbon double bonds, where ihe point of substitution can be either at a carbon-carbon double bond or elsewhere in the group: and alkyny) includes any straight, branched, or cyclic alkynyl group containing one or more carbon-carbon triple bonds and optionally also one or more carbon-carbon double bonds as well, where the point of substitution can be either at a carbon-carbon triple bond, a carbon-carbon double bond, or elsewhere in the group. Specific examples of alkyls include methyl, ethyl, propyl and isobutyl. Specific examples of alkenyls include vinyl, propenyl, allyl, methallyl- ethylidenyl norbornane, ethylidene norbomyl, ethylidenyl norbomene and cthylidene norbomenyl. Specific examples of alkynyls include acetylenyl, propargyl and methylacetylenyl.
As used herein, ary) includes any aromatic hydrocarbon from which one hydrogen atom has been removed; aralkyl includes any of the aforementioned alkyl groups in which one or more hydrogen atoms have been substituted by the same number of like and/or different aryl (as defined herein) subslituents; and arenyl includes any of the aforementioned aryl groups in which one or more hydrogen atoms have been substituted by the same number of like and/or different alkyl (as defined herein) subslituents. Specific examples of aryls include phenyl and naphthalenyl. Specific examples of aralkyls include benzyl and phenethyl. Specific examples of arenyls include tolyl and xylyl.
As used herein, cyclic alkyl, cyclic alkenyl, and cyclic alkynyl also include bicyclic, tricyclic, and higher cyclic structures as well as the aforementioned cyclic structures further substituted with alkyl, alkenyl, and/or alkynyl groups. Representative examples include norbornyl, norbornenyl, ethylnorbomyl, ethylnorbornenyl, ethylcyclohexyl, ethylcyclohexenyl, cyclohexylcyclohexyl and cyclododecatrienyl.
The key functional group (-YS-) present in the silanes of the present invention is the thiocarboxylate ester group, -C(=O)S- (any silane with this functional group is a "thiocarboxylate ester silane").
In one embodiment of the structures within the set wherein R'-Y is equal to R'C(=O)-are those wherein R1 has a primary carbon attached to the carbonyl. R1 in one
embodiment is a C2-C20 straighl- or branched- chain alkyl, in another embodiment a C,,-Cix straight-chain alkyl. In yet another embodiment, C(l-Cu straight -chain alkyls are used.
Representative examples of G1 include monovalent hydrocarbon groups such as those described above for R1; phenylene; -(CHj),, - wherein v is 1 to about 20, which represent the terminal straight-chain alkyls further substituted terminally at the other end such as -CH2, -CH2CH2-, -CH2CH2CH2-, and CH2CH2CH2CH:CH2CH2CH2CH2- and their beta-substituted analogs such as -CH2(CH2)mCH(CH3)- where m is 0 to about 17; -CH2CH2C(CH:,)2CH2-; the structure derivable from melhallyl chloride, -CH2CH(CHx)CH2-; any of the structures derivable from divinylbenzene such as -CH2CH2(C6H4)CH2CH2 and -CH2CH2(C6H4)CH(CH;,)-where the notation C6H4 denotes a disubstituted benzene ring; any of the structures
derivable from dipropenylbenzene such as -CH2CH(CH3) (C6H4)CH(CH3CH2 where
the notation C6H4, denotes a disubstituted benzene ring; any of the structures-derivable
from butadiene such as -CH2CH2CH2CH2-, -CH->CHjCH(CH})- and -
CH2CH(CH2CH;Os any of the structures derivable from piperylene such as -
CH:CH2CH2CH(CH3)-, -CH-.CH-.CH(CH2CH2)- and -CH2CH(CH2CH2CH,)-; any of
the structures derivable from isoprene such as -CH2CH(CH;OCH2CH2-, -
CH2CH(CH-,)CH(CH.,)-, -CH2C(CH,)(CH2CH.O-, -CH:CH2CH(CH.,)CH2-, -
CH2CH2C(CH,)r and -CH2CH[CH(CH3)2]-; any of the isomers of -CH2CH2-
norbornyl-, -CH2CH2-cyclohexyl-; any of the diradicals obtainable from norbornane,
cyclohexane, cyclopentane, tetrahydrodicyclopentadiene or cyclododecene by loss of
two hydrogen atoms; the structures derivable from limonene, -CH2CH(4-methyl-l-
C(,H.)-)CH?, where the notation C(,H9 denotes isomers of the trisubstituted
cyclohexane ring lacking substitution in the 1 position; any of the monovinyl-
containing structures derivable from trivinylcyclohexane such as
CH2CH2(vmylC6H9)CH2CH2- and -CH2CH2(vinylC6H9)CH(CH3)- where the notation
C6,H9 denotes any isomer of the trisubstituted cyclohexane ring; any of the
monounsaturated structures derivable from myrcene containing a trisubstituted C=C
such as -CH2CH[CH2CH2CH=C(CH,)2]CH2CH2-,
CH2CH[CH2CH2CH=C(CH3)2]CH(CH3)-, -C
-CH2CH2CH[CH2CH2CH=C(CH.3)2]CH2-, -CH2CH2(C-)(CH3)[CH2CH2CH-C(CH.02]
and -CH2CH[CH(CH3)[CH2CH3CH=C(CH02]-; and, any of the monounsaturated
structures derivable from myrccne lacking a trisubstituted C=C such as -
CH2CH(CH=CH2)CH2CH2CH2C(CH3.)2, -CH2CH(CH=CH2)CH2CH2
CH[CH(CH.3)2]-. -CH2C(=CH-CH3)CH2CH2CH2C(CH3,)2-, -CH:C(=CH-CH3) CH2CH2CH[CH(CH.3)2]-, -CH2CH2C(=CH2)CH2CH2CH2C(CH3)2-, -CH3CH2C (=CH:)CH2CH2CH[CH(CH3)2]-, -CH2CH=C(CH3)2CH2CH2CH2C(CH.3,)2 and -CH2CH=C(CH3CH2CH2CH[CH(CH3)2]. In one embodiment, the structures for G1 are -CH2-, -CH2CH2-, -CH2CH2CH2-, -CH2CH(CH3)CH2- and any of the diradicals obtained by 2,4 or 2,5 disubstitution of the norbomane-derived structures listed above. In another embodiment,
-CH2CH2CH2- is used.
Representative examples of G" include phenylene; -(CH2),, - wherein v is 1 to about 20, which represent the terminal straight-chain alkyls further substituted terminally at the other end such as -CH2-, -CH2CH2-, -CH2CH2CH2-, and CH2CH2CH2CH2CH2CH2CH2CH2- and their beta-substituted analogs such as -CH2(CH2)m,CH(CH3)- where m is 0 to about 17; -CH2CH2C(CH.i)2CH2-; the structure derivable from mcthallyl chloride, -CH2CH(CH3)CH2-; any of the structures derivable from divinylbenzenc such as -CH2CH3(C6H4)CH2CH2- and -CH2CH2(Q,H4)CH(CH,)-where the notationC6,H4 denotes a disubstituted benzene ring; any of the structures derivable from dipropenylbenzcne such as -CH2CH(CH3) (C6,H4)CH(CH3)CH2- where the notation C6,H4denotes a disubstituted benzene ring; any of the structures derivable from butadiene such as -CH2CH2CH2CH2-, -CH2CH2CH(CH.3)- and -CH2CH(CH2CH3)-; any of the structures derivable from piperylene such as -CH2CH2CH2CH(CH3.,)-, -CH2CH2CH(CH2CH3)- and -CH2CH(CH2CH2CH3,)-; any of the structures derivable from isoprene such as -CH2CH(CH3)CH2CH2-, -CH2CH(CH,)CH(CHO-, -CH2C(CH.-,)(CH2CH,)-, -CH2CH2CH(CH3)CH2-, -CH2CH2C(CH,)2- and -CH2CH[CH(CH,)2]-; any of the isomers of -CH2CH2-norbornyl-, -CH2CH2-cyclohexyl-; any of the diradicals obtainable from norbomane, cyclohexane, cyclopentane, tetrahydrodicyclopentadiene or cyclododecene by loss of two hydrogen atoms; the structures derivable from limonene, -CH2CH(4-methyl-1 -
C6,H2i,-)CH3, where the notation C6,H2 denotes isomers of the trisubstituted
cyclohexane ring lacking substitution in the 2 position; any of- ihe monovinyl-
containing structures derivable from trivinylcyclohexane such as
CH2CH2(vinylC(1H9)CH2CHr and -CH2CH2(vinylC(,H9)CH(CH.1)- where the notation
C(,H monounsaturated structures derivable from myrcene containing a trisubstituted C=C
such as -CHzCHtCHjCHjCH^CH^ChbCHj-,
CH3CH[CH2CH:CH=C(CH3)2]CH(CH,)-, -CHjC[CH2CH:CH-C(CH,)2](CH2CH;,)-,
-CH:CH2CH[CH2CH:CH=C(CH.1)2]CH2-, -CH2CH,(C-)(CH,)tCH2CH2CH=C(CH:,):]
and -CH2CH[CH(CH-0[CH2CH2CH=C(CH,)2]]-; and. any of the monounsaturated
structures derivable from myrcene lacking a trisubstituted C=C such as -
CH2CH(CH=CH2)CH2CH2CH2C(CH.i)2-, -CH2CH(CH=CH2)CH2CH2
CH[CH(CH,)2]-, -CH2C(=CH-CH3)CH2CH2CH2C(CH,)2-, -CH2C(=CH-CH,) CHjCH2CH[CH(CHj)2]-, -CH2CH2C(=CH2)CH2CH2CH2C(CH.02-, -CH2CH:C (=CH2)CH2CH2CH[CH(CH.-,)2]-, -CH2CH=C(CH,)2CH2CH2CH2C(CH?)2- and -CH2CH=C(CH02CH:CH2CH[CH(CHj)2]. In one embodiment, the structures for G~ are -CH2-, -CH2CHr, -CH2CH2CH2-, -CH2CH(CH.OCH2- and any of the diradicals obtained by 2,4 or 2,5 disubslitution of the norbornane-derived structures listed above. In another embodiment, the structure -CH2CHjCH2- is used.
Representative examples of R1 groups are branched and straight-chain alkyl of 1 to about 30 carbon atoms such as methyl, ethyl, propyl, isopropyl, butyl, hexyl, octyl, nonyl, octadecyl, phenyl, benzyl, tolyl and allyl.
Representative examples of R groups are branched and straight-chain alkyls of 1 to about 30 carbon atoms or more such as methyl, ethyl, propyl, isopropyl and butyl; phenyl; benzyl; tolyl; and, allyl. In one embodiment, the R groups are Ci to C* alkyls and H.
Representative examples of X are methyl, ethyl, methoxy, ethoxy, isobutoxy, propoxy, isopropoxy and oximato. Methoxy and ethoxy are used in one embodiment. In another embodiment, elhoxy is used.
Examples of embodiments wherein X is RO- include embodiments of R in the form of hydrogen, methyl, ethyl, propyl, butyl or isopropyl; and, G1 is a substituted phenyl or substituted C: to Cju straight-chain alky]; G2 is divalent C2 to C4 straight-chain alkylene. The embodiments also include structures of the form X3SiG2SC(=O)G2C(=O)SG:SiXs wherein G3 is a divalent hydrocarbon. In other embodiments, X is ethoxy and G1 is a C6-C14 straight-chain alkyl.
Representative examples of the silanes whose preparation is described in the present
invention include 2-trielhoxysilyl-l-elhyl thioacetate; 2-trimethoxysilyl-l -ethyl
thioacetate; 2-(methyldimethoxysilyl)-l-ethyl thioacetate; 3-trimethoxysilyl-l-propyl
thioacetate; triethoxysilylmethyl thioacetate; trimethoxysilylmethyl thioacetate:
triisopropoxysilylmethyl thioacetate; melhyldiethoxysilylmethyl thioacetate;
methyldimethoxysilylmethyl thioacetate; methyldiisopropoxysilylmethyl thioacetate;
dimethylethoxysilylmethyl thioacetate; dimethylmethoxysilylmethyl thioacetate;
dimethylisopropoxysilylmethyl thioacetate; 2-triisopropoxysilyl-l-ethyl thioacetate;
2-(methyldiethoxysily!)-1 -ethyl thioacetate; 2-(mcthyldiisopropoxysilyl)-1 -ethyl
thioacetate; 2-(dimethylelhoxysilyl)-l-ethyl thioacetate;
2-(dimelhylmelhoxysilyl)-1 -ethyl ihioacetale; 2-(dmiethylisopropoxysilyl)-1 -ethyl
thioacetate; 3-triethoxysilyl-l-propyl thioacetate; 3-triisopropoxysilyl-l-propyl
thioacetate; 3-methyldiethoxysilyl-l-propyl thioacetate;
3-niethyldimelhoxysilyl-l-propyl thioacetate; 3-methyldiisopropoxysilyl-l -propyl
thioacetate; 1 -(2-triethoxysilyl-1 -ethyl)-4-thioacetylcyclohexane;
I -(2-triethoxysilyl-1 -ethy!)-3-thioacetylcyclohexane;
2-triethoxysilyl-5-thioacetylnorbornene; 2-triethoxysilyl-4-thioacetylnorbornenc;
2-(2-triethoxysilyl-1 -ethyl)-5-thioacetylnorbornene; 2-(2-triethoxysilyl-1 -ethyl)-4-thioacetylnorbornene;
I -(1 -oxo-2-thia-5-triethoxysilylpenyl)benzoic acid; 6-triethoxysilyl-1 -hexyl thioacetate; l-triethoxysilyl-5-hexyl thioacetate; 8-triethoxysilyl-l-octyl thioacetate; l-triethoxysilyl-7-octyl thioacetate; 6-triethoxysilyl-1-hexyl thioacetate;
l-triethoxysilyl-5-octyl thioacetate; 8-trimethoxysilyl-l-octyl ihioacetate;
l-trimetlioxysilyl-7-octyl thioacetate; 10-triethoxysilyl-l-decyl thioacetate;
l-lriethoxysilyl-9-decyl thioacetate; !-triethoxysilyl-2-butyl thioacetate;
l-lriethoxysilyl-3-butyl thioacetate; l-triethoxysilyl-3-methyl-2-butyl thioacetate;
I -triethoxysilyl-3-methyl-3-butyl thioacetate; 3-trimethoxysilyl-1 -propyl
thiooctanoate, also known as 3-trimethoxysilyl-1-propyl thioloctoate and
3-trimethoxysilyl-1-propyl thiocaprylate; 3-trielhoxysilyl-l-propyl thiopalmitate:
3-triethoxysilyl-1 -propyl thiooctanoate, also known as 3-triethoxysilyl-l-propyl
thioloctanoate, 3-triethoxysilyl-l-propyl thiooctoale, 3-triethoxysilyl-l-propyl
thioloctoate, and 3-triethoxysilyl-l-propyl thiocaprylate; 3-triethoxysilyl-l-propyl
thiodecanoate; 3-triethoxysilyl-1-propyl thiododecanoate, also known as
3-trielhoxysilyl-l-propyl thiolaurate; 3-triethoxysilyl-l-propyl thiotetradecanoate,
also known as 3-triethoxysilyl-l-propyl thiomyristate; 3-triethoxysilyl-l-propyl
thiobenzoate:. 3-triethoxysiiyl-1-propyl , thio-2-ethylhexanoaie:
3-triethoxysilyl-l-propyl thio-2-methylheptanoate; bis-(3-triethoxysilyl-l -propyl)
dithiophthalate; bis-(3-triethoxysilyl-1-propyl) dithio-tvo-phthalate; bis-
(3-triethoxysilyl-1 -propyl) dithio-rmvphthalate; bis-(3-trielhoxysilyl-1 -propyl)
dithiosuccinate; bis-(3-tnethoxysilyl-1-propyl) dilhiooxalate: bis-
(3-triethoxysilyl-i-propyl) dithiosebacate; and, bis-(3-triethoxysilyl-l-propyl) dithioadipatc.
The thiocarboxylate silane compositions included herein may be prepared as various mixtures of individual thiocarboxylate silane components, optionally including other species as well, including wherein synthetic methods result in a distribution of various silanes and including wherein mixtures of the starting components are employed for the purpose of generating mixtures of thiocarboxylate silane products. Moreover, it is understood that the partial hydrolyzates and/or condensates of these thiocarboxylate silanes (i.e.. thiocarboxylate siloxancs and/or silanols) may also be encompassed by the thiocarboxylate silanes herein, in that these partial hydrolyzates and/or condensates will be a side product of most methods of manufacture of the thiocarboxylate silanes or can occur upon storage of the thiocarboxylate silanes,
especially in humid conditions, or under conditions in which residual water remaining from their preparation is not completely removed subsequent to their preparation.
The inventive procedure described herein for the preparation of thiocarboxylate-functional silane involves the reaction between an aqueous solution of a salt of a thiocarboxylic acid (an aqueous solution of a thiocarboxylate salt which, therefore, contains the thiocarboxylate anion) with a haloalkyl silane in the presence or absence of a phase transfer catalyst. Optionally, mixtures of aqueous thiocarboxylate salts and/or haloalkyl silanes can be used in which case mixtures of thiocarboxylate silanes will be obtained.
As used herein, the expression "haloalkyl silane" refers to any silane whose structure can be represented by Formula 4.
LK32(-SiX,)c(4)
wherein each occurrence of G2 is independently a polyvalent group derived by substitution of an alkyl, alkenyl, aryl or aralkyl group, wherein G~ can contain from I to about 40 carbon atoms; each occurrence of L is a halogen atom (i.e., F, Cl, Br, or I), sulfonate group, sulfmate group, or carboxylate group; each occurrence of X is independently a member selected from the group consisting of RO-, R2C=NO-, R2NO- or RiN-, -R, and -(OSiR2),(OSiR;0, wherein each R is as previously defined; at least one X is not -R and each occurrence of the subscript / is an integer of from 0 to about 50; each occurrence of the subscript c is independently an integer from 1 to about 6; and, each occurrence of the subscript/is independently an integer from I to about 6. Thus, the expression "haloalkyl silane" as used herein includes silanes with one or more halogen substitutions for hydrogen on their hydrocarbon groups as well as other substitutions which would represent potential leaving groups during nucleophilic substitution reactions, as described below.
Structures for the thiocarboxylate salts are given in Formula 5. G'(-Y-SM)a(5)
wherein each occurrence of G1 is independently R1 or a polyvalent group derived by substitution of an alky), alkenyl, aryl or aralkyl group, wherein G1 can contain from I to about 40 carbon atoms, and where G1 a is R1. each occurrence of R1 is chosen independently from the set of groups comprising hydrogen, alkyl groups that may or may not contain unsaturalion, alkenyl groups, alkynyl groups, aryl groups, and aralkyl groups, with each R1 containing from 0 to about 30 carbon atoms; Y is carbonyl, C(=O); each occurrence of M is an alkali metal; ammonium; or a mono-, di-, or tri-substituted ammonium; and each occurrence of the subscript u is independently an integer from 1 to about 6.
M is an alkali metal; ammonium: or a mono-, di- or tri- substituted ammonium. Thus, M is typically a monocation, meaning it occurs as a cation, typically with a single positive charge. Dicalionic ions could also be used in cases where ihcir thiocarboxylate salts are available and are sufficiently soluble in water. As such. M is the counterion to the anionic thiocarboxylate^'t-Y-S'X,. Representative examples of M are sodium, potassium, ammonium, methyl ammonium and triethyl ammonium. In one embodiment, sodium, potassium and ammonium may be used.
L is a halogen atom (i.e., F, Cl, Br, or I), sulfonate group, sulfmate groi:p or carboxylate group. From a synthetic chemical standpoint, L is any group which can function as a leaving group during nucleophilic substitution reactions. Representative examples of L are chloride, bromide, sulfonate. L can also be a divalent group such as sulfate or phosphate. L in one embodiment is chloro (Cl) or bromo (Br).
Examples of haloalkyl silane reactants for use herein are 3-chloromethyl-1-
triethoxysilane, 3-chloroethyl-l-triethoxysilane, 3-chloropropyl-l-triethoxysilane and
3-chlorobutyl-l-triethoxysilane. In one embodiment, 3-chloropropyl-l-
triethoxysilane is used..
The chemical equation(s) for reaction(s) between the aqueous thiocarboxylate salt(s) and the haloalkyl silane(s) to yield the thiocarboxylate silane(s) is(are) represented by Equations A, B, and C.
(Equation Removed)
The preparation of the thiocarboxylate silane in accordance with the invention is carried out by addition of the haloalkyl silane to an aqueous solution of the thiocarboxylate salt, in one embodiment, accompanied by agitation of the mixture, e.g., stirring, until the reaction has reached the desired level of completeness. Additional salt(s) may optionally be present or be added to the aqueous thiocarboxylate salt to increase the ionic strength of the reaction medium so as to further stabilize the product silane(s) against hydrolysis. Examples of such additional salts include alkali metal salts such as the sodium and potassium halides and the corresponding carbonates and nitrates. These and similar salts can be present in the reaction medium at a level of up to about 50. In one embodiment, up to about 20 weight percent of the amount of thiocarboxylate salt reactant present therein.
The level of completeness of the reaction may be monitored by any means which distinguishes the reactants from the products, such as, for example, gas chromatography (GC), liquid chromatography (LC or HPLC), nuclear magnetic resonance spectroscopy (NMR), or infrared spectroscopy (IR) of the organic phase, or wet chemical analysis of the aqueous phase. A phase transfer catalyst may be added in one or several doses and/or in a continuous manner to the thiocarboxylate salt, the haloalkyl silane, and/or the reaction mixture before, during, and/or after the addition of the haloalkyl silane to the aqueous thiocarboxylate salt, to accelerate the reaction.
Suitable reaction conditions include temperatures of from about -30°C to about 300°C and pressures of ambient to about 100 atmospheres or vacuum from ambient to about 0.01 torr. In one embodiment, reaction conditions are from about -10°C to about 100 °C at ambient pressure. In another embodiment, reaction temperatures can
range from about 25°C to about 95 °C. In yet another embodiment, from about 40°C to about S5°C. Variable temperatures within the aforementioned ranges may be Employed, as, for example, a gradual upward or downward ramping of the temperature during the course of the reaction.
Ordinarily, and by way of reducing the amount of siloxane-type by-product(s) thai may be formed during the thiocarboxylate silane-forming reaction, in one embodimenet, this reaction is conducted under continuous agitation, e.g., thai provided by the motion of a conventional rotary stirrer. The vigorotisness of the agitation will ordinarily be such as to keep the amount of siloxane-type by-product(s) produced during the thiocarboxylate silane-forming reaction to within reasonable bounds, e.g., less than about 20 weight percent, more commonly less than about 12 weight percent, and typically to within about 5 to about 10 weight percent, of the total amount of reaction product. The amount of agitation required to achieve this can be determined in a specific case by routine experimentation.
Suitable concentrations of the starting aqueous thiocarboxylate salt are from about 1 weight percent up to saturation, which can be as high as about 50 weight percent or more. In one embodiment, the concentrations are from about 20 to about 45 weight percent. In a second embodiment, from about 30 to about 40 weight percent. Optionally, an excess of the thiocarboxylale salt relative to that demanded by the reaction stoichiometry may be used to drive the reaction to completion so as to obtain a product of minimal residual haloalkyl silane starting material, to obtain the product with minimal reaction time and/or temperature, and/or to obtain a product with minimal loss to or contamination by silane hydrolysis/condensation products. Alternatively, an excess of the haloalkyl silane relative to that demanded by the reaction stoichiometry may be used to reduce the residual aqueous thiocarboxylate salt content at the completion of the reaction to a minimum.
In one embodiment, the reaction may be run with little if any solvent, or neat (i.e., without solvent) or in the presence of solvents which are insoluble or have limited solubility in water. Examples of appropriate solvents are ethers, for example, diethyl ether; hydrocarbons, for example, hexane, petroleum ether, toluene, and xylene; and
ketones, for example, methyl ethyl ketone. In one embodiment, toluene or xylene are used. In another embodiment, the reaction is run in the absence of solvent (neat).
Upon completion of the reaction, the agitation is ceased resulting in the segregation of the reaction mixture into two liquid phases. The organic phase (typically the upper phase) contains the thiocarboxylate silane product and the aqueous phase contains the coproduced salts plus any salts initially present or subsequently added to increase the ionic strength of the reaction medium. If a starling aqueous solution of sufficienl concentration is used, a solid phase may also separate comprised of precipitated or crystallized salts. These salts may optionally be dissolved by addition of water so as to obtain a mixture made up of mainly or exclusively of two liquid phases. These phases can then be separated by decantation. Any solvents used during the process may then be removed by distillation or evaporation. Residualwater may be removed by vacuum and/or heat stripping. Residual particulates may subsequently or concurrently be removed by filtration. Residual haloalkyl silane may be removed by stripping under vacuum at elevated temperature.
Aqueous Solution of Thiocarboxylale Salt
If an aqueous solution of the thiocarboxylate salt(s) required for the preparation of the thiocarboxylate silane composition is not available, it may be prepared in a separate step preceding its use in the preparation of the thiocarboxylate silane. Alternatively, the aqueous thiocarboxylate salt may be prepared in situ and used directly thereafter, as described above, to prepare the thiocarboxylate silane composition.
If the thiocarboxylate salt is available, the aqueous solution thereof can simply be prepared by dissolving the appropriate amount of the salt into the appropriate amount of water to provide a solution of the desired concentration, or it can be prepared by dilution or evaporative concentration of whatever solution is available. Alternatively, the desired thiocarboxylate salt or aqueous solution thereof can be prepared from another salt of the desired thiocarboxylic acid. It the thiocarboxylic acid is available, the thiocarboxylate salt or aqueous solution thereof can be prepared simply by neutralizing the acid with a suitable base.
However, if neither the desired thiocarboxylic acid or one of its salts is available, it can be prepared by synthesis of the thiocarbonyl group by reaction of the appropriate acid halide and/or acid anhydride (e.g., the acid chloride) with an aqueous solution of a sulfide, a hydrosulfide, or mixture thereof (e.g., aqueous sodium hydrosulfide, NaSH), to yield an aqueous solution of the thiocarboxylate salt. If an aqueous mixture of thiocarboxylate salts is desired, the component thiocarboxylate salts can be blended, or the appropriate mixture of acid halides and/or acid anhydrides can be used in the preparation of the thiocarboxylate salts. Mixtures of one or more acid halides and acid anhydrides can optionally be used, as can mixtures of different sulfides and/or hydrosulfides when preparing either single-component or mixtures of aqueous thiocarboxylate salts.
Structures for the sulfides, hydrosulfides, and acid halides and acid anhydrides are represented by Formulae 6, 7, and 8, respectively.
M2S(6)
MSH(7)
G'(-Y-L)a(8)
wherein each occurrence of M is an alkali metal; ammonium; or a mono-, di-. or tri-substituted ammonium; each occurrence of L is a halogen atom (i.e., F, CI, Br, or 1), sulfonate group, sulfmate group, or carboxylate group; Y is carbonyl, C(=O); each occurrence of R1 is chosen independently from the set of groups comprising hydrogen, alkyl groups that may or may not contain unsaturation, alkenyl groups, alkynyl groups, aryl groups and aralkyl groups with each R1 containing from 0 to about 30 carbon atoms; each separate occurrence of G1 is independently R1 or a polyvalent group derived by substitution of an alkyl, alkenyl, aryl or aralkyl group, wherein G1 can contain from I to 40 carbon atoms; and each occurrence of the subscript a is independently an integer from 1 to about 6..
M is an alkali metal; ammonium; or a mono-, di-, or tri- substituted ammonium. Thus, M is typically a monocation, meaning it occurs as a cation, typically with a
single positive charge. Dicationic ions could also be used in cases where iheir sulfides or hydrosulfides are available, suitably stable, and are sufficiently solubile in water. As such, M is the countcrion to the anionic sulfide or hydrosulfide anion. Representative examples of M are sodium, potassium, ammonium, methyl ammonium, and triethyl ammonium. In one embodiment, sodium, potassium, or ammonium may be used. In another embodiment, sodium is used.
L is a halogen atom (i.e., F, Cl, Br, or I), sulfonale group, sulfmate group, or carboxylale group. Representative examples of L are chloride, bromide, and any carboxylate, such as acetate, octanoate, decanoate, and dodecanoate. L could even be a divalent group., such as sulfate or phosphate. Examples of L include chloride (Cl), and carboxylate. In one embodiment, chloride (Cl) is used. In the case where L is chloride, the reagent is an acid chloride. Where L is carboxylate, the reagent is an acid anhydride.
In the descriptions which follow, of the procedures for the preparation of aqueous thiocarboxylate salt solutions, it is to be understood, herein, that
1) The term acid halide shall refer to the acid fluoride, acid chloride, acid bromide, acid iodide, acid anhydride, or mixed acid anhydride with another carboxylic acid, other organic acid, or an inorganic acid; or any mixture thereof;
The lerm sulfide shall refer to an alkali metal, ammonium, or substituted ammonium sulfide salt; or any mixture thereof; and
3)The tenn, thiocarboxylate salt, shall refer to a single-component or mixture of salts of one or more than one thiocarboxylate and/or counterion (cation)
Chemical equations for reactions between the aqueous sulfides and/or hydrosulfides and the acid halides and/or acid anhydrides to yield the aqueous thiocarboxylale salts are illustrated by Equations D, E, F, and G.
(Equation Removed)
The preparation of the aqueous thiocarboxylate salt is carried out by addition of the acid halide and/or acid anhydride to an aqueous solution of the sulfide and/or hydrosulfide and agitating the mixture. Due to the corrosive properties of the acid halide and/or acid anhydride, practical considerations suggest that this reaction be carried out in glass or in a glass-lined reactor.
A phase transfer catalyst such as any of those described infra may be added in one or several doses and/or in a continuous manner to the aqueous sulfide/hydrosulfide solution, the acid halide/acid anhydride, and/or the reaction mixture before, during, and/or after the addition of the acid halide/acid anhydride to the aqueous sulfide/hydrosulfide solution to accelerate the reaction.
Appropriate reaction conditions for the thiocarboxylate salt-forming reaction include temperatures of from about 10°C to about 40°C. In one embodiment, from about 20°C to about 25°C, for batch operation and from about 20°C to about 50°C. In another embodiment, from about 25°C to about 40°C, for continuous operation in order to minimize or suppress by-product formation.
Since the Ihiocarboxylate salt-forming reaction is fast and exothermic, in order the maintain the reaction within the aforesaid temperature conditions, it is advantageous to employ a reactor having temperature control capability, e.g., a jacket or coil through which a coolant such as chilled water or brine is circulated at an adjustable rate. In the absence of such temperature control capability, one can maintain the desired reaction temperature by controlling the rale of addition of the acid chloride reactant to the mixture of aqueous sulfide/hydrosulfide and phase transfer catalyst.
Additional conditions of the process for making the thiocarboxylate salt include a pressure of from about 0.01 torr to about 100 atmospheres. In one embodiment, from about 100 torr to about 2 atmospheres, and a molar ratio of sulfide/hydrosulfide to
acid chloride/acid anhydride of from about 2:1 to about 3:1. In another embodiment, from about 2:1 to about 2.2:1.
In one embodiment, the process is carried out with agitation of the reaction medium, e.g., employing a rotary stirrer, to minimize the formation of undesirable by-product(s). In generally, and when employing a rotary stirrer to provide agitation, the tip speed of the stirrer may be set at least about 25 inches per second. In another embodiment, at least about 30 inches per second. In yet another embodiment, at least about 35 inches per second.
Concentrations of the starting aqueous sulfide/hydrosulfide can vary from about 1 weight percent up to saturation which can be as high as about 60 weight percent or more. In one embodiment, the concentrations are from about 10 to about 40 weight percent. In another embodiment, concentrations of from about 15 to about 25 weight percent are used. The reaction is usually complete when the acid halide/acid anhydride has dissolved in the aqueous phase, an exotherm is no longer evident from this reaction and the evolution of any hydrogen sulfide subsides. As previously stated, one or more additional salts may optionally be present or be added to the aqueous thiocarboxylate salt product to increase its ionic strength when used in the thiocarboxylate silane-forming reaction. At the completion of the thiocarboxylate salt-forming reaction, the solution may optionally be filtered to remove any paniculate impurities and/or crystallized coproduced salts that may be present.
Aqueous Sulfide and/or Hydrosulfide
Aqueous solutions of sulfide and/or hydrosulfide for preparing the aqueous solution of thiocarboxylate salt can be obtained by dissolving the appropriate quantity of sulfide or hydrosulfide, or the appropriate quantity of each if a mixture is desired, into the appropriate quantity of water to obtain the desired concentration of sulfide and/or hydrosulfide. Alternatively, these solutions can be prepared by addition of hydrogen sulfide to an aqueous solution of the appropriate base. A ratio of one or more moles of hydrogen sulfide to one equivalent of base would yield the hydrosulfide, whereas a ratio of one mole of hydrogen sulfide to two equivalents of base would yield the
sulfide. Ratios of one mole of hydrogen sulfide 10 between one and two equivalents of base would yield the corresponding mixtures of the hydrosulfide and sulfide. Alternatively, an aqueous solution of sulfide can also be prepared by addition of one equivalent of base to one equivalent of aqueous hydrosulfide, and an aqueous solution of hydrosulfide can also be prepared by addition of one or more equivalents of hydrogen sulfide to one equivalent of aqueous sulfide. For example, aqueous sodium hydrosulfide could be prepared by addition of one mole or an excess of hydrogen sulfide to an aqueous solution containing one mole of sodium hydroxide or sodium sulfide, and aqueous sodium sulfide could be prepared by addition of one mole of hydrogen sulfide or two moles of sodium hydrosulfide to an aqueous solution containing two moles of sodium hydroxide.
Phase Transfer Catalyst
The phase transfer catalysts used herein accelerate the preparation of the thiocarboxylate salt reactant and/or thiocarboxylate silane product by facilitating chemical reactions across the phase boundary of two immiscible liquids. The phase transfer catalysts can comprise any substance capable of facilitating transfer of reacting species, whether molecules or ions, across the phase boundary. Useful catalysts often comprise organic cations, which are capable of transferring sulfur anions such as sulfide, hydrosulfide, and thiocarboxylate from the aqueous phase into the organic phase, where these anions can then react with species in the organic phase, such as acid halides and haloalkyl silancs. The organic cations can be added as salts, or as concentrated or dilute solutions in water and/or other suitable solvents, such as alcohols. A wide variety of anions can be associated with the organic cations, such as fluoride, chloride, bromide, iodide, sulfate, bisulfate, carbonate, bicarbonate, hydroxide, phosphate, carboxylate, thiocarboxylate, etc. Additionally useful as phase transfer catalysts are crown ethers, cryplands, polyethylene glycols, heterogenized catalysts (bound to polymeric substrates), and the like.
Examples of phase transfer catalysts include ammonium and phosphonium salts, whose use is described herein is represented by Formula 7:
(R2R VR5Q+)n A'B(9)
wherein each separate occurrence of R2, R\ R", and R5 is independently one of the members listed above for R1; Q is nitrogen or phosphorous; A"" is a monovalent or polyvalent anion where the minus sign denotes that the species is an anion, and n denotes the number of negative charges on the anion; and, the subscript n is a positive integer of from 1 to about 6. In one embodiment, hydrophilic and more structurally symmetrical phase transfer catalyst species are used.
Representative examples of R2, R\ R*, and R5 are branched and straight-chain alkyls, such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, hexyl, octyl, decyl, dodecyl, tetradecyl, octadecyl, phenyl, benzyl, tolyl, cyclohexyl, methylcycloliexyl and ally). In one embodiment, methyl, ethyl, butyl, and octyl are used.
Representative examples of A"n are fluoride, chloride, bromide, iodide, sulfate, bisulfate, carbonate, bicarbonate, hydroxide, phosphate, carboxylate, thiocarboxylate, sulfide and hydrosulfide. In one embodiment, chloride, bromide and hydroxide may be used. In another embodiment, chloride is used.
Representative examples of suitable phase transfer catalysts are
telramethylammonium chloride. letramethylammonium bromide,
tetramethylammonium iodide, telramethylammonium hydroxide, tetraethylammonium
chloride, tetraethylammonium bromide, tetraethylammonium iodide,
letraethylammonium hydroxide, tetrabutylammonium chloride, tetrabutylammonium
bromide, tetrabutylammonium iodide, tetrabutylammonium hydroxide,
methyltributyl ammonium chloride, methyltributylammonium bromide,
methyltributylammonium iodide, methyltributylammonium hydroxide,
tetraoctylammonium chloride, tetraoctylammonium bromide, tetraoctylammonium
iodide, tetraoctylammonium hydroxide, methyltrioctylammonium chloride,
methyltrioctylammonium bromide, methyltrioctylammonium iodide,
methyltrioclylammonium hydroxide, benzyltrimethylammonium chloride, benzyltrinietliylammonium bromide, benzyltriethylammonium chloride, benzyltributylammonium chloride. dibenzyldimethylammonium chloride,
dibenzyldimethylammonium bromide, dibenzyldiethylammonium chloride,
dibenzyldibutylammonium chloride, letrabutylphosphonium bromide,
tetrabutylphosphonium chloride, trioctyl (octadecyl) phosphonium iodide, tributyl
(tetradecyl) phosphonium chloride and aqueous solutions thereof. In one
embodiment, the phase transfer catalysts are aqueous solutions of
tetraethylammonium chloride, tetrabutylammonium chloride, tetrabutylammonium
bromide, tetrabutylammonium hydroxide, methyltributylammonium chloride,
tetraoctylammonium chloride. tetraoctylammonium bromide,
methyltrioctylammonium chloride. melhyllrioctylammonium bromide,
melhyllrioctylammonium iodide, methyltrioctylammonium hydroxide,
benzyltrimelhylammonium chloride, benzyltriethylammonium chloride.
benzyltributylammonium chloride, dibenzyldiethylammonium chloride,
dibenzyldibutylammonium chloride, tetrabutylphosphonium bromide and tetrabutyl
phosphonium chloride. In one embodiment, aqueous solutions of
letraethylammonium chloride, tetrabutylammoniuin chloride, tetrabutylammonium
bromide, tetrabutylammonium hydroxide, methyltributylammonium chloride,
tetraoctylammonium chloride, methyltrioctylammonium chloride,
methyltrioctylammonium bromide, methyltrioctylammonium hydroxide, benzyltriethylammonium chloride, benzyltributylammonium chloride, dibenzyldibutylammonium chloride, letrabutylphosphonium bromide and tetrabutylphosphonium chloride are used.
The phase transfer catalyst can be added at any point during the reaction, either all at once, in two or more doses, or in a continuous or semi-continuous manner, or as any combination thereof. A single phase transfer catalyst may be used, or a combination of several, added as a blend, as individual components, or any combination thereof. Different catalysts may optionally be added at different points along the entire reaction sequence. The phase transfer catalyst(s) may be added only to the first step, in which aqueous sulfide and/or hydrosulfide is reacted with the acid halide; or only to the second step, in which the aqueous thiocarboxylate is reacted with the haloalkyl silane. Alternatively, the phase transfer catalyst(s) may be added to both steps in the same or different levels.
he quantity of phase transfer catalyst to be used depends on the desired rate of reaction and level of side products which can be tolerated, among other factors. The reactions can be run without a phase transfer catalyst. However, if a phase transfer catalyst is used, appropriate concentrations to be used during the reactions are from a concentration of about 1 ppm (part per million, by weight) to about 3 percent by weight. In one embodiment, the concentrations are from about 10 ppm to about 1 weight percent. In another embodiment, the concentrations are from about 50 ppm to about 0.5 weight percent. In one embodiment, quantities below about 1 ppm of phase transfer catalyst can also be used, but this will give results similar to that obtained without the use of a phase transfer catalyst.
In another embodiment, the process of the present invention comprises charging a reactor with aqueous NaSH;
adding acyl chloride and optionally a phase transfer catalysts in either order of addition to the agitated aqueous NaSH solution and continuing agitation until reaction is complete;
adding a holoalkyl silane to the aqueous solution obtained in step b with optionally addition of phase transfer catalyst in either order and agitating the solution untii the desired extent of reaction is reached;
separating the organic phase from the aqueous phase
and optionally filtering and/or removing residual volatile components by evaporation using heat and/or vacuum.
In yet another embodiment, the process of the present invention comprises reacting a 10 % molar excess aqueous 25 % solution of sodium hydrogen sulfide (NaSH) with an acid halide in the presence of a phase transfer catalyst contained in the aqueous phase. The acid halide is added to the aqueous NaSH slowly, in order to conveniently handle the exotherm of the reaction as well as the evolving hydrogen sulfide. The process is controlled by the rate of the acid chloride addition, and is limited by the heat removal and the hydrogen sulfide scrubbing capacity of the equipment. The
addition lasts several hours having the temperature maintained between 30 and 40 °C. Intense stirring is required to achieve fast and thorough mixing of the phases. The product of this process is an aqueous solution of the sodium thiocarboxylate, with about 99 % conversion. For the second reactive step, the sodium thiocarboxylate solution is heated to about 80 °C and more catalyst and chloropropyltriethoxysilane is added to the system. The mixture is stirred for several hours and more catalyst is added as needed to drive the raw materials concentration down. The final product is obtained by simply separating the phases and stripping the lights at about 135 CC and 20 torr absolute pressure, with an overall yield of about 90 % based on the acid chloride. A final polish filtration delivers a light yellow clear thiocarboxylate silanc product.
The process described above can be performed in the same manner using an aqueous solution of sodium sulfide instead the NaSH solution. The process using Na2-S in place of NaSH requires half the number of moles of NaiS as the process describe above using NaSH.
In one embodiment of the process of the present invention, a 10 % molar excess aqueous 25% solution of sodium hydrogen sulfide (NaSH) is reacted with an acid halide in the presence of a phase transfer catalyst contained in the aqueous phase. The acid halide is added to the aqueous NaSH slowly, in order to conveniently handle the exotherm of the reaction as well as the evolving hydrogen sulfide. The process is controlled by the rate of the acid chloride addition, and is limited by the heat removal and the hydrogen sulfide scrubbing capacity of the equipment. The addition lasts several hours having the temperature maintained between 30 and 40 °C. In one embodiment, intense stirring is applied to achieve fast and thorough mixing of the phases. The product of this process is an aqueous solution of the sodium thiocarboxylate, with about 99 % conversion.
For the second reactive step, the sodium thiocarboxylate solution is heated to about 80 °C and more catalyst and chloropropyltriethoxysilane is added to the system. The mixture is stirred for several hours and more catalyst is added as needed to drive the raw materials concentration down. The final product is obtained by simply separating
the phases and stripping the lights at about 135 "C and 20 torr vacuum, with an overall yield of about 90 % based on the acid chloride. A final polish filtration delivers a light yellow clear thiocarboxylate silane product.
The process described above can be performed in the same manner using an aqueous solution of sodium sulfide instead the NaSH solution. The thiocarboxylate silane product results in about 85 % yield.
Of the examples which follow. Examples 1-4 are illustrative (a) of the process of making aqueous thiocarboxylate salt reactant and (b) the process of making thiocarboxylate silane product in accordance with the invention and Examples 5-8 are illustrative of making aqueous thiocarboxylate salt reactant (with Example 8 being that of a continuous process) that can be used to prepare thiocarboxylate silane in accordance wild the invention.
Example 1
A.Preparation of Aqueous Sodium Thiooctanoate. A 12.9 weight percent aqueous solution of sodium sulfide was prepared by dissolving sodium sulfide (144 grams, 1.84 moles) in the form of hydrated flakes (240 grains, 60 %) into 880 grams of water in a 5-liter round-bottomed flask. A dropping funnel was charged with octanoyl chloride (300 grams, 1.84 moles). The temperature of the sodium sulfide solution in the 5-liter flask measured 21 °C. The addition of the octanoyl chloride was begun with stirring of the contents of the 5-liter flask with a mechanical stirrer, and immediately, 0.15 grams of a concentrated aqueous solution of methyltrioctylammonium chloride was added to the 5-liter flask. The addition of the octanoyl chloride was completed within 5-10 minutes with external cooling of the 5-liter flask. The contents of the 5-liter flask reached a maximum temperature of 68 °C. The contents of the 5-liter flask were then cooled to ambient temperature and stirring was stopped, yielding a clear, slightly viscous, one-phase aqueous solution of sodium Ihiooctanoate (also known as sodium thioloctanoate and as sodium thiocarprylate) and sodium chloride.
B.Preparation of 3-Octanoyllhio-1 -propyltrielhoxysilane
The aqueous solution of sodium thiooctanoate was heated to 50 °C and stirred with a mechanical stirrer throughout this procedure. To this solution was added 3-chloro-l-propyllriethoxysilane (444 grams, 1.84 moles) all at once. Immediately thereafter was added 0.15 grams of a concentrated aqueous solution of methyhrioctylammonium chloride. A temperature of 50 °C was maintained for 9 hours, with continued stirring, whereupon the temperature was raised to and subsequently maintained at 74 °C for an additional 15 hours, with continuous stirring. At this point, the solution was allowed to cool to ambient temperature, the stirring was stopped, and the organic phase separated from the aqueous phase by decantation in a scparatory funnel. Gas chromatography and mass spectrometry (GC and GCMS) revealed a product containing 80 % 3-octanoylthio-l-propyltrielhoxysilane and 15.5 % residual 3-chloro-1-propyltriethoxysilane (reported purities are based on area percent GC responses). The product was vacuum stripped at 110 °C at 0.1 torr to remove volatiles, primarily 3-chloro-l-piopyltriethoxysilane. to yield a product of 94 % purity. Product identity using (his process confirmed by nuclear magnetic resonance spectroscopy (NMR).
Example 2
A.Preparation of Aqueous Sodium Thiooctanoate
A 16 weight percent aqueous solution of sodium sulfide was prepared by dissolving sodium sulfide (101 grams, 1.29 moles) in the form of hydrated flakes (168 grams, 60 %) into 463 grams of water in a 5-liter round-bottomed flask. A dropping funnel was charged with octanoyl chloride (210.5 grams, 1.294 moles). The temperature of the sodium sulfide solution in the 5-liter flask measured 23 °C. The addition of the octanoyl chloride to the 5-liter flask was begun with stirring of the contents of the 5-liter flask with a mechanical stirrer, immediately after the addition of 0.21 grams of a concentrated aqueous solution of methyltrioctylammonium chloride to the 5-liter flask. The addition of the octanoyl chloride was completed in 3 minutes with external cooling of the 5-liter flask using an ice-water bath. The contents of the 5-liter flask reached a maximum temperature of 59 °C. The contents of the 5-liter flask were then cooled to ambient temperature and stirring was stopped, yielding a clear, slightly viscous, one-phase aqueous solution of sodium thiooctanoate and sodium chloride.
B.Preparaiion of 3-Octanoylthio-1-propyltriethoxysilane
The aqueous solution of sodium thiooctanoate was healed to 50 °C and stirred with a mechanical stirrer throughout this procedure. To this solution was added, all at once, 0.21 grams of a concentrated aqueous solution of methyltrioctylammonium chloride. Immediately thereafter was added a solution of 3-chloro-1-propyltriethoxysilane (310 grams, 1.29 moles) in 23.6 grams of n-tetradecane. Over the next 15-20 minutes, the temperature of the contents of the 5-liter flask was increased to 55 °C, with continued stirring. This temperature was then maintained for 5-6 hours, with continued stirring. The temperature was then ramped up to 70 °C over the next 7 minutes, and maintained for about another 2 hours, with continued stirring, whereupon the temperature was raised to and subsequently maintained at 78 °C for an additional 24 hours or so, with continuous stirring. After cooling to ambient temperature, the organic phase was separated from the aqueous phase. Gas chromatography and mass speclrometry (GC and GCMS) revealed a product containing 85 % 3-octanoylthio-l-propyltriethoxysilane and 5.5 % residual 3-chloro-1-propyltriethoxysilane (reported purities are based on area percent GC responses). Vacuum stripping at 110 °C at 0.1 torr to remove volatiles, primarily 3-chloro-1 -propyltriethoxysilane, yielded a product of 90+ % purity. Product identity using this process confirmed by nuclear magnetic resonance spectroscopy (NMR).
Example 3
A.Preparation of Aqueous Sodium Thiooctanoate
A 16 weight percent aqueous solution of sodium sulfide was prepared by dissolving sodium sulfide (101 grams, 1.29 moles) in the form of hydrated flakes (168 grams, 60 %) into 463 grams of water in a 5-liter round-bottomed flask. This solution was then converted to an aqueous solution of sodium hydrosulfide (NaSH) by saturating it with an excess of hydrogen sulfide by adding hydrogen sulfide with stirring until no more was absorbed. A dropping funnel was charged with octanoyl chloride (210.5 grams, 1.294 moles). The temperature of the sodium hydrosulfide solution in the 5-liter flask measured 23 °C. The addition of the octanoyl chloride to the 5-liter flask was begun
with stirring of the contents of the 5-liter flask wilh a mechanical slirrer, immediately after the addition of 0.21 grams of a concentrated aqueous solution of methyltrioctylammonium chloride to the 5-liter flask. Hydrogen sulfide was liberated during the addition of the octanoyl chloride. The addition of the octanoyl chloride was completed in 3 minutes with external cooling of the 5-liter flask using an ice-water bath. The conienis of the 5-liter flask reached a maximum temperature of 59 °C. The contents of the 5-liter flask were then cooled to ambient temperature and stirring was stopped, yielding a clear, slightly viscous, one-phase aqueous solution of sodium thiooctanoate and sodium chloride.
B.Preparation of 3-Octanoylthio-l -propyltriethoxysilane
The aqueous solution of sodium thiooctanoate was heated to 50 °C and stirred with a mechanical stirrer throughout this procedure. To this solution was added, all at once. 0.21 grams of a concentrated aqueous solution of methyltrioctylammonium chloride. Immediately thereafter was added a solution of 3-chloro-l -propyltriethoxysilane (310 grams, 1.29 moles) in 23.6 grams of n-tetradecane. Over the next 15-20 minutes, the temperature of the contents of the 5-liter flask was increased to 55 °C, with continued stirring. This temperature was then maintained for 5 - 6 hours, with continued stirring. The temperature was then ramped up to 70 °C over the next 7 minutes, and maintained for about another 2 hours, with continued stirring, whereupon the temperature was raised to and subsequently maintained at 78 °C for an additional 24 hours or so, with continuous stirring. After cooling to ambient temperature, the organic phase was separated from the aqueous phase. Gas chromatography and mass spectrometry (GC and GCMS) revealed a product containing 85 % 3-octanoylthio-l-propyltriethoxysilane and 5.5 % residual 3-chloro-1-propyltriethoxysilane (reported purities are based on area percent GC responses). Vacuum stripping at 110 °C at 0.1 torr to remove volatiles, primarily 3-chloro-l-propyltriethoxysilane, yielded a product of 90+ % purity. Product identity using this process confirmed by nuclear magnetic resonance spectroscopy (NMR).
Example 4
A.Preparation of Aqueous Sodium Thiooctanoate
A 20 weight percent aqueous solution of sodium sulfide was prepared by dissolving sodium sulfide (39 grams, 0.5 moles) in the form of hydrated flakes (65 grams, 60 %) into 130 grams of water in a 1-liter round-bottomed flask. This solution was then convened to an aqueous solution of sodium hydrosulfide (NaSH) by saturating it with an excess of hydrogen sulfide by adding hydrogen sulfide with stirring until no more was absorbed. A dropping funnel was charged with octanoyl chloride (81.3 grams, 0.5 moles). The temperature of the sodium hydrosulfide solution in the I-liter flask measured 29.7 °C. The addition of the octanoyl chloride to the 1-liter flask was begun with stirring of the contents of the 1-liter flask with a mechanical stirrer, immediately after the addition of 1 gram of a concentrated aqueous solution of melhyltrioctylammonium chloride to the 1-liter flask. Hydrogen sulfide was liberated during the addition of the octanoyl chloride. After the completion of the addition of the octanoyl chloride, the contents of the I-liter flask were cooled to ambient temperature and stirring was stopped, yielding a clear, slightly viscous, one-phase aqueous solution of sodium thiooctanoate and sodium chloride.
B.Preparation of 3-Octanoylthio-l-propyltriethoxysilane
The aqueous solution of sodium thiooclanoate was heated to 80 °C and stirred with a mechanical stirrer throughout this procedure. To this solution was added, all at once, 4 grams of a concentrated aqueous solution of tetrabutylammonium bromide. Immediately thereafter was added a solution of 3-chloro-l-propyltriethoxysilane (120 grams, 0.5 moles). This mixture was kept at 80 °C with continued stirring for 6 hours, and then allowed lo cool to ambient temperature. After cooling to ambient temperature, the organic phase was separated from the aqueous phase. Gas chromatography and mass spectrometry (GC and GCMS) revealed a product containing 93 % 3-octanoylthio-l-propyltriethoxysilane. Product identity using this process confirmed by nuclear magnetic resonance spectroscopy (NMR).
Example 5
Preparation of Sodium Thiodecanoate
Into a 5-lner round-bottomed flask was added 204.0 grams of sodium sulfidc and 410.0 grams of water and the mixture was stirred at room temperature until the solids were dissolved. A total of 53.5 grams of hydrogen sulfide was added below the surface until bubbling was seen in the trap about 75 minutes after the hydrogen sulfide addition was begun. The reaction mixture was then cooled with an ice water bath to
16 °C. Decanoyl chloride was then added slowly. Foaming was observed after about
half of the decanoyl chloride had been added. At this point, the addition of decanoyl
chloride was slowed and occasionally stopped to control foaming. The reactor
temperature was kept at about 17 °C. The decanoyl chloride addition was complete
after a total of 4 hours. The pH of the resulting solution containing sodium
thiodecanoate was measured with pH paper, and gave a reading of 11. An additional
10.0 grams of decanoyl chloride was then titrated into the solution to neutralize it,
giving a final neutral pH reading.
Example 6
Preparation of Sodium Thiodecanoate
Into a 2-liter round-bottomed flask was added 82 grams of sodium sulfide and 164 grams of water and the mixture was stirred at room temperature until the solids were dissolved. An excess of hydrogen sulfide was added below the surface until bubbling was seen in the trap. The reaction mixture was then cooled with an ice water bath to
17 °C. Decanoyl chloride was then added slowly. Foaming was observed after about
half of the decanoyl chloride had been added. At this point, the addition of decanoyl
chloride was slowed and occasionally stopped to control foaming. The reactor
temperature was kept at about 17 °C. The decanoyl chloride addition was complete
after a total of 2.5 hours. The pH of the resulting solution containing sodium
thiodecanoate was measured with pH paper, giving an alkaline reading. An additional
2.7 grams of decanoyl chloride was then titrated into the solution to neutralize it,
giving a final neutral pH reading.
Example 7
Preparation of Sodium 2-ethylhexanoate
Into a 1-liter round-bottomed flask was added 78 grams of sodium sulfide and 210 grams of water and the mixture was stirred at room temperature until the solids were dissolved. A total of 18.5 grams of hydrogen sulfide was then added below the surface until bubbling was seen in the trap. The reaction mixture was then cooled to 25 °C. At this point, a total of 92 grams of 2-ethylhcxanoyl chloride was added slowly, with a concomitant temperature rise to about 45°C. No foaming was observed. The pH of the resulting solution containing sodium 2-cthylhexanoate was measured with pH paper, and gave a reading of 11. An additional 9.5 grams of 2-ethylhexanoyl chloride was then titrated into the solution to neutralize it, giving a final neutral pH reading.
Example 8
Continuous Process for the Preparation of Sodium Thiooctanoate
Into a I-liter jacketed flask, 25 weight percent aqueous sodium hydrosulfide (NaSH) solution and octanoyl chloride were charged via rate-controlled diaphragm pumps. The temperature was maintained at about 25°C by recirculation of cold water through the jacket. The reactor-retained product was approximately 425 grams. The product was continuously taken off using a diaphragm pump. The feed rates of the reactants were:
25 weight percent aqueous sodium 2.43 cc/minute
hydrosulfide solution
octanoyl chlorideO.83 cc/minute
The foregoing feed rates provided a residence time of about 2 hours and a molar ratio of NaSH to octanoyl chloride of 2.2:1. The tetrabutylammonium bromide phase transfer catalyst was prepared as a 50 weight percent aqueous solution and was added to the reaction medium via the NaSH feed at a 1200 ppm level. At steady state,
samples were taken for GC analysis. Sodium thiooctanoate was produced with an average 98.5% purity.
Examples 9-14
Effect of Rotary Stirrer Tip Speed on Yield of Sodium
Thiooctanoate Produced by Continuous Process
In these examples, the effect of various rotary stirrer tip speeds on the production of sodium thiooctanoaie product and undesirable sodium octanoate by-product was evaluated in connection with a continuous process. As in the case of the continuous process described in Example 8, the reactions of Examples 9 to 14 were carried out in a 1-liter cc jacketed flask with the reactants, i.e., aqueous sodium hydrosulfide (NaSH) containing 600 ppm tertiarybutylammonium bromide (TBAB) based on the weight of octanoyl chloride (OC), and a molar ratio of NaSH to OC of approximately 2.2:1, being introduced to the flask via rate-controlled diaphragm pumps. The other conditions of the thiocarboxylale salt-forming reaction of each example and the results thereof are set forth in the table below.
(Table Removed)
* Formation of gel observed.
As these data show, with increased tip speed, the amount of desired sodium thiooctanoate product as a percentage of the total reaction product increases and at a tip speed of at least about 30 in/sec, and greater, the purity of the reaction product (95.31% sodium thiooctanoate) is such as to provide a desirably high level of purity of thiocarboxylate silane when directly used for the production thereof. It may be noted that the desired stirrer tip speeds disclosed herein apply to all rotary stirrers regardless of their size. Thus, as stirrer size increases to accommodate reactors of larger diameter, the lower will be its r.p.m. to achieve a desired tip speed.
While the invention has been described with reference to certain embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from essential scope thereof. Therefore, it is intended that the invention not be limited to the
particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims.


WHAT IS CLAIMED IS.
1. A process for the preparation of a thiocarboxylate silane which comprises reacting
an aqueous solution of a salt of a thiocarboxylic acid with a haloalkyl silane with or
without and in the presence or absence of a phase transfer catalyst, to provide a
thiocarboxylate silane.
2. The process of Claim I, wherein the salt of the haloalkyl silane is represented by
the formula:
wherein each occurrence of G2 is independently a polyvalent group derived by substitution of an alkyl, alkenyl, aryl or aralkyl group, wherein G2 can contain from I to about 40 carbon atoms;
each occurrence of L is a halogen atom (i.e., F, Cl, Br, or I), sulfonate group, sulfinate group, or carboxylate group;
each occurrence of X is independently a member selected from the group consisting of RO-, R2C=NO-, R2NO- or R2N-, -R, and -(OSiR2)1(OSiR3), wherein each occurrence of R is chosen independently from the set of groups comprising hydrogen, alkyl groups that may or may not contain unsaturation, alkenyl groups, alkynyl groups, aryl groups, and aralkyl groups, with each R containing from 0 to 30 carbon atoms; at least one X is not ~R and each occurrence of the subscript t is an integer of from 0 to about 50; each occurrence of the subscript c is independently an integer from 1 to about 6; and, each occurrence of the subscript/is independently an integer from 1 to about 6;
and thiocaroxylic acid is represented by the formula: G'(-Y-SM)a
wherein each occurrence of G1 is independently R or a polyvalent group derived by substitution of an alkyl, alkenyl, aryl or aralkyl group, wherein G1 can contain from 1 to about 40 carbon atoms, and where G1 a is R1,
each occurrence of R1 is chosen independently from the set of groups comprising hydrogen, alkyl groups that may or may not contain unsaturation, alkenyl groups, alkynyl groups, aryl groups, and aralkyl groups, with each R1 containing from 0 to about 30 carbon atoms;
Y is carbonyl, C(=O);
each occurrence of M is an alkali metal; ammonium; or a mono-, di-, or tri-substituted ammonium; and
each occurrence of the subscript a is independently an integer from 1 to about 6.
3. The process of any of Claims I - 2, wherein product thiocarboxylate silane is represented by at least one of the formulae:
(R'-Y-S-)a G2(-SiX,)c G1[-Y-S-G'2-(SiX3,),]a
wherein G1, G2, R, Y, X, a, b, c and d each have the aforestated meanings.
4. The process any of Claims 1 - 3, wherein an additional salt is present during the
reaction and wherein the additional salt is selected from the group consisting of alkali
metal halide, alkali metal carbonate, alkali metal sulfate and combinations thereof.
5. The process of any of Claims 1-4, wherein the concentration of the salt of
thiocarboxylic acid in the aqueous solution thereof is from about 20 to about 45
weight percent.
6. The process of any of Claims 1-5, wherein the reaction is carried out in the
substantial absence of organic solvent which is insoluble in water or has limited
solubility in water under the reaction conditions.
7. The process of any of Claims 1-6, wherein the reaction is carried out in the
presence of organic solvent which is insoluble in water or has limited solubility in
water under the reaction conditions.
8. The process of any of Claims 1-7, wherein the phase transfer catalyst is present in
the reaction medium at a concentration of from about I ppm to about 3 percent by
weight and wherein the phase transfer catalyst possesses an organic cation capable of
transferring thiocarboxylate anion from the aqueous phase imo the organic phase of
the reaction medium.
9. The process of any of Claims I-8, wherein the reaction of aqueous salt of
thiocarboxylic acid with haloalkyl silane is conducted in the presence of agitation to
keep the amount of siloxane-type by-product(s) to less than about 20 weight percent
of the total amount of reaction product.
10. The process of any of Claims I-8, which comprises reacting aqueous sodium,
thiooctanoate of at least about 95 weight percent purity with 3-chloro-l-
propyltriethoxysilane in the presence of tetrabutylammonium bromide phase transfer
catalyst to provide 3-octanoylthio-l-propyltriethoxysilane.
11. A process for the preparation of an aqueous solution of a salt of a thiocarboxylic
acid which comprises reacting an aqueous solution of a sulfide and/or hydrosulfide
with an acid halide and/or acid anhydride in the presence of a phase transfer catalyst
to provide the aqueous solution of thiocarboxylic acid salt.
12. The process of Claim 10, wherein the structures of the sulfide, hydrosulfide, acid
halide and acid anhydride are represented by one of the formulae:
M2S
MSH
G'(-Y-L)a
wherein each occurrence of M is an alkali metal; ammonium; or a mono-, di-, or tri-substituted ammonium;
each occurrence of L is a halogen atom (i.e., F, Cl, Br, or 1), sulfonate group, sulfinate group, or carboxylate group;
Y is carbonyl, C(=O);
each separate occurrence of G1 is independently R1 or a polyvalent group derived by substitution of an alkyl, alkenyl, aryl or aralkyl group, wherein G1 can contain from 1 to about 40 carbon atoms; and each occurrence of the subscript a is independently an integer from 1 to 6 and wherein R1 is from the set of groups comprising hydrogen, alkyl groups that may or may not contain unsaluration, alkenyl groups, alkynyl groups, aryl groups and aralkyl groups with each R containing from 0 to about 30 carbon atoms.
13. The process of any of Claims 10-11, wherein the phase transfer catalyst is represented by the formula:
2:'45+
(R2R:'R4R5Q+)n A'n
wherein each separate occurrence of R2, R3 R4 and R5, is, independently, an R1 as defined;
Q is nitrogen or phosphorus;
A"n is a monovalcnt or polyvalent anion where the minus sign denotes that the species is an anion, and n denotes the number of negative charges on the anion; and, the subscript n is a positive integer of from 1 to about 6.
14. The process of any of Claims 10-12, which is carried out in a batch operation at
from about 10°C to about 40°C, or from about 20°C to about 50°C in a continuous
operation.
15. The process of any of Claims 10-12, which is under agitation to provide product
thiocarboxylic acid salt of at least about 95 weight percent purity based on the total
weight of all the reaction products.
16. The process of any of Claims 10-13, wherein the salt of thiocarboxylic acid in aqueous solution and containing phase transfer catalyst is reacted with haloalkyl silane to provide thiocarboxylate silane.

Documents:

6092-delnp-2005-abstract.pdf

6092-delnp-2005-claims.pdf

6092-delnp-2005-Correspondence Others-(23-04-2014).pdf

6092-delnp-2005-correspondence-others.pdf

6092-delnp-2005-description (complete).pdf

6092-delnp-2005-form-1.pdf

6092-delnp-2005-form-18.pdf

6092-delnp-2005-form-2.pdf

6092-delnp-2005-Form-3-(23-04-2014).pdf

6092-delnp-2005-form-3.pdf

6092-delnp-2005-form-5.pdf

6092-delnp-2005-pct-210.pdf

6092-delnp-2005-pct-237.pdf

6092-delnp-2005-pct-304.pdf

6092-delnp-2005-pct-311.pdf

6092-DELNP-2005Abstract221014.pdf

6092-DELNP-2005Claims221014.pdf

6092-DELNP-2005Correspondence211014.pdf

6092-DELNP-2005Description(Complete)221014.pdf

6092-DELNP-2005Examination Report Reply Recieved221014.pdf

6092-DELNP-2005Form 2(Title Page)221014.pdf

6092-DELNP-2005Form 5221014.pdf

6092-DELNP-2005Other Patent Document221014.pdf

6092-DELNP-2005OTHERS211014.pdf

6092-DELNP-2005OTHERS221014.pdf

6092-DELNP-2005Power of Attorney211014.pdf

6092-DELNP-2005Power of Attorney221014.pdf

Certified copy of Assignment.pdf

Form -1.pdf

Form 13.pdf

Form 6.pdf

FORM-3.pdf

Petition-Form-3.pdf

Power of Attorney.pdf


Patent Number 264447
Indian Patent Application Number 6092/DELNP/2005
PG Journal Number 01/2015
Publication Date 02-Jan-2015
Grant Date 30-Dec-2014
Date of Filing 27-Dec-2005
Name of Patentee MOMENTIVE PERFORMANCE MATERIALS INC.
Applicant Address 260 HUDSON RIVER ROAD, WATERFORD, NEW YORK 12188, U.S.A.
Inventors:
# Inventor's Name Inventor's Address
1 CRUSE RICHARD W. 171 MONTROSS ROAD, YORKTOWN HEIGHTS, NY 10598, U.S.A.
2 SIMANDAN TIBERIU L. 105 SUMMERSET DRIVE, MARIETTA, OH 45750, U.S.A.
PCT International Classification Number C07F 7/18
PCT International Application Number PCT/US2004/021180
PCT International Filing date 2004-07-01
PCT Conventions:
# PCT Application Number Date of Convention Priority Country
1 60/484,962 2003-07-03 U.S.A.
2 10/881,839 2004-06-30 U.S.A.